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Figure 1: Given an input Horse model (a), our method generates a skin-frame structure (b), which is approximate to the model, to minimize
the cost of material used in printing it. The frame structure is designed to meet various constraints by an optimization scheme. In (b) we
remove the front part of the skin in order to show the internal structure of frame. (c) is the photo of an printed model by removing part of its
skin to see the internal struts. (d) is the photo of the printed model generated by our method. A small red drawing pin is put under the object
as a size reference in (c) and (d) respectively. The material usage in (d) is only 15.0% of that of a solid object.

Abstract

3D printers have become popular in recent years and enable fabri-
cation of custom objects for home users. However, the cost of the
material used in printing remains high. In this paper, we present
an automatic solution to design a skin-frame structure for the pur-
pose of reducing the material cost in printing a given 3D object.
The frame structure is designed by an optimization scheme which
significantly reduces material volume and is guaranteed to be phys-
ically stable, geometrically approximate, and printable. Further-
more, the number of struts is minimized by solving an `0 sparsity
optimization. We formulate it as a multi-objective programming
problem and an iterative extension of the preemptive algorithm is
developed to find a compromise solution. We demonstrate the ap-
plicability and practicability of our solution by printing various ob-
jects using both powder-type and extrusion-type 3D printers. Our
method is shown to be more cost-effective than previous works.
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1 Introduction

Additive manufacturing (3D printing) enables fabrication of physi-
cal objects from digital models where the printed objects are creat-
ed by laying down successive layers of material [3DSystems 2012;
Shapeways 2012]. During the last few years, research on computa-
tional techniques of 3D printing has received considerable attention
for assisting users to generate desired manufacturable objects [S-
tava et al. 2012; Luo et al. 2012; Chen et al. 2013; Prévost et al.
2013].

However, reducing the material used in printing, which is an im-
portant problem due to its high cost, has not been well studied.
The straightforward approach used in commercial printer pack-
ages [Shapeways 2012] is to uniformly hollow the 3D object by
extruding the outer surface and creating a scaled-down version on
its inside. The user has to choose a scaling factor (thickness of ob-
ject) based on experience. A large factor may lead to material waste
while a small factor could cause structural stability problem. Thus
it is technically nontrivial for the hollowing method to simultane-
ously match the goals of saving material and maintaining physical
stability in 3D printing.

Figure 2: Common frame structures used in architecture.

In this paper, we present an automatic method to minimize material
cost of the object in 3D fabrication. The key idea is to ‘hollow’
the object by creating a lightweight frame structure (see Figure 2),
made of a mesh of nodes and thin cylindrical struts with large voids
among them inside the object (see Figure 1 (b)). Frame structures
benefit 3D printing in two aspects. First, the mass of object could
be significantly reduced through the use of frame structures while
maintaining its strength and stiffness [Gibson and Ashby 1999].



Second, frame structures provide sufficient flexibility and variabil-
ity, which make them possible to meet a variety of constraints in
3D printing. We develop an optimization scheme to minimize the
frame volume subject to various constraints such as stiffness, sta-
bility, geometrical approximation, self-balance, and printability.

In order to eliminate redundant struts with negligible influence on
the whole frame, the frame is also expected to have simple topol-
ogy structure with minimal number of struts. The basic combi-
natorial nature of topology design, i.e., finding the optimal set of
frame struts, which remains in structural optimization problems,
has been proved to be NP-hard. Heuristic approaches such as ge-
netic algorithms [Rajeev and Krishnamoorthy 1997] have been ap-
plied for structural optimization problems with stress and buckling
constraints. However, these fairly general approaches are restricted
to fairly small scale problems and are not suitable for 3D printing.

Different from previous approaches, we convert the minimization
of the number of struts (structure redundancy) into an `0 sparsity
optimization of the radius vector of struts, which can be approxi-
mately solved by a reweighted `1-norm optimization. Also we can-
not expect to find the globally optimal solution of achieving min-
imal frame volume and minimal strut number simultaneously. To
this end, we formulate the problem as a multi-objective program-
ming problem subject to a variety of constraints, and develop an it-
erative extension of the preemptive algorithm to find a compromise
solution. The algorithm starts by minimizing frame volume and
then optimizes structure redundancy without increasing the frame
volume. The above two optimizations are iterated until the volume
of frame does not decrease.

The frame structure generated by our algorithm is guaranteed to
be physically stable, geometrically approximate, and printable (see
Figure 1 (d)), which is cost-effective for printing. We have ap-
plied our algorithm on a variety of different models and success-
fully printed them using both powder-type printer and extrusion-
type printer. The results show that our algorithm reduces material
around 70% (from 66.3% to 92.1% in our experiments) with respect
to the solid printing and achieves much better cost-effectiveness ra-
tios than previous works.

Contributions Our contributions are summarized as follows.

• We propose a novel approach for automatically generating a
skin-frame structure to minimize material usage in 3D print-
ing, taking into account structural stability, geometrical ap-
proximation, self-balance, and printability of the object.

• An `0 sparsity optimization is adopted to automatically re-
moving redundant struts with negligible influence on the w-
hole frame.

