

GAMES 102在线课程

几何建模与处理基础

刘利刚

中国科学技术大学

GAMES 102在线课程:几何建模与处理基础

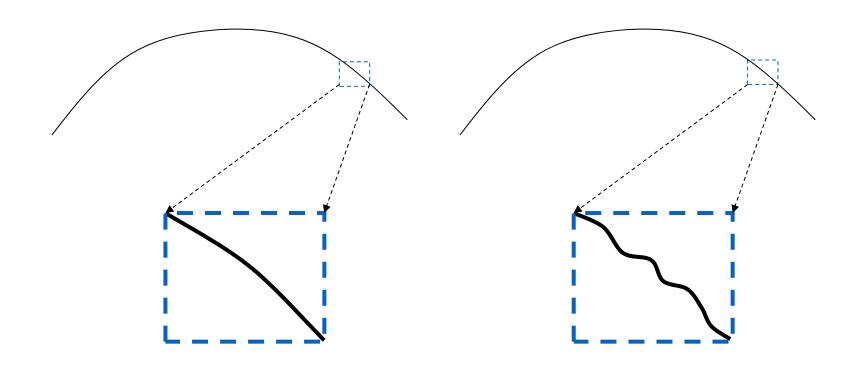
曲线光顺

光滑(Smooth)曲线

- 连续曲线(Continuous):参数连续性
 - 给定 2 条曲线
 - $x_1(t)$ 定义在 $[t_0, t_1]$
 - $\mathbf{x}_2(t)$ 定义在 $[t_1,t_2]$
 - 曲线 x_1 和 x_2 在 t_1 称为 C^r 连续的,如果它们的从 0^{th} (0阶) 至 r^{th} (r) 的导数向量在 t_1 处完全相同
 - 光滑: 高阶连续
- 几何连续:
 - 与参数化无关,更刻画了曲线形状的本征光滑性
 - 更适合交互式曲线设计

什么是光顺曲线?

Curve fairing



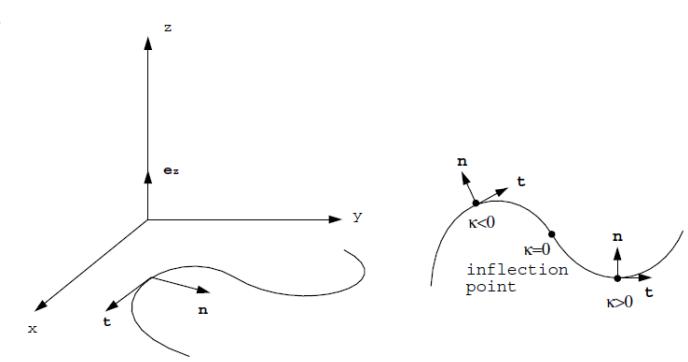
曲线的微分几何

单参数曲线的切线和法向

- 曲线: $r = r(t) = (x(t), y(t)), t \in [0,1]$
- 切线:

•
$$\mathbf{t} = \mathbf{r}'(t) = (x'(t), y'(t))$$

法线n



Curves

■ Tangent vector to curve C(t)=(x(t),y(t)) is

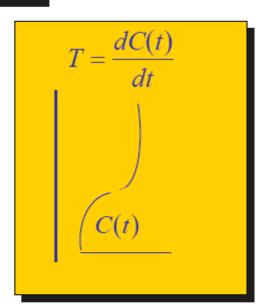
$$T = C'(t) = \frac{dC(t)}{dt} = \left[x'(t), y'(t)\right]$$

Unit length tangent vector

$$\vec{T} = \vec{C}(t) = \frac{\left[x'(t), y'(t)\right]}{\sqrt{x'(t)^2 + y'(t)^2}}$$

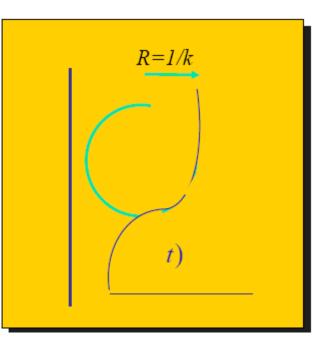
Curvature

$$k(t) = \frac{x'(t)y''(t) - y'(t)x''(t)}{\left(x'(t)^2 + y'(t)^2\right)^{3/2}}$$



Curve Curvature

- Curvature is independent of parameterization
 - C(t), C(t+5), C(2t) have same curvature (at corresponding locations)
- Corresponds to radius of osculating circle R=1/k
- Measure curve bending

