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Analyzing a set of shapes
(Co-analysis)
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Co-Segmentation

 More knowledge can be inferred from multiple
shapes rather than an individual shape




Papers

e Supervised approaches

Learning 3D Mesh Segmentation and Labeling [Siggraph 2010]
Prior Knowledge for Part Correspondence [Eurographics 11]

 Unsupervised approaches

Consistent Segmentation of 3D Models [SMI 09]

Style-Content Separation by Anisotropic Part Scales [Siggraph Asia
2010]

Joint Shape Segmentation with Linear Programming [Siggraph Asia
2011]

Unsupervised Co-Segmentation of a Set of Shapes via Descriptor-
Space Spectral Clustering [Siggraph Asia 2011]



Consistent Segmentation of 3D Models

Aleksey Golovinskiy and Thomas Funkhouser
Princedon University
SMI 2009



Consistent Segmentation

* The first paper to segment a set of models consistently

e Simultaneously segments models and creates
correspondences between segments
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Algorithm

* Two main steps

— create a graph that contains as nodes the faces of
the models
e Adjacency Edges
e Correspondence Edges
— segmentation by clustering its nodes into disjoint
sets
e weakly connected to the rest of the mesh

 more inter-mesh correspondences to the other parts in
the cluster than to parts outside of the cluster



Graph Construction

* Adjacency Edges
 Correspondence Edges
— Alignment - PCA




Clustering

 Over-segment each mesh independently
e Merge the segments by hierarchical clustering

(b) Prior Segmentation
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(c) Output Consistent Segmentation




Results




Limitations

e created through a global similarity alignment

e consider low-level cues: adjacency and point
correspondences

(a) Alignment (a) Consistent Segmentation



Learning 3D Mesh Segmentation
and Labeling

Evangelos Kalogerakis, Aaron Hertzmann, Karan Singh
University of Toronto
Siggraph 2010



Segmentation and Labeling

e A data-driven approach to simultaneous

segmentation and labeling of parts in 3D meshes
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Algorithm

Goal: to label each mesh face :with a labell €C
Define:

— each face i : unary features x;
— each adjacent pair of faces : pairwise features y;
— objective function:

E(c;0) = Z a; 1 (ci;x;,01) + Z liiEa(ci,ciiy45,02)

Conditional Random Field(CRF):
P(clx,y,0) = exp(—E(c;0))/Z(x,y,0)

JointBoost & hold-out validation



Models

Markov Random Field ( MRF )

Markov Chain

Hidden Markov Model ( HMM )

Maximum Entropy Markov Model (MEMM)
Conditional Random Field ( CRF )




Energy Term

Unary Energy Term FEi(¢;x,61) = —log P(c|x,61)

Pairwise Energy Term E:(c,c';y,02) = L(c,c') G(y)

e the label-compatibility term L(c,¢') measures the
consistency between two adjacent labels.

* The geometry-dependent term G(y) measures the
likelihood of there being a difference in labels, as a
function of the geometry alone.

G(y) = — klog P(c # ¢'ly, &)
— Alog (1 —min(w/m,1) +€) + p



Boosting

e Committee: combinations of models

. 1 ,
Ycom(X) = i Z Ym(X).

m=1

* Boosting:
— a powerful technique to produce a form of committee.

— the sequential minimization of an exponential error
function.

consider the expected error:

Ex ¢ [exp{—ty(x Z/exp —ty(x) bp(t|x)p(x) dx

B y(x) = :1111{ Pt = 1.‘}() }

2 p(t = —1]x)




Results
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Results
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Style-Content Separation by
Anisotropic Part Scales

Kai Xu* Honghua Li** Hao Zhang* Daniel Cohen-Ort  Yueshan Xiong'  Zhi-Quan Cheng'

*Simon Fraser University "National University of Defense Technology *Tel-Aviv University

Siggraph Asia 2010



Replicating the “style” of an input




Replicating the “style” of an input




Style-Content Separation

e Co-analysis of a set of man-made 3D objects
 Creation instances derived from the set

— more of the same
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Co-Segmentation

* Over-segmentation

e Graph construction [SmI 2009]
e Inter-style correspondence
e Content classification
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Figure 2: An overview of the co-analysis pipeline.



