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In this appendix, we will prove the convergence rate and asymp-
totic optimality for the DLRS estimator, based on the asymptotic
behavior of eigenvalues of matrix M and statistical theory.

Let © be a bounded 2D manifold (the domain) and #2(Q2) the
space of C*-continuous functions defined on Q. A semi-norm in
HH(RQ) is defined by

1f1Bs = / (Aaf).
Q

With a set of sampling points IT = {X;}?_, in the domain £2, we can
also give a discrete version of the aforementioned semi-norm as

1flha =D 1A fXDP.
i=1
Specially, | flg,0 = Jo /% and [f 170 = 5 Xim /(XD
We now have a few assumptions as follows.

(A.1) The input €2 is a bounded Lipschitz domain satisfying the
uniform cone conditions. See Utreras [1988] for detailed
definition.

(A.2) The set of sampling points IT = {X;}?_, in domain £2 satis-
fies the following quasi-uniform assumption: there exists a
constant & > 0 such that

<&,
where Smax = SUpyqinfy,en|X — X;|| and 8 =
mm#,- ||X/ — X,”
(A.3) Given IT = {X;}]_, C €, there exist constants § and £ (de-
pending on IT) such that
Elflas < 1flha <&lflan
for any function f € JZ%(R).

Remark 1. Suppose IT = {X;}7_, is an equidistributed sequence

in the region 2. From the law of large numbers, we have
1
Area(£2)

Since €2 is bounded, Area(£2) is also bounded. Thus (A.3) is satisfied
with probability one as the sample size goes to infinity.

2
| flq.

: 2
lim |f|1'l‘2 =
n—00
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1. PROOF OF THEOREM 1
Before we prove Theorem 1, we have some propositions.

PROPOSITION 1.1. For any f € S*(R), there exists a matrix
M, (depending on T1) such that

1
2 : T
\fla,=  min  —f Mpof, ()
¢ e 2R n
dXp)=fii=1...n

where £ = (fi,..., f)T = (f(X0), ..., fF(X)T is the vector of
function values at T1 = {X;}I_,.

The proof of the preceding proposition can be found in text-
book Halmos [1982] using the Riesz representation theorem and
thus the details are omitted.

PROPOSITION 1.2. If Q is a bounded 2D manifold and v, is the
largest eigenvalue of matrix Mn 5, then né%,, and 8t v, are both
bounded from above.

PROOE. Suppose that V,,; is the area of unit geodestic disk on 2.
So we have

V2 < Area(£2),

min —

and then get

_, Area(Q) 82, _, Area(Q) B
82 < 1 max _ 1 2 =0 1 . 2
max = Vunit arznjn 8 Vunit EO (n ) ( )

So né2,, is bounded from above.
Let u be the function such that

1 T 2 . 2

—u Mpou=|ulg, = min 615 2

n 6 e Q)
dX)=uji=1..., n

where u = (uy,...,u,)T is the eigenvector of M > correspond-
ing to the largest eigenvalue, that is, Mpu = pu,u. We define a
compactly supported radial basis function

e~ Isl/a=lsh 0 < |1s|| < 1

wis) = { 0, Isll > 1
and specify an interpolant ¢(X) = Y, u;w;(X), where w;(X) =

w(%). By the definition of 8., it is easy to see that ¢(X;) =
u;, i =1,...,n. Moreover, we have for 8 € Z3.

DPwi(X;) =0, Vi#j

and with |B| =2
DPw;(X;) = 8;2DPw(0).
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Hence, we have

A
S

2
luln, <

1,2
1 < p
== > E'D P(X I
Jj=1 \IBlI=2
1 o 2
=2 | 22 5| 2w wx)r
. Zu
nia e P
1 < 2
=->1> Euﬁwﬁwj(xj)ﬁ
S =2 P
1 5 2 2 4
= N D E|D‘3w(0)| S,
j=1 |B1=2

which implies that p, < c(w)émﬁ1 by denoting the constant c(w) =

Y= 711D w(0). Finally we get

4

Smaxhn < c(w)F= = c(w)iy
min

and prove that 8% i, is bounded from above. [

PROPOSITION 1.3. Suppose that & j™ < p; < &j" form > 0
and j = 1,2,...,where &,& > 0 are constants. Then we have
forn>0,A>0,

n

1
Z I - — O(A,_I/m).
o 1+ Auj)
Proor. First of all we have
n 1 n 1 n l
P v Dl e w i Bt ey
(28" ~ S () — & (L2877

Fori =1, 2, we have

" 1 n+1 1
_ > —dx
g“ﬂsijmﬁ - /] (I+ Agixm)?

m—1

M1y —mel y
= — . }"i7 mn
/ <1+ 08

—(m—1)/m
[ i)
g (1+Y)

= on'"m),

where the second equation reflects the change of variable (y =
AEx™), and “—” corresponds to “n — 00.” Similarly, with the
same change of variable, we also have

n 1 /
j; (1 + 28 jm) o (I+2r&xm)y?
Agn™ —m=l 1
= —/ Gy e
7(m 1)/»1
e
e (1+y)

= oY, O
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We are now ready to exhibit the Rayleigh quotient inequalities
connecting the semi-norms in .7#%(R2) and their discretized version.

