gr';'?@ff#é-&di g

rsity of Sci nd Technology of Chin

GAMES 1027251212

JLATE R S AL 3 B A

X1) Ml

PEMFRAKE

;ﬂ;‘i’@ﬂé-&d& g

‘ w“”‘e University of Science and Techn ologyofCh na

GAMES 1027 2R T2 : JL @RS TEEM

=AM

FH T Y B B3R IA

N A - — —1=]
2 BEERIA
« BiZRHYZE T
* GDI/OpenGL %% EZIK%E B, RER
« HEMERANZIN
s fHE M2
* OpenGLZHIEAREIT. R, Z&. =AF
- HEABEL= A ME

FH 2% 1Y B X FHH T 9 5 B

Standard Graph Definition

B C

G=<VE>

V = vertices =

D {A.B,C,D,E,F,G H,IJK,L}

E = edges =
{(A,B),(B,C),(C,D).(D,E).(E,F).(F.G),
(G,H),(H,A),(AJ),(A,G),(B,J).(KF),
C,L),(C,D,(D,D,(D,F),(F,D,(G,K),
J,L),(J,K),(K,L),(L,1}

e

F

G | Vertex degree (valence) = number of edges incident on vertex
deg(J) = 4, deg(H) = 2
k-regular graph = graph whose vertices all have degree k

Face: cycle of vertices/edges which cannot be shortened
F = faces =

| {(AH,G),(AJ.K,G),(B,AJ),B,C,LJ)C,I1J)(C,D,I),

| (D,E,F),(D,I,F),(L,1.,F.K),(L,J,K),(K,F,G)}

Connectivity

Graph is connected if there is a path of edges
connecting every two vertices

Graph is k-connected if between every two
vertices there are k edge-disjoint paths

Graph G’=<V’,E’> is a subgraph of graph
G=<V.,E>if V' is a subset of V and E’ is the
subset of E incidenton V’

Connected component of a graph: maximal
connected subgraph

Subset V’ of V is an independent set in
G if the subgraph it induces does not contain
any edges of E

Graph Embedding

Graph is embedded in RY if each vertex is
assigned a position in Rd

P\
pi

Embedding in R?2 Embedding in R

Planar Graphs

Planar Graph Plane Graph

Planar graph: graph
whose vertices and edges can
be embedded in RZ such that

its edges do not intersect

Straight Line Plane Graph

Every planar graph can be drawn
as a straight-line plane graph

Triangulation

Triangulation: straight line plane
graph all of whose faces are triangles

Delaunay triangulation of a set of
points: unique set of triangles

such that the circumcircle of

any triangle does not contain any other
point

Delaunay triangulation avoids long
and skinny triangles

Meshes

Mesh: straight-line graph embedded in R?

Boundary edge: adjacent to exactly one face
Regular edge: adjacent to exactly two faces
Singular edge: adjacent to more than two
faces

Closed mesh: mesh with no boundary edges
Manifold mesh: mesh with no singular edges

Comersc V x F

.| Half-edgesc ExF

-

Non-Manifold Closed Manifold Open Manifold _

Planar Graphs and Meshes

R
CRRRRE
AR
AN

AR

Rt

Topology

Ca o ® <
mmy

—
—o-~REN

Euler-Poincare Formula

v+f-e =

2(c-g)-b

v = # vertices ¢ =# conn. comp

f = # faces
e = # edges

g = genus
b = # boundaries

Genus of graph: half of
maximal number of closed paths
that do not disconnect the graph

(number of “holes™)

Genus(sphere)=0
Genus(torus) = 1

Orientability

p Orientation of a face is clockwise or anticlockwise

order in which its vertices and edges are listed

This defines the direction of face normal

_ Oriented Straight line graph is orientable if orientations of
F={(L.J.B),(B.C.L).(L.C,]), its faces can be chosen so that each edge is

{H;E%::,ﬁgé} oriented in both directions

F={(B.J.L).(B.C.L).(L.C.I). Mobius strip or
(LLRML K] Klein bottle

- not orientable

Not Backface Culled Backface Culled

face vertex

M
edge edge

* Delaunay Triangulation vs. Voronoi Graph

NEAE:

|
\ NS

5/

Uses of Mesh Data

* Rendering
* Triangle trip

 Geometry queries
 What are the vertices of face #k?
* Are vertices #i and #j adjacent?
* Which faces are adjacent face #k?