• We formulate the problem of minimizing the frame volume
and the structural redundancy as a multi-objective program-
ming problem and develop an iterative extension of the pre-
emptive algorithm to find a compromise solution.

2 Related Work

Geometry processing for 3D fabrication With 3D printers be-
ing more accessible to everyday users due to their rapid drop in
price, more and more attention has been paid to fabrication tech-
niques and applications. Quite a few topics in 3D fabrication, in-
cluding structural analysis [Stava et al. 2012; Zhou et al. 2013], seg-
mentation [Luo et al. 2012], articulated model generation [Bächer
et al. 2012; Calı̀ et al. 2012], and balancing shape [Prévost et al.
2013], have been researched in computer graphics recently. Based
on finite element analysis of stress, the approach of [Stava et al.

2012] can strengthen printed objects by hollowing, local thicken-
ing, and adding extra struts. Different from the goal of our work, it
does not always reduce the volume of printing material.

Patterned structure synthesis Hollowing the objects is the
most straightforward scheme to reduce material usage, and has been
adopted in commercial printing packages [Shapeways 2012]. The
hollowing method is simply to hollow an object and possibly to
fill its interior with pre-defined lattices to enhance strength. The
size and density of the lattices and the thickness of skin surface
are heuristically chosen by users and is far from optimal on sav-
ing material in printing. Using lightweight structures for improving
the strength and stiffness of objects has been studied in the field of
rapid manufacturing [Wang et al. 2005; Rosen et al. 2006], where
the particle swarm optimization or generic algorithms were select-
ed to search for design solutions. Patterned structures can also be
mapped or synthesized into the interior of hollowed objects [Wang
and Rosen 2002; Chen 2007]. However, the synthesized structures
might not well adapt to high stress and there is no guarantee to
obtain physically stable structures. So far these methods cannot si-
multaneously achieve the goals of saving material and maintaining
physical stability and shape retention in 3D printing.

Truss structure design and optimization In the field of struc-
tural engineering, truss structures are flexible and broadly used for
structural optimization. Detailed reviews on various aspects of
structural optimization can be found in the literature [Kirsch 1989;
Bendsøe and Sigmund 2003]. Structural size optimization, geom-
etry optimization, and topology optimization are generally viewed
as three different stages of structural optimization research. Using
duality principles and non-smooth analysis, structural optimization
problems with fixed nodal positions can be reformulated as min-
max (saddle point) problems. Then the multilevel approach was
constructed to solve the min-max problems by treating the topolo-
gy optimization as the inner problem [Bendsøe et al. 1994]. Due to
difference in the types of objectives and constraints, the approach
cannot be applied to our optimization problem in 3D printing.

For structural optimization problems with complicated constraints,
either approximate formulations or heuristic approaches (such as
random search-based algorithms and branch-bound techniques)
have been applied [Cheng 1995; Rajeev and Krishnamoorthy 1997;
Bendsøe and Sigmund 2003]. An optimization method has been
presented in [Smith et al. 2002] for designing truss structures of
macro-architectures, such as bridges, towers, roof supports and
building exoskeletons. Based on a mode of failure (i.e., buckling),
their method considers the truss as a set of beams connected by pin
joints, where the beams are rotation-free and exert axial forces on-
ly. It cannot guarantee geometrical approximation, which is very
important for 3D printed objects, because there is no variable to
characterize the deformations of beams in their method. On the
contrary, our proposed method is based on the elastic property of
solid materials and takes into account the deformations of struts
and shear stress as well as axial stress.

3 Problem and Formulation

Problem Given an input mesh M , our goal is to generate a skin-
frame structure H to represent M such that the material cost used
in printing H is as low as possible. The shape of H is expected
to approximate M within a geometric error. Moreover, the design
ofH depends on the physical characteristics of the printing materi-
al including its tensile strength σ (or compression strength), shear
strength τ , tensile modulus γ, shear modulus µ, and slenderness
ratio α.



Skin-frame structure The skin-frame structure H consists of a
thin skin S and a frame structure T , as shown in Figure 3. S is
a thin layer between M and its offset M1 with a distance of skin
thickness hS . T is created within the volume enclosed by M1. T
is composed of a set of frame nodes V = {vi, i = 1, 2, · · · , |V |}
which are located on M1 and in the volume enclosed by M1, and
a set of frame struts E = {ej , j = 1, 2, · · · , |E|} which are the
edges connecting the nodes. Each node represents a geometric posi-
tion and each strut ej ∈ E is a cylindrical shape with radius rj and
length lj . T can be seen as a graph of V and E with the geometry
defining node positions and strut radii, and the topology defining
the connectivity between nodes. To make it manufacturable by the
printer, the strut radius should be no less than the minimum manu-
facturable size η.

Figure 3: Illustration of the skin-frame structure. It consists of a
thin skin (shown in orange) bounded by M and its offset M1 with
a distance of skin thickness hS and a frame composed of a set of
frame nodes (shown in red spheres) and a set of frame struts (shown
in blue cylinders).

As we will see in Section 4, the set of skin nodes Vskin and the set of
skin struts Eskin are fixed in order to sustain the physical properties
of the model surface, while the set of internal nodes Vint = V −Vskin
and the set of internal strutsEint = E−Eskin will be set as variables
in the optimizations.