Results
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Prior Knowledge for Part
Correspondence

Oliver van Kaickl._ Andrea 'I'agliaﬁacchi1, (Jana Hidiz, Hao ?Ihangl, Daniel {Znhen—ﬂrz, Lior Wﬂlfz._ and Ghassan Hamarneh'

! School of Computing Science, Simon Fraser University, Canada
* School of Computer Science, Tel Aviv University, Israel

Eurographics 2011



Goal

e Models

— large variations in the geometry or topology of the
corresponding parts

* Content-driven analysis -> Knowledge-driven analysis

— Prior knowledge on the parts would play a more dominant
role than geometric similarity

e Joint labeling scheme =




Overview

Content-driven analysis
— shape descriptors
- D.={D,,D,,...,D_ }and D, ={D,, ,D,, ,...
— C=A(D,,D; )

Incorporation of semantic knowledge
— Pre-segmented training set

Probabilistic semantic labeling
Joint labeling and part correspondence

D

F=1Tm

}



Prior Knowledge

* Training set
— Manually segmented shapes

— semantic labeling of each part
* Shape descriptors
— Kalogerakis et al. [KHS10]

— Curvature, SDF, geodesic distances, and binning of face areas
into geodesic shape contexts

* Classifier training

— Train a classifier K; with the descriptors D,
— “gentleboost” algorithm [KHS10]



Probabilistic Semantlc Labeling

Classifiers applied on the mesh faces
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Joint Labeling

e Labeling energy
EN) = YUll)+ Y Bl jlil)+
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Results




Conclusion

* Prior knowledge based
— Reliance of low-level shape descriptors

e Computational cost



Joint Shape Segmentation with
Linear Programming

Qixing Huang, Vladlen Koltun, Leonidas Guibas
Stanford University
Siggraph Asia 2011



Joint Segmentation

e Segments the shapes jointly, utilizing features from
multiple shapes to improve the segmentation of each




Overview

e |nitial segments - randomized clustering

e Pairwise joint segmentation - identify pairs of similar
shapes

 Multiway joint segmentation - increase segmentation
quality across pairs of similar shapes

segmentation
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Figure 2: Overview of our approach. In the first stage, we produce a set of initial segments for each shape. In the second stage, each pair of
shapes is jointly segmented in order to identify similar shapes. In the third stage, a global optimization is performed over segmentations of
all shapes tagether with correspondences between similar shapes.




Results




Conclusion

e Segments in the final segmentation of each
shape are generated from the initially
computed patches

e Computational cost



Unsupervised Co-Segmentation of a
Set of Shapes via Descriptor-Space
Spectral Clustering

Oana Si1di” Oliver van Kaick' Yanir Kleiman® Hao Zhang' Daniel Cohen-Or*
"Tel-Aviv University 'Simon Fraser University



Overview

* input: a set of meshes from a given family, ¢ = (v g
* derive a statistical model for each class of parts:

p(flei) = plf,pi, i) = Ce w5 e plelf) oo p(fle)ple:)

* define a collection of energies over each mesh:

W)= Epluly) + > Es(u,v,lil)
=4

HIII:F.l
—En(u,l,) = —wlog(p(er, |u)) \;vc,u*cf:
— Es(u, v, lu, lu) = % i =1 %{‘BQ
3 Ly Uy by -|',:I — _]DEE_HH rll,l'lllﬂ;] Lu'_- U-[I]El.wiy:

where [,,.. is the length of the edge between the faces corresponding
to u and v, and #,,,, is the dihedral angle between the two faces.



Statistical Model

* Extract shape descriptor at the face-level
— the upright orientation vector [Fu et al. Sig08]
— the angle between the normal of the face

— the geodesic distance from the base of the shape to the face

* Per-object segmentation: mean-shift algorithm

— Segment-level descriptor: for a segment Si
« the histogram of face-level descriptor:  h?
* the segment area: a;

* the overall geometry of the segment: 9+ — [ pop phs |
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llg = —"_ |'|'_I= ;_ . : oy n . A ”
f M4 Aa+Aa TP T AL+ Ao+ g e M4 Ao+ g with Ay 2 Ag 2 As

A1, Ao, and Ag are the three eigenvalues obtained when applying principal
component analysis to all the vertices that are part of the segment.



Descriptor-space Spectral Clustering
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(b) Diffusion maps

(c) Clustering



Results




Results







Limitations: lack of third parties




Limitations: incorrect connections

iyl aw
Vidbie
25T d

/

.-

[

7 \,\___

-

=
‘.




Conclusion

e Co-segmentation of a set

' ®
e Descriptor-space clustering Sl a
e Diffusion maps ’ ,.
e Third-party connections .




Summary

e Co-analysis and co-segmentation
— Understanding a set of 3D shapes

e Approaches
— Supervised
— Unsupervised
— Semi-supervised

* A hot research topic!



Bigger Question

* How much and what can we learn from a set?
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Discussion
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