* Geometry operations
* Remove/add a vertex/face
* Mesh simplification
* Vertex split, edge collapse

Storing Mesh Data (1)

 Storage of generic meshes
* Hard to implement efficiently

e Assume

* Triangular
* Orientable
e Manifold

Storing Mesh Data (2)

* How “good” is a data structure?
* Space complexity
* Time
* Time to construct - preprocessing

* Time to answer a query
* Time to perform an operation (update the data structure)

* Trade-off between time and space
 Redundancy

Define a Mesh (1)

* Geometry
e VVertex coordinates

* Connectivity
e How do vertices connected?

3
A

i O W N

R Ty |
oo
PRSEES

Define a Mesh (2)

* List of Edge
* Vertex-Edge
* Vertex-Face
* Combined

3D Mesh Surface

e Surface & material properties
* Material color
 Ambient, hightlight coefficients
e Texture coordinates
 BRDF, BTF

* Rendering properties
* Lighting
 Normals
* Rendering modes

General Used Mesh Files

* General used mesh files
* Wavefront OBJ (*.obj)
e 3D Max (*.max, *.3ds)
« VRML(*.vrl)
* Inventor (*.iv)
* PLY (*.ply, *.ply2)
e User-defined(*.m, *.liu)

* Storage

e Text — (Recommended)
* Binary

Wavefront OBJ File Format

* Vertices v 1.0 0.0 0.0
e Start with char ‘v’ v0.01.00.0
) v0.0-1.00.0
* (x,y,z) coordinates S04 5
* Faces f123
i (f142
e Start with char 'f £324
 Indices of its vertices in the file f134

* Other properties
 Normal, texture coordinates, material, etc.

List of Faces

List of Faces

e List of vertices
e Position coordinates

* List of faces
* Triplets of pointers to face vertices (c1,c2,c3)

 Queries:
e What are the vertices of face #37?
* Answered in O(1) - checking third triplet

e Are vertices i and j adjacent?
* A pass over all faces is necessary — NOT GOOD

List of Faces — Example

. v

vertex coordinate 2
V1 (X1.¥1.21) :

face vertices (ccw)
Va (X9.¥2.2) P -
1 (v, Va. v3)

V3 {XSI}!S‘ZSJ f"_\ (V"ﬁ. 1_4. 1'3)
Vi (X4:¥4.24) fﬂ. (1"'3‘ V. T"-ﬁj
T'H'- {Xi}ri‘zﬁj f—l- (V-L -_5. T\ﬁj
Ve (X6-Y6-Z6)

List of Faces — Analysis

* Pros:
e Convenient and efficient (memory wise)
e Can represent non-manifold meshes

e Cons:

* Too simple - not enough information on relations
between vertices & faces

Adjacency Matrix

Adjacency Matrix — Definition

* View mesh as connected graph

* Given n vertices build n*n matrix of adjacency
information

e Entry (i,j) is TRUE value if vertices i and j are adjacent

e Geometric info
 |ist of vertex coordinates

 Add faces

* list of triplets of vertex indices (v1,v2,v3)

Adjacency Matrix — Example

vertex coordinate

Vi (X,.¥1-2y)

Vs (X,.,.2,)

Vs (X3.Y3.Z3)

V4 (X4:Y4Zy)

Vs (X5.Y5.Z5)

Ve (X6.V6.Zg) ik

face vertices (ccw) he : :

: Vv v v, | 1 1|1

f (V) Vo V2) vi | 1 1 1 1

‘. o v, vy v, 1|1 1|1

f, (V. V. Vg) Ys : 1
Ve 1 1 1

Adjacency Matrix — Queries

 \WWhat are the vertices of face #37
* O(1) — checking third triplet of faces

* Are vertices i and j adjacent?
* O(1) - checking adjacency matrix at location (i,j).