LeEMMA 1.4. Let Q satisfy (A.1) and f # 0 satisfy (A.3). Then
there exists constant y, > 0 (depending only on 2,&, &) and
8o > 0, such that if $max < 8o we have N

s 115,
1o~ vi(1f o + 8l f130)

forany | f1fo # 0.

PrROOF. According to Theorem 3.3 in Utreras [1988], there exists
constant c(£2, &) > 0 and §; > 0 such that for §,.x < 8o,

|10 < CWd.m, 2, &) (1 a0 + Smax| fla)-

Since |f|l-12 _5|f|92, we have

Tha HEES
Iflho — Q. 60)(Ifho+ 84l f13,)
1f15,
T n(If o+ 8kl f1Rs)

where y; = c(R,&)/§. O

LEMMA 1.5. Assume the same conditions as in Lemma 1. Then
there exists constant y, > 0 (depending only on 2, &y, &,§) and
8o > 0, such that if 5max < 89 we have

s | f 3
1o = va(If o+ 85l fIRs)

forany 0 # f.

PRrROOF. According to Theorem 3.4 in Utreras [1988], there exists
constant ¢’(2, &) > 0 and §y > 0 such that for §,,,x < o,

1120 < (81 f o + 88l F15.)-

Slnceaflgzz = |f|1‘12 = $|f|92, we have

3

flan |f1fa/E
[fleo — (@ E)(1fl0+ 8l f1712/8)
|f1f

- y2(|f|12'l,0 + SIiax'f'%'IZ) ’
where y, = ¢/(Q, &)& max(1, 1/§). O

Lemma 1.4 and Lemma 1.5 build a connection between the con-
tinuous semi-norms and discrete semi-norms. This enables us to
study the behavior of the eigenvalues of My, through studying the
variational eigenvalue problem. Let p; < --- < u, be the eigen-
values of My, in ascending order. Clearly {x;} are non-negative
real numbers since the matrix My, is semi-positive define. Next
we study the behavior of these eigenvalues and show that they can
be bounded by the discrete spectrum of the differential operator
(—Ag)?, where Ag is the Laplacian-Beltrami operator on €2.

LEMMA 1.6. Let 2 satisfy (A.1) and T1 = {X;}Y}_, satisfy (A.2).
Then there exist constants ¢y, ¢ > 0 such that

C1pj = Kj =04,
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where py < pp < --- < p, are the first n eigenvalues of the
variational eigenvalue problem

f PALY = p/ Y. Yy e ANRQ).
Q Q
PrROOF. From Lemma 1.4 we get

|12 - 132
19lh0 ~ ri(10lho + Shuldlh,)
for any ¢ € () with |$|F; , # 0. Thus
i = il?j,
V1

where ¥y < --- < 9, are the first n eigenvalues of the variational
eigenvalue problem

915, =0 - (19150 + bl BB 5).

which implies
Pj

- P i n
1+8;4naxp.f

J

Note that §2__p; is bounded from above, since p; ~ j? according

to Theorem 14.6 in Agmon [1965] and the fact 8}, = O®n™?)
from Eq. (2). So there exists ¢; > 0 such that + > ¢y, then
71(1+8max 0)
we have
nj zcip;.
On the other hand, using Lemma 1.5
[ 191
16150 ~ V118150 + ShuxlPlT2)
we have
pj = —Vj,
J Vs J
where v; < --- < v, are the first n eigenvalues of the variational

eigenvalue problem

672 = v+ (18170 + Smax|PlF12)-

which gives
i .
vi=———j=1,...,n.
! 1+ Sélaxu“j
So there exists ¢, > 0 such that
i < va(1+8piti)pi < v2(1 + S tn) pj < 205,

since Séax W, is bounded according to Proposition 1.2. [

LEMMA 1.7. Suppose 2 satisfy (A.l). Let {iu; < --- < g}
be the eigenvalues of Mn, in ascending order. Then there exist
constants cz, ¢4 > 0 such that for 2 < j < n we have

c3j? <y <’ )

PROOE. According to Lemma 1.6, it suffices to prove that the
eigenvalues p; < p, < - - - satisfy the type of relationship in Eq. (4).