3.1 Mechanics analysis of frame structure

The mechanics of frame structures has been studied based on beam
theory [Hughes 1987; Gibson and Ashby 1999] where frame struts
are assumed to behave like simple beams under linear deformation.

Stiffness The finite element method (FEM) is used to derive the
stiffness of the frame. The stiffness equation is given as:

K(V, r)D = F(r), (1)

where V denotes geometric positions of the nodes V , K(V, r) is
the stiffness matrix depending on nodal positions V and strut radii
r, F(r) = {f1, f2, · · · , f|V |} are the (internal and external) forces
acting on the nodes, and D = {d1,d2, · · · ,d|V |} are the deforma-
tion quantities of the nodes caused by F(r). We consider the mass
of the skin layer and the struts as the internal load in F by distribut-
ing the mass uniformly to their neighborhood nodes. External loads
acting on the frame with any directions can be handled by adding
the forces in F. For example, we can add forces in F to withstand
external loads like a pinch grip. After the force F is specified under
a given load scenario, the deformations of nodes D can be solved
from the linear system with some boundary conditions (e.g., fixing
one node and the z-axes of three other nodes).
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Elastic property Because of elas-
ticity, all struts are deformable when
forces act on them. Considering a
strut e = vi1vi2 (see the figure on
the right), it is deformed to e′ =
v′i1v

′
i2 . The displacements of two

end nodes are di1 = v′i1 − vi1 and

di2 = v′i2−vi2 respectively, and the

difference between them is de = di2−di1 . Denote de‖ = eTde
‖e‖2 e

and de⊥ = de − de‖ as decomposition components of de along e
and its orthogonal direction, respectively. Then the deformation of
e should be within the ranges of axial stress and shear stress as:

‖de‖‖
‖e‖ γ 6 σ, e ∈ E, (2)

‖de⊥‖
‖e‖ µ 6 τ, e ∈ E. (3)

Note that rotation and bending stress is weak and can be negligible.
The deformations of nodes D = {di} are auxiliary variables in our
optimization as they are coupled with the primary variables r.1i
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Buckling Compressive forces can
cause a beam to bend out of shape
and ultimately fail, which is known as
Euler buckling (see the figure in the
right). The struts are subject to buckling constraints according to

rj > lj/α, ej ∈ Eskin, (4)

and
rj > lj/α, ej ∈ Eint, (5)

where α is the slenderness ratio.

3.2 Other constraints

Other than the mechanism constraints on the frame, we have to con-
sider other constraints to make the frame structure physically stable,
geometrically approximate, and printable.

Geometrical approximation The frame used in 3D printing is
required to geometrically approximate the shape of input objec-
t. Thus the frame structure should not be deformed excessively to
avoid apparent visual alteration, that is

‖di‖ 6 ε, i = 1, 2, · · · , |V | (6)

where ε is the geometric error. Note that the geometrical approxi-
mation is an extremely necessary constraint for 3D printing.

Shape barrier Another geometric constraint function is ‘barri-
er’ constraint, which keeps internal struts inside of the volume en-
closed by M1. For each internal strut ej = vi1vi2 ∈ Eint, we let

vi1 ,vi2 ∈ Cj (7)

where Cj is the maximum convex region that contains ej but is
enclosed by M1. This shape barrier constraint only needs to be
considered in the geometry optimization where the positions of in-
ternal nodes are variables.

Balance To balance the printed object standing on a horizontal
plane, the vertical projection Gproj of its gravity center G onto the
plane should lie within the convex hull H of its contact points on
the plane [Prévost et al. 2013]. Thus we have the constraint

Gproj ∈ H, (8)

which can be expressed as a group of linear inequalities on r (see
more detail in the supplementary material).



Printability To make the frame structure printable, the strut radiu
should be no less than the minimum printable radius η. In addition,
we also set upper bounds for strut radii. The struts on the skin
should have a radius no larger than hS to avoid lying outside of the
object surface M , i.e.,

η 6 rj 6 hS , ej ∈ Eskin, (9)

and the radii of the internal struts can be set with a larger upper
bound η, i.e.,

η 6 rj 6 η, ej ∈ Eint. (10)

Constraint categories All the constraints are categorized into
two types: equalities (1) and inequalities. We denote the inequality
constraints including (2), (3), (4), (6), (7), (8), and (9) as

c(r,V,D) ≤ 0. (11)

The deformations of nodes D are auxiliary variables which are cou-
pled with r in the constraints. Note that the constraints (5) and (10)
are not included in (11) as these constraints will be relaxed during
the topology optimization phase as we will see in Section 4.3.

3.3 Multi-objective programming formulation

Frame volume As the skin layer S is solid, raising its thickness
will significantly increase the total volume. We thus fix its thick-
ness hS as the minimum printable size (i.e. hS = 2η) and do not
consider it as a variable. Therefore our major goal is to minimize
the volume of all frame struts

min
r,V,E

Vol(r,V, E) =
∑
ej∈E

πr2j lj , (12)

where V denotes geometric positions of the nodes V .