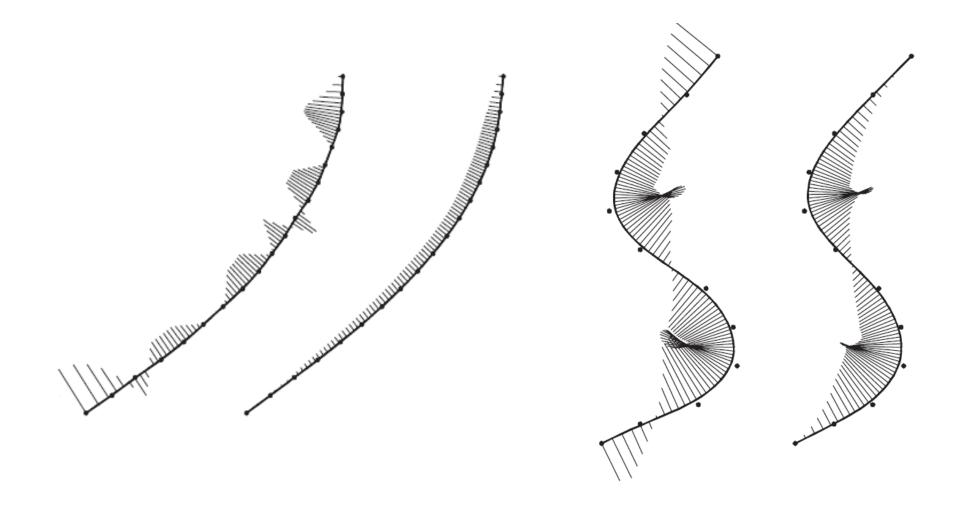


曲线的光顺定义

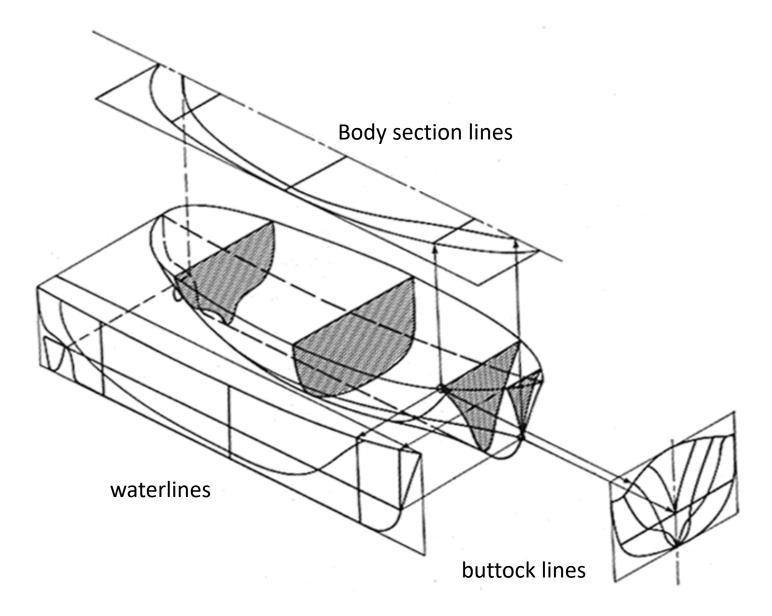
Geometric Design: Two Phases

- Shape design and modeling (Macro)
- Fairing design and modeling (Micro)
 - A post-processing after shape design
 - Less well studied
 - Difficult problem
 - Lack of solid theories
 - Far from solved

曲线的曲率图



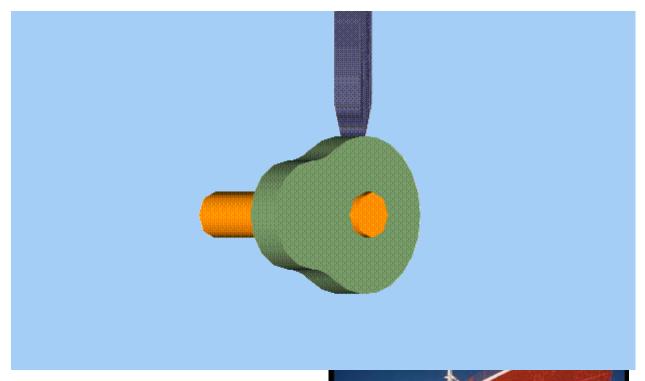
Why fairing curves?



Fairing Design is Important!