By using integration by parts, we observe that p; < p, < ---
are the eigenvalues of the differential operator (—Ag)?> which has
discrete spectrum contained in the non-negative real axis. We can
then apply Theorem 14.6 in Agmon [965] to get

P~ jz’ .] > 2.
This concludes the proof. [0

App-3

THEOREM 1.8. Let f be an element of 7*(Q2) and the samples
satisfy

vi=fX)+e,i=1,...,n, (5)
where yi,...,y, are the observed functional values atr T1 =
{Xi}Y_, C Q,and e, ..., s, are i.id random variables with zero

mean and finite variance o2 > 0. Suppose (A.1) and (A.2) are
fulfilled. Let £,(1) = A,(\)y = (I, + AMp )"y be the estimator
from the DLRS model. Denote r,(A) = n~" 1.0 —f)12. Asn — oo
and A ~ n=*3 is chosen, then

Elr, ()] = 0 3).

PrOOF. By using the bounds of eigenvalues i1; = O(j 2) obtained
in Lemma 1.7, we have

E(r,(W)] = E[n ' [f,(0) — 2]
= n~I(fT (A,(0) — I,)* f + o*tA,(M)?])
Perpe 00N L ©6)
= 4nf Mf + n ;(I-F)\uj)z
O+ 0(n'a72),

where the last equation is based on the result of Proposition 1.3
with m = 2. In particular, if the smoothing parameter is cho-
sen to satisfy A ~ n~%3, then we achieve the convergence rate
E[r,(V)] = O(n*%). According to Stone [1982], —% is the opti-
mal for multivariate function estimation with the order 2 in the 2D
domain 2 with some standard assumptions. Since the assumption
(A.3) is satisfied with probability one as n — 0o, we know the
DLRS estimator achieves the optimal convergence rate with proba-
bility one. [

Using Theorem 1.8, we can easily prove Theorem 1 in the sub-
mission. Specifically, in the DLRS model we let the unknown
function f be a C?-smooth surface S itself and the observa-
tions y = (yi,...,y,)" be the noisy samples of surface posi-
tion P = (py,...,pn)". Therefore we come to the conclusion of
Theorem 1 in the submission.

2. PROOF OF THEOREM 2

We will show that the DLRS estimator satisfies some general con-
ditions and then prove the asymptotic optimality of GCV under our
proposed framework.

Let f',l(k) = A,(\)y = (I, + AM)~'y be the estimator of our
DLRS model and denote r,(A) = n~"||f,(1) — f||2. The asymptotic
optimality of GCV is defined as

ra(hg)

_— 1, 7
infog, () @

which verifies the closeness between the values of risk function
given by the GCV choice A and the theoretically optimal choice
A* = arginf,cp, 7,(1).

The main result here is to show that our estimator satisfies the
following three conditions.

(C.1) inf,cr, nE[r,(A)] — oo.

(C.2) There exists a sequence {A,} such that r,(A,) —, O (the
convergence in probability).

(C.3) Let 0 < k1 < --- < K, be the eigenvalues of K(1) = A M.
For any £ such that f — 0, then %

i=0+1 "0

— 0 as
n — oo.
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The condition (C.1) states that the convergence rate of the risk
function to zero should be lower than O(n~!). Otherwise, the esti-
mates may possess unattainably small risk.

Denote null(Ag) the null space of Laplacian operator Ag. Actu-
ally from the behavior of eigenvalues as shown in Lemma 1.7, it is
not difficult to verify that our proposed model meets the condition
(C.1) except for f € null(Ag).

LEMMA 2.1. If f ¢ null(Ag), the estimator £,(\) from our DLRS
model holds

inf nE[r,(1)] — oo.
ARy
This verifies the condition (C.1).

PrROOE. Let 0 < p; < --- < u, be the eigenvalues of design
matrix M, and u; the unit eigenvector corresponding to p;, j =
1,...,n.So we have

nE[n~"[1f,(0) — fII]
E(f,(0) — DT (. — D]
= T (A,(0) - D*f+o tr[A,,mZ] ®)

N ST 1
= L Tt Z(1+m)2’

where ¢; = u]Tf.
IfLx~ O(l)or A —> o0 (corresponds ton — 00), since j; ~ j?
L for j > j*, then

nE[r, ()]

J
there exists j* such that &~ — 0 and : H >

n )\2
nE[r,(M)] = Zm 3

= ;Zef
J>J
> |f|n0—7‘] max{el,...,e%*}

= 0(n)—> oo

On the other hand, if 2 — 0 corresponds to n — 0o, we have

\

nE[r,(M)] > o? Z m

- oh
— 00,

where the second equation is also based on Proposition 1.3. [0
LEMMA 2.2. Under condition (C.1), we have in probability

()
0 | Elr()]