Structure redundancy As the radius of each strut should not
be less than the minimum manufacturable size η, too many struts
might lead to large volume. The redundant struts in the structure
should be eliminated to reduce the frame volume. Thus we have a
minor goal of minimizing the number of struts in the frame

min
E
|E|. (13)

Multi-objective programming A straightforward method is to
formulate a single objective optimization with a weighted combi-
nation of the frame volume and the structure redundancy. However,
it is very difficult to construct an appropriate weight to trade off the
two objectives. Instead we formulate a multi-objective program-
ming (MOP) problem:{

min
r,Vint,Eint

Vol(r,V, E) & |Eint| (14a)

s.t. { (1), (11), (5), (10)} (14b)

where the frame volume Vol(r,V, E) is the higher-priority goal
and the number of internal struts |Eint| is the lower-priority goal.

In our MOP formulation, the strut radii r, the positions of internal n-
odes Vint, and the topology connections Eint are decision variables,
and the deformations D are auxiliary variables which are coupled
with r in the constraints. The positions of skin nodes Vskin and the
set of skin struts Eskin are fixed rather than variables throughout the
optimization process.

4 Algorithm
In the MOP optimization (14), the radii r and the positions Vint
are continuous variables while the topology connections Eint are
discrete variables. Theoretically, it is NP-hard to solve this kind
of combinatorial (mixed integer) optimization problem. To find
a compromise solution, we develop an alternating goal algorithm.
The algorithm starts by ordering the goals according to priority, and
iteratively optimizes the model using one goal at a time such that
the optimum value of a higher-priority goal is never degraded by a
lower-priority goal.

4.1 Overview

An overview of our algorithm is shown in Figure 4. Given an in-
put mesh (e.g., the Hanging Ball), we generate an initial frame with
the radii of its struts obtained from the size optimization. Then the
algorithm runs alternatingly the topology optimization and the ge-
ometry optimization until the frame volume does not decrease. The
topology optimization eliminates the redundant struts by approxi-
mately solving an `0 sparsity optimization under the frame volume
constraint. The geometry optimization refines the positions of in-
ternal nodes, the radii of struts, and, to some extent, the topology of
a frame structure. Finally an optimized frame structure with mini-
mum volume is obtained as the final result.

Algorithm 1 Our algorithm for frame optimization
Input: a given 3D mesh
Output: an optimized frame

1: Generate an initial frame presented in Section 4.2
while (the frame volume is reduced)
{

2: Call TopOpt (the topology optimization in Section 4.3)
3: Call GeoOpt (the geometry optimization in Section 4.4)
}

4.2 Frame initialization

Our optimization starts with an initial frame structure for which we
need to determine the number of the frame nodes, their positions
and connectivity, and the initial strut radii.

Determining the number of skin nodes The user is allowed to
manually specify the number of frame nodes and uniformly sample
the nodes on M1. However, it is difficult to specify a reasonable
number of nodes. Dense nodes may lead to material waste while
sparse nodes may result in fragile triangles on the skin which might
not withstand external loads like a pinch grip with two fingers [Sta-
va et al. 2012].
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The number of nodes on M1 (i.e., |Vskin|) is de-
termined by considering the physical properties
of the surface. Suppose we put a force f per-
pendicular to an equilateral triangle with edge
length a on its center C by a human finger (see
the figure on the right). Let b be the edge length
of the equilateral triangle approximating the contact region of the
finger. The displacement of C can be estimated (from the defini-
tion of shear stress) as d ≈ f(a−b)

3
√
3µhSb

. The deformation d is expect-
ed to be no larger than the upper bound of deformation ε to avoid
apparent visual alteration. Thus we have a 6 3

√
3µhSbε/f + b

and set a as the upper bound. Then the number of sampling nodes
on M1 can be determined as |Vskin| = 4Area(M1)/(

√
3a2) as-

suming all triangles are equilateral. In our implementation, we set
f = 10N (Newtons) and b = 10mm (millimeters).
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Figure 4: Overview of our algorithm. Given an input model (a), an initial frame structure (b) is generated. Our algorithm runs alternatingly
the topology optimization (c) and the geometry optimization (d). The struts in (b), (c), and (d) are shown with color visualizations of their
radii. Note that the frame in (c) is much sparser than that in (b). The frame volumes of (b) and (d) are 3.790e4 and 2.875e4 mm3 respectively.
The saving ratio of the frame volume is about 24%. In this example, an external force of 5N is loaded vertically downside on top of the model.

Node sampling and their connectivity A stress map can be
computed on the solid volume enclosed by M1 based on the fi-
nite element method (FEM). We adaptively sample |Vskin| nodes on
M1 according to the density map [Yan et al. 2009] given by the
computed stress values on the surface. In addition, a user-specified
number of internal nodes are evenly sampled in the solid volume
enclosed by M1. Finally, the frame structure T is generated by
connecting the sampling nodes via the ANN algorithm [Arya et al.
1998]. Note that there are few requirements on the generation of
T , because redundant struts in T will be automatically eliminated
by the topology optimization (see Section 4.3). The struts might
lie outside of the shape at very concave regions. We perform local
subdivision by adding nodes and struts adaptively to resolve this.