- Shoe sole
- Cam profile
- Ship hull
- Car profile
- Plane profile

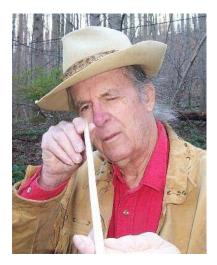
• . . .



Why Difficult?

- A subjective concept
 - The subtle bumps, wiggles, and inflection points of a curve
 - Related to human perception
 - Dependent on designer's experience
- A difficult task
 - Examining the curves by eye!
 - No objective measures
 - Cannot do it mathematically





Some 'Definitions' of Fairness

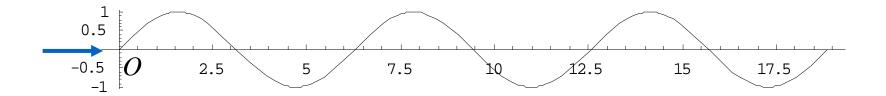
- [Su and Liu 1978]
 - A curve is fair if it is C^2 continuous and its curvature plot is free of any unnecessary variation, i.e., the distribution of curvature must be as uniform as possible.
- [Farin and Sapidis, 1989]
 - A curve is fair if its curvature plot consists of relatively few monotone pieces.
- [Farin 2002]
 - A curve is fair if its curvature plot is continuous and consists of only a few monotone pieces.
- [Roulier and Rando, 1994]
 - A curve is fair if it is C^2 continuous and minimizes the integral of the squared curvature with respect to arc length

$$\int_C k^2 ds = MIN$$

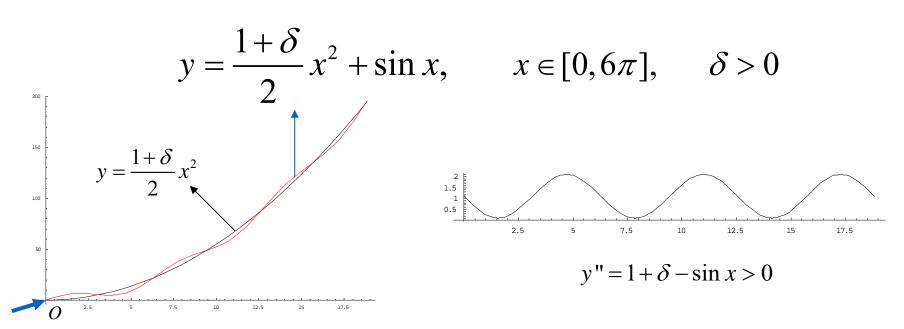
Observations of Fairness

- Neither a global problem nor a local problem, but a large local problem
 - Not an energy minimization problem
- Need not C² continuous
 - Circular spline
- Intimately related to uniform distribution of curvature
 - Curvature is a "magnifier" of the curve fairness

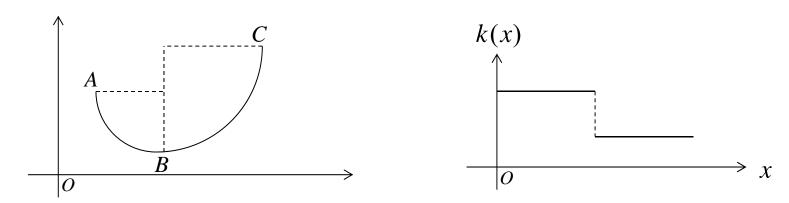
$$y = \sin x, \qquad x \in [0, 6\pi]$$



- The curve is C^{∞}
- The curve is not fair as the eye is very uncomfortable while viewing from point O
- Reason
- It has too many inflections (vibration numbers)
 (One vibration: from convex to concave or from concave to convex)



- The curve is C^{∞} without any inflection point.
- The curve is not fair as the eye is very uncomfortable while viewing from point O (it winds along the black parabola curve)
- Reason
 - y"(x) has too many vibration numbers



- The curvature function y"(x) is discontinuous.
- Vibration number of y"(x) can be defined if it is a bounded function. y''(x) is bounded $\Rightarrow y'(x)$ has bounded variation $\Rightarrow y(x) \in C^{l+1}$.
- The curve is not fair if k_1 and k_2 are much different.
- Reason
 - y"(x) has large amplitude at discontinuity point.

曲线的光顺的"新定义"

- 一条曲线是光顺的, 如果
 - (1) 它是 C^{1+l} (l > 0) 连续的;
 - (2) 它的曲线本身拐点较少;
 - (3) 它的曲率图的拐点较少;
 - (4) 它的曲率图变化的振幅相对小.

