

Ligang Liu
Graphics&Geometric Computing Lab
USTC

http://staff.ustc.edu.cn/~lgliu

Outline

- Why shape descriptors?
- How do we represent shapes?
- Conclusion

Goal

• Find 3D models with similar shape

Goal

- Shape Descriptor:
 - Structured abstraction of a 3D model
 - Capturing <u>salient</u> shape information

- Shape Descriptors
 - Fixed dimensional vector

- Independent of model representation

Easy to match

- Representation:
 - What can you represent?
 - What are you representing?
- Matching:
 - How do you align?
 - Part or whole matching?

- Representation:
 - What can you represent?
 - What are you representing?

- Matching:
 - How do you align?
 - Part or whole matching?

Point Clouds

Polygon Soups

Genus-0 Meshes

- Representation:
 - What can you represent?
 - What are you representing?
- Matching:
 - How do you align?
 - Part or whole matching?

Is the descriptor invertible?

What is represented by the difference in descriptors?

- Representation:
 - What can you represent?
 - What are you representing?

Matching:

How do you represent models across the space of transformations that don't change the shape?

- Representation:
 - What can you represent?
 - What are you representing?

- Matching:
 - How do you align?
 - Part or whole matching?

Outline

- Why shape descriptors?
- How do we represent shapes?
 - Volumetric Representations
 - Surface Representations
 - View-Based Representations
- Conclusion

Volumetric Representations

Represent models by the volume that they occupy:

- Rasterize the models into a binary voxel grid
 - A voxel has value 1 if it is inside the model
 - A voxel has value 0 if it is outside

Volumetric Representations

- Compare models by measuring the overlaps of their volumes
 - Similarity is measured by the size of the intersection

Volumetric Representations

Properties:

- Invertible
- 3D array of information
- Comparison gives the measure of overlap

• Limitations:

Models need to be water-tight

Polygon Soups

Outline

- Why shape descriptors?
- How do we represent shapes?
 - Volumetric Representations
 - Surface Representations
 - Spherical Parameterization
 - Extended Gaussian Image
 - Shape Histograms (Sectors + Shells)
 - Gaussian EDT
 - View-Based Representations
- Conclusion

Spherical Parameterization

- Create a 1-to-1 mapping between points on the surface of the model and points on the surface of the sphere.
- Compare two models by comparing the distances between two points on the models that map to the same point on the sphere

Spherical Parameterization

Properties:

- Invertible
- 2D array of information
- Comparison gives the distance between surfaces

• Limitations:

Models need to be genus-0

Point Clouds

Polygon Soups

Closed Meshes

[Horn, 1984]

 Represent a model by a spherical function by binning surface normals

[Horn, 1984]

Properties:

- Invertible for convex shapes
- 2D array of information
- Can be defined for most models

[Horn, 1984]

Properties:

- Invertible for convex shapes
- 2D array of information
- Can be defined for most models

• Limitations:

- Too much information is lost
- Normals are sensitive to noise

[Horn, 1984]

Properties:

- Invertible for convex shapes
- 2D array of information
- Can be defined for most models

• Limitations:

- Too much information is lost
- Normals are sensitive to noise

Initial Model

Noisy Model

Retrieval Results

- Princeton Shape Benchmark
 - -~900 models, 90 classes

14 biplanes

50 human bipeds

7 dogs

17 fish

16 swords

6 skulls

15 desk chairs

13 electric guitars

http://www.shape.cs.princeton.edu/benchmark/

Retrieval Results

Shape Histograms

[Ankerst et al., 1999]

 Shape descriptor stores a histogram of how much surface resides at different bins in space

Boundary Voxel Representation

- Represent a model as the (anti-aliased)
 rasterization of its surface into a regular grid:
 - A voxel has value 1 (or area of intersection) if it intersects the boundary
 - A voxel has value 0 if it doesn't intersect

Boundary Voxel Representation

Properties:

- Invertible
- 3D array of information
- Can be defined for any model

Retrieval Results

Histogram Representations

• Challenge:

Histogram comparisons measure overlap, not proximity.

Convolving with a Gaussian

- The value at a point is obtained by summing Gaussians distributed over the surface of the model.
 - ✓ Distributes the surface into adjacent bins
 - ➤ Blurs the model, loses high frequency information

Gaussian EDT

[Kazhdan et al., 2003]

- The value at a point is obtained by summing the Gaussian of the closest point on the model surface.
 - ✓ Distributes the surface into adjacent bins
 - ✓ Maintains high-frequency information

Gaussian EDT

[Kazhdan et al., 2003]

Properties:

- Invertible
- 3D array of information
- Can be defined for any model
- Difference measures proximity between surfaces

Shape Spectrum

Retrieval Results

Outline

- Why shape descriptors?
- How do we represent shapes?
 - Volumetric Representations
 - Surface Representations
 - View-Based Representations
 - Spherical Extent Function
 - Light Field Descriptor
- Conclusion

Spherical Extent Function

[Vranic et al. 2002]

 For every view direction, store the distance to the first point a viewer would see when looking at the

origin.