Size optimization We then determine the initial radii of struts by
the following size optimization (SizeOpt in short):

min
r

Vol(r,V, E)

s.t. { (1), (11), (5), (10)} .
(15)

Note that the geometric positions of internal nodes (i.e., Vint) and
the topological connectivity of internal struts (i.e., Eint) are fixed
rather than variable in the size optimization. We solve the size op-
timization (15) using the interior-point algorithm provided in [No-
cedal and Wright 2006, Chapter 19, Page 568].

4.3 Topology optimization

Let r̃ be the solution of the size optimization (15) and Ṽol =
Vol(r̃,V, E) be the corresponding frame volume. We have ob-
served that many strut radii obtained by the size optimization reach
the lower bound η

j
= max(η, lj/α). Some of the struts may have

negligible influence on the whole frame structure and would prob-
ably be eliminated. This can be achieved by the topology optimiza-
tion in the following.

Formulation The solution of the size optimization prompts us
to possibly obtain a sparser frame structure without increasing the
frame volume. We have observed that one strut vanishes when its
radius becomes 0. Thus the number of struts is equal to the num-
ber of non-zero strut radii, i.e., |Eint| = ‖rint‖0. Therefore, an
`0 sparsity optimization can be formulated to eliminate redundant
struts and achieve simplicity of the frame structure. A straightfor-
ward idea is to replace the buckling constraint (5) and the printable

radius bound (10) for each internal strut by a looser constraint

rj ∈ [0, η] , ej ∈ Eint (16)

where rj = 0 means that the corresponding strut ej vanishes. Then
we present the `0 sparsity optimization (TopOpt in short) as:

min
r

|Eint| = ‖rint‖0

s.t.
{

(1), (11), (16), and Vol(r) 6 Ṽol
} (17)

where the `0-norm means the number of non-zero elements of r
and Ṽol = Vol(r̃,V, E) is the frame volume obtained in the size
optimization. The goal of reducing Eint holds a lower priority in
our multi-objective programming. To prevent degrading the higher-
priority goal (i.e, minimizing the frame volume), we are required to
add a volume constraint Vol(r,V, E) 6 Ṽol when optimizing the
lower-priority goal.

Beyond conceptual issues of uniqueness and verification of solu-
tions, one is easily overwhelmed by the apparent difficulty of solv-
ing (17) due to the discrete and discontinuous nature of the `0-norm,
and the standard convex analysis theories which underpin the anal-
ysis of differentiable optimization problems do not apply. This is
a classical problem of combinatorial search: one sweeps exhaus-
tively through all possible sparse subsets and checks whether the
constraints can be satisfied. The complexity of exhaustive search is
exponential in the scale of problem and, indeed, it has been proved
that the combinatorial search problem is NP-hard. However, some
useful techniques, i.e., a convex relaxation and reweighting strate-
gy, can be incorporated in our algorithm. We present a reweighted
`1 minimization procedure to compute an approximate solution as
follows.

Reweighted `1 minimization A way to render (17) more
tractably is to regularize the highly discontinuous `0-norm, replac-
ing it with a continuous and convex approximation. Therefore we
convexify the objective function with the weighted `1-norm and
come to a new minimization problem

min
r

‖Wr‖1 = wT r

s.t.
{

(1), (11), (16), and Vol(r) 6 Ṽol
} (18)

where ‖Wr‖1 = wT r holds due to the non-negativity of r, and
W is a diagonal positive definite matrix whose diagonal entries are
given by the weight vector w.



The reweighted `1-norm minimization (18) can be regarded as a
continuous and convex approximation of an `0-norm optimization
problem (17). It is desired that the weights counteract the influ-
ence of the radius magnitude on the `1 penalty. There exists such a
possibility of constructing a favorable set of weights based on the
solution r̃ of the size optimization. Therefore, a weight vector w
can be accordingly designed by

wj =
1

ξ + (r̃j − η
j
)

(19)

where ξ is a small number (10−7 by default) that provides numeri-
cal stability.

Sparse frame solution Let r̂ be the solution of reweighted `1
minimization (18). Figure 5 (Left) shows the cumulative distribu-
tions of strut radius before and after TopOpt on the Hanging Ball
model. It is seen that the solution obtained from the topology op-
timization clearly reflects the simplicity of the frame structure. So
we eliminate redundant internal struts indicated by r̂ and reduce the
set of struts inside the skin as

Êint = {ej ∈ Eint | r̂j > ζ} , (20)

where the threshold ζ is set to 10−5mm in our implementation.
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Figure 5: Distributions of strut radii and lengths before and after
topology optimization and geometry optimization on the Hanging-
Ball model shown in Figure 4. Left: the cumulative distributions
of strut radii before and after topology optimization. Right: the
cumulative distributions of internal strut lengths before and after
geometry optimization.

4.4 Geometry optimization

In our multi-objective programming, the goal of minimizing the
volume Vol(r, V, E) has the higher priority. The geometric po-
sitions of internal nodes and the radii of struts are refined by the
following geometry optimization (GeoOpt in short):

min
r,Vint

Vol(r,V, Ê)

s.t. { (1), (11), (5), (10)}
(21)

where the topological connectivity of the frame structure is fixed
as Ê = Eskin ∪ Êint and the reduced set of internal struts Êint is
obtained from the topology optimization. We solve the geome-
try optimization (21) using the interior-point algorithm in [Nocedal
and Wright 2006, Chapter 19]. Note that in the phase of geometry

optimization the radii of frame struts (i.e., r) and the positions of
internal nodes (i.e., Vint) are variables.