说明 1. 条件(1)中的 C^{1+l} 是要求曲线为 C^1 连续而不必 C^2 ,但 C^1 的导数满足有界变差. 条件(4)则要求曲线在曲率非连续点处的跳跃要尽可能小.

说明 2. 满足(2)和(3)描述的曲线的它的曲率 图含有的单调段都会相对少. 这与前面所述的判 别准则 1-4 一致.

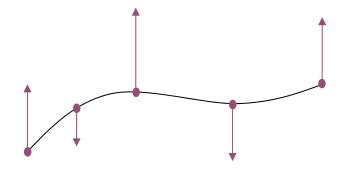
Remarks

- Vibration
 - Change from convex to concave or change from concave to convex
- First vibration number R
 - Vibration number of y(x)
- Second vibration number S
 - Vibration number of curvature function

曲线的光顺方法

函数型3次样条曲线

- 小扰度假设
 - 转角不大于60°
- $y'(x) \ll 1$
- $y''(x) \approx k(x)$



曲线的光顺方法

- C¹ continuous
- Decrease jump amplitude of curvature
- Decrease the first vibration number R
- Decrease the second vibration number S

Steps

- Coarse fairing
- Basic fairing
- Fine fairing

Step 1. 初光顺

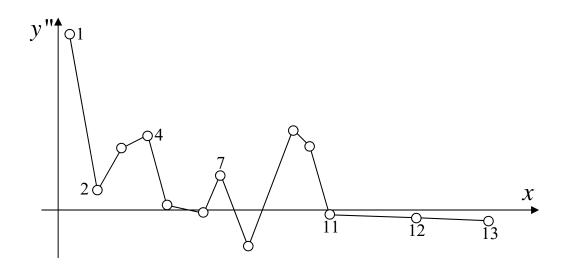
- 定界法
 - Adjust the positions of control points
 - Decrease the jump amplitude of curvature
 - Remove some unwanted inflections
- Physical approach

Step 2. 基本光顺

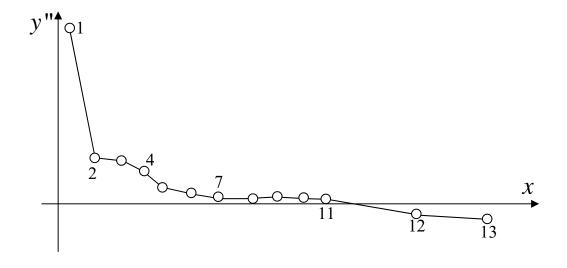
- 卡尺法
 - Adjust the positions of control points
 - Remove other redundant inflections
 - Decrease the first vibration number R
- Geometric approach

Step 3. 精光顺

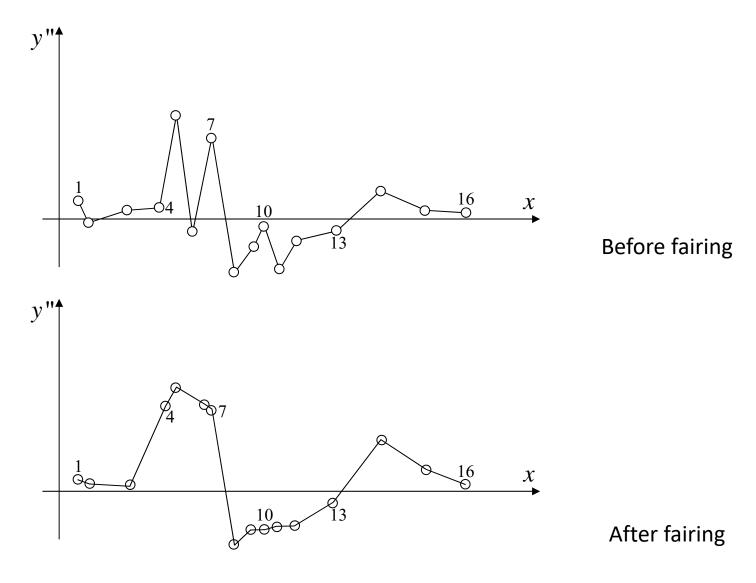
- 回弹法
 - Check the signs of shear force at control points
 - Adjust the change numbers of shear force
 - Decrease the second vibration number S
- Physical approach