Spherical Extent Function

- A model is represented by its star-shaped envelope:
 - The minimal surface containing the model with the property that the center sees every point on the surface
 - Transforms arbitrary genus models to genus-0 surfaces

Spherical Extent Function

- A model is represented by its star-shaped envelope:
 - The minimal surface containing the model with the property that the center sees every point on the surface
 - Transforms arbitrary genus models to genus-0 surfaces

Spherical Extent Function

Properties:

- Invertible for star-shaped models
- 2D array of information
- Can be defined for most models

Spherical Extent Function

Properties:

- Can be defined for most models
- Invertible for star-shaped models
- 2D array of information

Limitations:

Distance only measures angular proximity

Spherical Extent Matching

Nearest Point Matching

Retrieval Results

[Chen et al. 2003]

 For every view direction, store the image the viewer would see when looking at the origin.

Hybrid boundary/volume representation

Properties:

- Represents the visual hull of the model
- 4D array of information
- Can be defined for most models

Properties:

- Can be defined for most models
- Invertible for star-shaped models
- 4D array of information
- Similarity = sum of area and contour similarities
 - There is a well defined interior
 - Can parameterize contours in 2D

Retrieval Results

高斯不变量描述子

[曹, 2011]

• 离散计算

$$GCMI_n = (GCM_0)^{n-1} (GCM_n) = (GCM_0)^{n-1} \iint_S K^n \rho ds \approx (GCM_0)^{n-1} \rho \sum_{i=1}^N K_i^n \Delta S_i$$

• 描述子

$$\overrightarrow{GIV} = (GCMI_1, GCMI_2, \cdots, GCMI_n)$$

谱矩不变量

• 基于Diffusion距离

$$NSMId_m = (SMId_m)(SMId_0)^{\frac{m-2}{2}}$$
$$t \in \{ [\frac{1}{\lambda_i}], [\frac{1}{\lambda_{i+1}}], [\frac{1}{\lambda_{i+2}}], \cdots, [\frac{1}{\lambda_N}] \}$$

• 基于Commute-time距离

$$NSMIc_m = \frac{SMIc_m}{SMIc_0}$$

• 基于Biharmonic距离

$$NSMIb_m = \frac{SMIb_m}{(MIDb_0)^{\frac{m}{2}+1}}$$

离散计算及描述子

• M阶谱矩不变量离散形式

$$SMI_m = \iiint\limits_{S} \iint\limits_{S} D(x,y)^m \rho(x) \rho(y) ds_y ds_x \approx \sum_{i=1}^{N} \sum_{j=1}^{N} D_{ij}^m \Delta s_{y_j} \Delta s_{x_i} \rho(x) \rho(y)$$

• 描述子

$$\overrightarrow{MIV} = (NSMI_1, NSMI_2, \cdots, NSMI_n)$$

特征函数矩不变量描述子

• 特征函数矩

$$EM_{(i_k)}^{(m_k)} = \iint_M \prod_{k=1}^K (\phi_{i_k}(x))^{m_k} ds \approx \sum_{j=0}^{n-1} \prod_{k=1}^K (v_{i_k j})^{m_k} \Delta s_j$$

• 特征函数矩不变量

$$EMI_{(i_k)}^{(m_k)} = S^{\frac{1}{2} \sum_{k=1}^{K} m_k} \sum_{j=0}^{n-1} \prod_{k=1}^{K} (v_{i_k j})^{m_k} \Delta s_j$$

• 描述子

$$\overrightarrow{EIV} = (EMI_1, EMI_2, EMI_3, \cdots, EMI_n)$$

Conclusion

- Extended Gaussian Image
 - Differential properties are not always stable
- Gaussian Euclidean Distance Transform
 - Distributes surface across space without blurring
- Spherical Extent Function
 - Represents arbitrary genus shape by a genus-0 model
- Light Field Descriptors
 - 2D matching allows for volumetric comparisons and silhouette parameterizations

Conclusion

 In designing a shape descriptor, you want to consider:

- What kind of models can be represented?
- What kind of shape metric is defined?

Point

Clouds

Polygon

Soups

Shape Spectrum

Discussion