Let (r∗,V∗int) be the solution from the geometry optimization (21).
If the length of an internal strut vanishes in the phase of geome-
try optimization, the two corresponding nodes merge into one (i.e.,
their geometric positions are identical). Figure 5 (Right) shows the
cumulative distributions of internal strut lengths, which are com-
puted before and after GeoOpt on the Hanging Ball model. It is
seen that the geometry optimization can also remove some redun-
dant nodes in the frame structure.

Ultimately, we get an optimized frame structure T ∗ in which V∗ =

Vskin∪V∗int is the positions of frame nodes, E∗ = Ê = Eskin∪ Êint
is the set of frame struts, and r∗ is the vector of strut radii.

4.5 Self-supporting extension for extrusion-type 3D
printers

For powder-type 3D printers, the frame structure can be printed due
to supporting material. However, for extrusion-type 3D printers
which do not have the supporting material during the printing pro-
cess, extra supporting struts should be added for printability. To this
end, we propose a scheme to resolve it by adding some extra struts
to make the frame printable for such printers.
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We define a metric function p(θ) as the maxi-
mum length of a printable strut e, with a cer-
tain range of radius, which has an angle of
θ ∈ [0, π/2] to the vertical direction. That is,
e is self-supporting printable if its length is less
than p(θ). The function p(θ) is estimated ex-
perimentally as shown in the figure on the right.
The vertical component of deformation of the
strut e = vi1vi2 is given as

dze = (0, 0, 1) · (di2 − di1), (22)

where node vi1 lies below node vi2 . The algorithm for generating
self-supporting frame by adding extra struts for extrusion-type 3D
printers is given as Algorithm 2.

Algorithm 2 Self-supporting extension for extrusion-type printers
Input: a frame T ∗ = (V ∗, E∗) generated by Algorithm 1
Output: a self-supporting frame T (s)

1: Let V (s) = V ∗ and E(s) = E∗, and define a base plane B
for the input frame.
2: For each ej ∈ E∗, compute its length lj and vertical angle θj .
if p(θj) < lj , let m(ej) = d lj

p(θj)
e − 1 and insert equidistant

nodes vk, k = 1, · · · ,m(ej), on the strut ej .
for k = 1, · · · ,m(ej)

Find a closest node v′k ∈ V (s) ∪ B, which lies below vk
such that the new strut ek = v′kvk is self-supporting printable.

Update the frame by setting V (s) = V (s)∪{v′k} andE(s) =

E(s) ∪ {ek}.
endfor

endif
3: Call the size optimization with dze 6 0 added for each e ∈
E(s) to the constraints and obtain the optimized radius vector
r(s). Output a self-supporting frame T (s) with its strut radii r(s).



4.6 Implementation details

Thin structures Some models have thin parts like the Shell mod-
el in Figure 11. If the thickness of the thin part is very small, we
connect the nodes on M1 directly to create the frame without sam-
pling internal nodes inside the solid volume of M1. Some models
have even thinner structures like the arms and legs of Bananaman
(Figure 11) which reach approximately the minimum printable size.
We regard them as solid layers or struts in the optimization.

Fine geometric details For models with fine geometric details,
we perform preprocessing by over-smoothing [Taubin 1995] them
in our implementation. If some parts of the smoothed surface M ′

lie outside the input surface M , we project those vertices onto M
and perform a local remeshing to guarantee thatM ′ is insideM as a
whole. We then regard the smoothed surfaceM ′ as the input object
mesh and apply our algorithm on it. An example, the Buddha Head
model, is shown in Figure 6. At this point, the volume between the
original surface and the smoothed one is considered as part of the
skin layer.

Figure 6: For the Buddha Head model (left) with fine geometric de-
tails, we over-smooth the mesh and ensure that the smoothed mesh
(middle) lies inside the original surface by local modification. Then
our algorithm is applied on it to produce a skin-frame (right) for
printing. The resulting frame is rendered with a transparent skin as
shown on the right.

5 Experimental results

System configurations We test our algorithm and fabricate the
objects using both powder-type and extrusion-type 3D printers. The
powder-type printer we use is the Sinterstationr HiQTM SLSr (P-1)
with tray size 457mm × 380mm × 330mm [3DSystems 2012]. For
P-1 printer, we practically made holes with diameters about 20mm
on the models. Then the internal powder can be removed by gently
shaking the printed objects.

The extrusion-type printer we use is the MakerBot ReplicatorTM 2
(P-2) with tray size 225mm × 145mm × 150mm [Makerbot 2012].
For P-2 printer, we need to manually remove only the external sup-
porting struts that lie outside the printed models.

Material properties and parameters Table 1 shows the parame-
ters and properties of materials used in printing the models by both
printers. The upper bound for internal strut radius is set to η = 5mm
and the upper bound of deflection is ε = 0.05mm for both printers.

Printer η Material γ µ σ τ α
P-1 0.5 PA plastic 1586 1387 43 48 60
P-2 0.4 PLA 2673 1533 92 52 60

Table 1: The parameters and properties of printing materials for
each of the printers. The unit of minimum printable radius η is mm.
Units of γ, µ, σ, and τ , are MPa (Mega Pascals). The slenderness
ratio α is dimensionless.