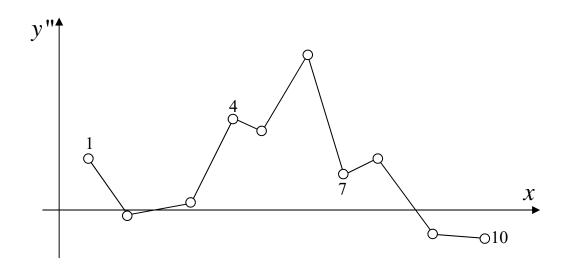


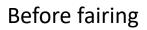
Before fairing

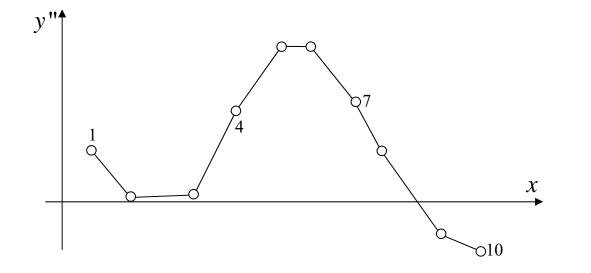


After fairing



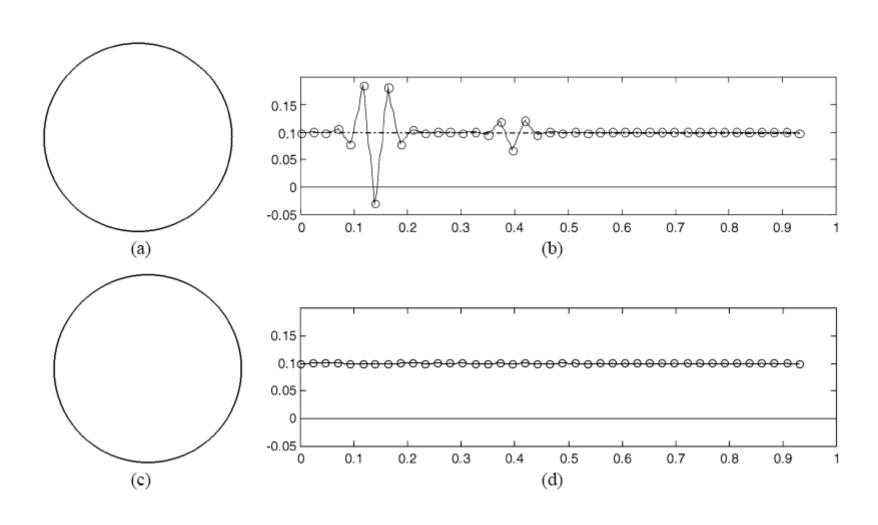




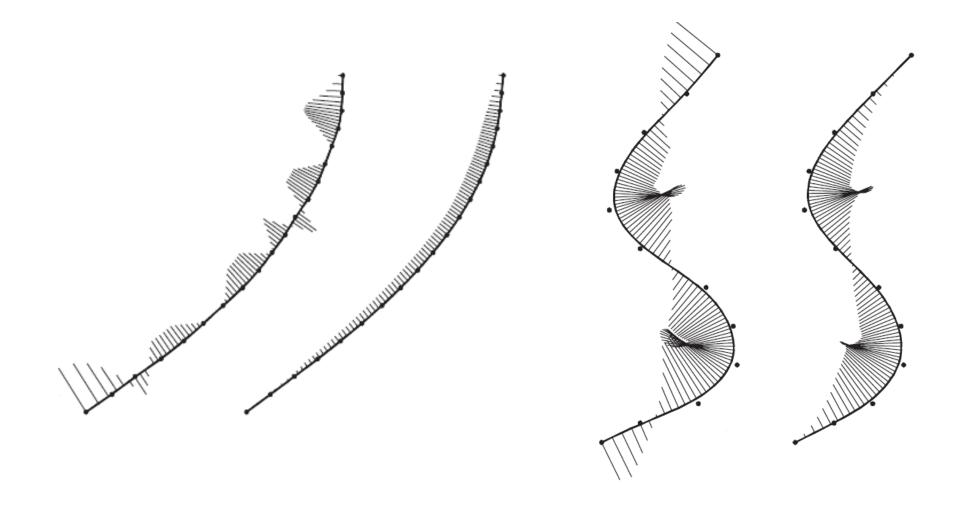


After fairing

光顺结果



光顺结果



B样条曲线的光顺方法

• 基于稀疏优化的光顺优化方法

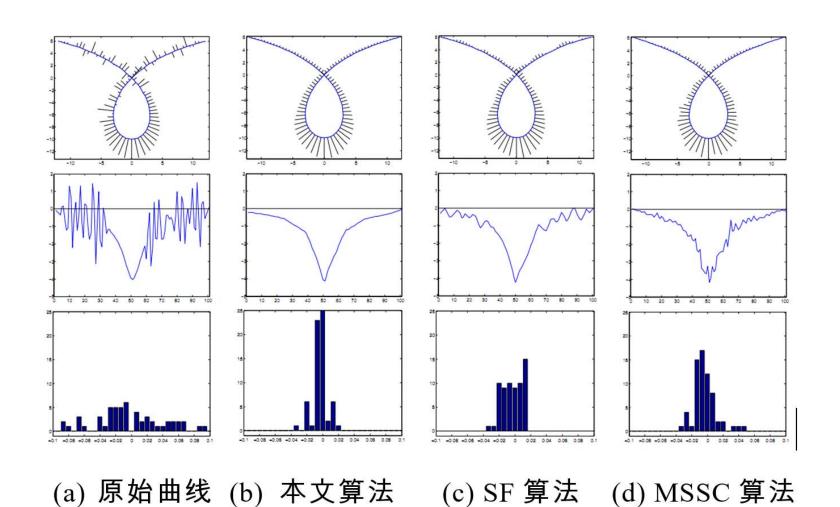
$$\min_{\tilde{d}} \| e(\tilde{d}) \|_{1}$$
s.t.
$$\| \tilde{d} - d \|_{\infty} \le \varepsilon$$

曲率的二阶差分向量e. 计算公式如下,