* Which faces are adjacent to vertex j?
* Full pass on all faces is necessary

Adjacency Matrix — Analysis

* Pros:
* Information on vertices adjacency
e Stores non-manifold meshes

e Cons:

 Connects faces to their vertices, BUT NO connection
between vertex and its face

Doubly-Connected Edge List
(DCEL)

DCEL

* Record for each face, edge and vertex:
* Geometric information
* Topological information
e Attribute information

* Half-Edge Structure

DCEL (cont.)

« Vertex record:
= Coordinates
= Pointer to one
half-edge that has
v as Its origin
= Face record:

= Pointer to one half-
edge on its
boundary

« Half-edge record:
= Pointer to its origin, origin(e)
= Pointer to its twin half-edge, twin(e)

= Pointer to the face it bounds, IncidentFace(e) (face lies to left
of e when traversed from origin to destination)

= Next and previous edge on boundary of IncidentFace(e)

next(e)

v(e) IncFace(e)

twin(e)

origin(e)

DCEL(cont.)

= Operations supported:
= Walk around boundary of given face
= Visit all edges incident to vertex v

= Queries:
= Most queries are O(1)

DCEL — Example

Ve
face edge

f, €11

f, Cs1

f; 40

f, Cs 1

1-"2
Vertex coordinate IncidentEdge
vV, (X,.Y1:2y) €21
v, (X,.V,.2,) €51
Vs, (Xa-}"a-zj) Ci1
v, (X442 €71
Vg (X..¥5.Z5) 91
Vg (X6.Y6-Zo) €72

DCEL — Example (cont.)

RT"'—\
Half-edge origin twin IncidentFace next prev
€31 Vi €3, tl i €1
€35 V3 31 I Cs1 €41
41 vy 40 I 32 €51
E4.g V3 €41 ta €7 6.1

DCEL — Analysis

* Pros
e All queries in O(1) time
* All operations are O(1) (usually)

* Cons
e Represents only manifold meshes

Corner Table

I Corner : Coupling of vertex with one of its incident triangles

Corner ¢ contains:

= Triangle —c.t

s Vertex —cv

= Next cornerin c.t (ccw) - cn

= Previous corner - cp (==
c.nn)

= Corner opposite ¢ - c.o

= E edge opposite ¢ - not incident
on c.v

= .0 couples triangle T adjacent to
c.t across E with vertex of T not
incident on E

= Left corner - ¢l (== c.p.o == c.n.n.o)

Vi

Corner Table — Example

corner | cv c.t c.n c.p C.0 C.I cl
) v, f, C, Cy ¢, |NULL | NULL
c, v, f, C, ¢, |NULL |NULL | c,
Cs A f, c, ¢, |NULL| ¢, |NULL
Cy A f Cs ¢ |NULL | «c, C,
Cs A f, Cq Cy C, ¢, |NULL
Cq v, f, Cy Cs ¢, |NULL| ¢,

Example Queries

= What are the vertices of face #37
= Check c.v of corners 9, 10, 11
= Are vertices 1 and j adjacent?

= Scan all corners of vertex 1, check if c.p.v or
c.n.v are |

= Which faces are adjacent to vertex j?
=« Check c.t of all corners of vertex j

Corner Table — Analysis

* Pros

e All queries in O(1) time

* All operations are O(1) (usually)
* Cons

e Represents only manifold meshes
* High redundancy (but not too high ...)

Practice with Utopia

» 235 (half-edge) BB 4514

P AT 25 4
* ITE IR

- EREE

e N >]: Mesh smoothing
s TTEEFH N 2 A EREDT]

FRBEZLL% S

University of Science and Technology of China