Performance We have applied our algorithm on a number of 3D
models (also see the accompanying video). Our algorithm starts
with an initial frame of the input model and obtains the final result
by running in turn the topology optimization and the geometry op-
timization until the reduction of frame volume is less than 1%. In
our experiments, the algorithm needs only 1 iteration to obtain the
final results. It takes about 40 minutes to compute the final frame
for a model with an initial frame of 500 nodes and 3000 struts. The
manufacturing time is about 27 hours on average to print altogeth-
er 4 models of 200mm in height using the P-1 printer. With P-2, it
takes about 5 hours on average to print a model of 150mm in height.

(a) (b) (c)

Figure 7: The Hanging-Ball model in the lower row has a smaller
base than the one in the upper row. The struts in (a) are coded
with the same color bar in Figure 4. For the model with a smaller
base, our algorithm produces thicker struts on the vertical pillar
in the right part than the counterparts in the upper row due to the
balancing constraint (8). Photos of the printed naked frame and the
printed objects using P-1 are shown in (b) and (c), respectively.

5.1 Results and discussions

Figure 7 shows two Hanging-Ball models with different sizes of
bases printed using the powder-based printer P-1. If the strut radii
are set uniformly, the model with the smaller base is too front-heavy
and cannot stand erect. As we consider self-balance as a constraint
in the optimization, using our algorithm, many of the struts on its
vertical pillar will become much thicker. More models processed
by our algorithm and then printed using P-1 are shown in Figure 8.

For the extrusion-type printer P-2, we need to call the self-
supporting extension scheme (Algorithm 2) to create extra struts,
as shown in Figure 9. With the help of extra struts, both the frame
and the skin-frame can be correctly printed using P-2. The final
printed models by removing the external supporting struts can be
seen in the accompanying video.

Statistics Table 2 shows the statistics of all examples produced
by our algorithm. ‘Ratio’ denotes the ratio of the total volume
(i.e., the sum of frame volume and skin volume) to the solid vol-
ume. The material savings is about 70% (even up to 92.1% for the
Buddha-Head model) with respect to the solid printing. It shows
that the number of struts has been reduced between 30% (Shell)
and 60% (Hanging-Ball) during the optimizations. Thus we can
see that our topology optimization can eliminate redundant struts
and identify primary struts from the volume constraint for the w-
hole frame. Note that the geometry optimization can also, to some
extent, remove redundant internal nodes in the frame.



(a) (b) (c) (d)

Figure 8: Printed objects using powder-type printers (P-1) produced by our algorithm. From left to right: Fighter, TV-Alien, Fishing-Frog,
and Buddha-Head. The upper row shows the rendering results with half skin and half frame. The lower row shows photos of the printed
objects. The largest edge length of the bounding box of each object is 200mm. A small red drawing pin is put beside each object as a size
reference.

Model Solid Vol. #Nodes / #Struts Frame Vol. Total Vol. Ratio Weight
(104mm3) Initial TopOpt GeoOpt (104mm3) (104mm3) (Gram)

Horse (Fig. 1) 51.361 689 / 3167 689 / 1913 604 / 1828 2.233 7.717 15.0% 90.5
Hanging-Ball (Fig. 4) 81.653 380 / 1949 380 / 884 266 / 770 2.875 9.475 11.6% 109.3
Fighter (Fig. 8) 12.839 598 / 2945 598 / 1598 503 / 1503 2.498 4.119 32.1% 48.5
TV-Alien (Fig. 8) 12.880 464 / 2243 464 / 1282 412 / 1230 1.718 2.944 22.9% 34.8
Fishing-Frog (Fig. 8) 32.317 720 / 3365 720 / 1952 616 / 1848 2.812 5.231 16.2% 61.1
Buddha-Head (Fig. 8) 164.030 575 / 2642 575 / 1369 400 / 1194 3.827 12.940 7.9% 149.9
Shell (Fig. 11) 25.977 414 / 1791 414 / 1236 414 / 1236 4.106 8.754 33.7% 103.7
Bananaman (Fig. 11) 23.530 462 / 2002 462 / 1222 407 / 1167 1.930 6.073 25.8% 72.1

Table 2: Statistics of applying our algorithm to various models shown in the paper. The numbers of nodes and struts are shown for
Initialization, TopOpt, and GeoOpt, respectively. Solid Vol. denotes the volume of the solid object. Frame Vol. denotes the volume of
the optimized frame struts. Total Vol. denotes the sum of frame volume and skin volume. Ratio denotes the ratio of Total Volume to Solid
Volume. Weight denotes the actual weight of the printed object using P-1 with PA plastic material, whose density is 1.15Gram/cm3.