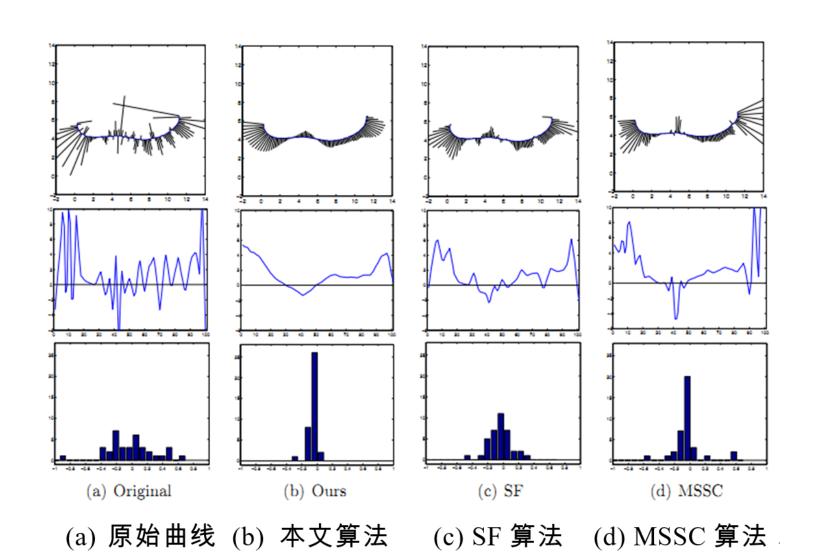
$$e_i = \frac{c_{i+1} - c_i}{t_{i+1} - t_i} - \frac{c_i - c_{i-1}}{t_i - t_{i-1}}, \quad i = 1, \dots, n-3$$

王士玮等,基于稀疏模型的曲线光顺算法,计算机辅助设计与图形学学报, 2016.

光顺结果及比较



光顺结果及比较

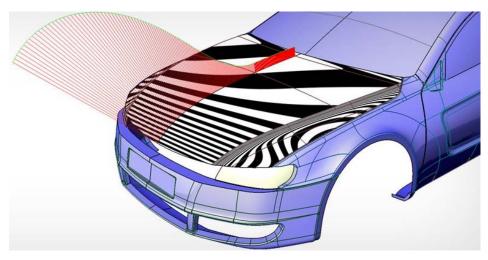


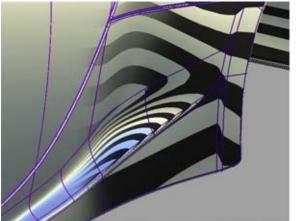
曲面的光顺

G_ G0 G1

• 无严格定义

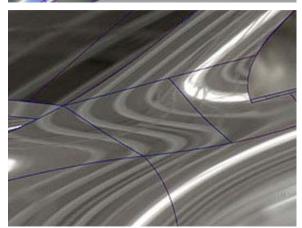
- G2 (G3
- 工业界: Class A曲面(Dassault CATIA)





• 方法1: 三向曲线光顺

• 方法2: 能量法



光顺曲面

谢 谢!