5.2 Comparisons
Comparison to the hollowing method We compare our algo-
rithm with the hollowing method. Thanks to the excellent mechan-
ical properties of the frame structure, the thin skin layer reinforced
with the frame structure is strong and stiff. The printed objects
obtained by our algorithm are rigid with a rather small mass. Fig-
ure 10 demonstrates the comparison on the strength and stiffness of
the two objects produced by the naive hollowing method and our al-
gorithm with same volumes respectively. If an external load of 20N
acts on the objects (with different directions), the illustration shows
that the object produced by our algorithm has smaller deformation.
Furthermore, the self-balancing property is one of the major advan-
tages of our method. Usually, uniformly hollowed objects are not
stable, since the hollowing method does not take self-balance into
account. Some comparison examples (the Horse and the Hanging-
Ball) are shown in the accompanying video.

Comparison to [Stava et al. 2012] Although the approach of [S-
tava et al. 2012] strengthens fragile objects by local thickening and
strut addition, it cannot always reduce the volume of printing ma-
terial. Figure 11 (left) shows that two external struts were added
in the Shell model (upper row) and one external strut was added
in the Bananaman model (lower row) using their approach. The
frame results produced by our algorithm are stiff enough to sustain
themselves without adding any external struts, and thus have no vi-
sual impact on the appearance of the objects. The volumes of Shell
and Bananaman by their approach are 25.977e4 and 23.530e4 mm3,
respectively, without adding the volume of external struts. The vol-
umes of our produced results are 8.754e4 and 6.073e4 mm3 for these
two models, respectively.
Comparison to greedy strategy of topology cleaning For the
purpose of topology optimization, the approach of [Smith et al.
2002] used a greedy strategy (called the topology-cleaning step)



Figure 9: Printed objects using extrusion-type printers (P-2) pro-
duced by Algorithm 2. The first row shows the rendered images of
the frame structures. The extra supporting struts are shown in red.
With the extra struts, both the frame (the second row) and the skin-
frame (the third row) can be correctly printed using P-2. The final
printed models with the external supporting struts removed can be
seen in the accompanying video.
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Figure 10: Deformation maps on the Buddha-Head models by the
naive hollowing method (a,c) and our algorithm (b,d) under an ex-
ternal load of 20N. The models produced by the naive hollowing
method (thickness of 1.30 mm) and ours have the same material
volume (12.940e4 mm3), and are shown with a color visualization
of the deflection displacements of their vertices.

to eliminate beams that are exerting little force and merged any
pairs of joints that are connected to one another by a beam that is
at the minimum allowable length. The greedy strategy of topology
cleaning needs to choose a threshold to remove the redundant struts
whose radii are mostly around η. A small threshold value may keep
too many redundant struts and thus it cannot achieve the purpose of
saving material, while a large threshold value may remove a domi-
nant set of internal struts and result in no feasible solution, i.e., the
remaining struts with all allowable radii cannot meet the constraints
of the problem. Thus the greedy method is unstable and sensitive to

Figure 11: Left: results produced by the method of [Stava et al.
2012] by adding external struts; Middle: the skin-frame produced
by our algorithm (with half-naked rendering); Right: printed ob-
jects of our result using P-1.
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Figure 12: The effect of applying the greedy topology-cleaning to
(a) the initial frame of Hanging-Ball model. Two very close thresh-
olds 0.501mm and 0.5001mm for greedy topology-cleaning (b) lead
to very different results. The first threshold (c) retains 56 internal
struts such that the model has no feasible solution in the geome-
try optimization while the second threshold (d) retains 552 internal
struts to reach a solution with the frame volume of 3.389e4 mm3.
In contrast, the final frame produced by our algorithm (e) has a
volume of 2.875e4 mm3 with only 52 internal struts.

the selected thickness threshold and it is very difficult for users to
choose an appropriate threshold. The effect of applying this greedy
strategy is illustrated in Figure 12. Instead of the greedy topology-
cleaning, we achieve the topology optimization by approximately
solving an `0 sparsity problem which can globally optimize the sim-
plicity of the frame structure. Obviously, our topology optimization
is more convincing, and can automatically eliminate the redundant
struts in the frame structure while keeping smaller volume.



6 Conclusions and Future Work
In this work, we propose an automatic and practical method to gen-
erating a skin-frame structure for a given 3D model for the purpose
of minimizing the material used in printing it and the number of
struts in the structure. The frame structure generated by our al-
gorithm, which is geometrically approximate to the shape of in-
put model, is guaranteed to be physically stable and printable. For
extrusion-type printers, we also develop a scheme to add extra struts
to support the printed object during the printing process. A number
of experimental results have shown the applicability and practica-
bility of our proposed method and have proved our solution to be
much more cost-effective than previous methods.

Limitation and future work Our research opens many direction-
s for future studies. First, although the computational cost of our
optimization is much less than the printing time, users might want
to design and manipulate the frame structure at an interactive rate.
There is much potential in speeding up our algorithm based on ad-
vanced optimization techniques. Second, we only consider small
objects so that the frame can be designed and printed as a whole.
For large objects which exceed the tray size of the printer, segmen-
tation of the objects is required [Luo et al. 2012]. Assembling parts
of various frame structures while maintaining its strength and s-
tiffness appears to be possible but would be challenging. Third, the
extrusion-based printers are becoming more popular and adding ex-
tra supporting structure is necessary for printing many objects with
these low-end printers. Study on how to choose the upright printing
direction and how to design frame structures with the least extra
supporting structure for practical printability is an intriguing direc-
tion for future research.
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