A>0

—1‘—)0. 9

ProoE. To get Eq. (9), it suffices to show in probability

n~ T (A, — L,)A, (Ve

sup ELr, (0] oY "
and
L i eS| an
sup Elr, (0]
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According to the Chebyshev inequality, we have for any given
6>0

n~ T (A,(0) — L,)A, (Ve
E[r,(M)]
< 82(mE[r, WD 2E [((T (A, (M) — ) A,(M)e)?]
= §72(nE[r,(M)]) 0>
tr[A, (WA, (L) — IE £ (A, () — 1,)A, (V)]
= 8 2(mE[r,(M)D) 20 | A, (M)A, () — L)E|?
<8 2(mE[r,()D! Zw

nE[r,(1)]
< §72a*(nE[r,(M)D" — 0,

since nE[r,(1)] > ||(A, (1) — L)f||*>. Thus Eq. (10) holds in proba-
bility.
Again using the Chebyshev inequality, we have for any given
>0
n~! 1A, Gel? = o’ ul A, ()]
E[r,(M)]
< §2(Elr, 0)DE [(| AWl — 0 t[A,(1)2])?]

Pr >4

wWel*]=(o? tr[An()\)zl)
nE[r, (V)]

= 572(uE [, (0D H
Since nE[r,(A)] > o>tr[A,(1)?], we only need to show

E[IIA,()ell*] — (o2l A,(0)2])°

Constant. 12
o2l A,(1?] = Comstant. (12

Denote B = A, (1)
E[l|A,(Mell*] = E[(e" Be)’]

-+[(S o) (Soee )]
s () (5]

2 ( > B ) b Biserey )]
- (ZB ) LT DI

There exists a constant ¢ such that E[¢}] < co? and 0* < co
we get

= (B} )uxn» then we have

2 50

IA

E[l|A,(el*]

(Xn:B,»,U) +CZBZ(72+CZB
i=1 i#j
(i Bi,~02> +CZB,-2j02

i=1 ij

= (o2ufA,()?)” + c52tr[An(A)4]
< (02t[A,()2)° + co’t[A, ()],

which implies Eq. (12), and immediately leads to (11) in probabil-
ity,. O

The condition (C.2) shows that the risk function r,(A,) con-
verges to zero in probability with appropriate sequence {A, }. Obvi-
ously, the conclusion of condition (C.2) can be easily derlved from
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Theorem 1.8 and Lemma 2.2. Therefore, the condition (C.2) holds
true.
The condition (C.3) gives a ratio

_ —1\2
(" k)
T K
which is defined on the eigenvalues of K(X) = AM and often plays
an important role in the asymptotic analysis.

, 13)

LEMMA 2.3. In our model, for any £ such that f — 0 and
kep1 > 0, then the ratio of Eq. (13) converges to zero as n (the
sample size) goes to infinity. This verifies the condition (C.3).

PrOOF. From Lemma 1.7, namely, u; = O(i?), we get

lim (Gppy s Ki_l)z — lim (Xient Mi_l)z
n—oo gt Kfz oo Y, Hfz
= lim (i /‘72m/ddﬂ)2

e [l ptnddp

@m—dd (€+1)'"F —n%)
% @m—d (et )-F —n-¥)

@m—dd t+1 (1— &7y
n—00 (2m — d)Z ’ T ) (1 — (62»7])‘%—])
=0. O

By conclusion, we have verified that the three conditions (C.1),
(C.2), and (C.3) hold true for our model. Then we will prove the
asymptotic optimality of GCV under these three conditions.

LEMMA 2.4. Under the condition (C.2), we have
n~tull, — A,(A)] — 1, (14)
and
n N = AP — o,
PROOF. From the fact that

o2(n"t[A,()D)? < 02~ [ A, (h)?] < Elr,(h)] = 0,

(15)

we have n~'tr[A,,(A,)] — 0 and then get
n~'tr[l, — A,(A)] — 1.

By the fact n™!||e||*> — o and the Cauchy-Schwartz inequality, we
have

n_l ”(Irl - An()‘-n))y”2 = }’l_] ”8”2
—1 $ 2 2 # T 2
+n ”f - fn(}\n)” + ;l(f_ fn()"n)) Sl —o°. O

LEmMA 2.5. Under the condition (C.3), for X\, such that
rn(Ay) = 0, we have

(n"1[A,G)))°

n=1tr{A, (A,)*]

PROOF. Recall A, (A,) = (I, + AM)~" = (I, + K, (L))~ We
get

(16)

('l A1) (7 (k)7
n A, 000 Y (k)7

where 0 < k| < --- < k, are the eigenvalues of K, (},). Let £ be
the number holding x, < 1 < k41, then we have

i(l +r) < e+ Z K
i=1

i=0+1

; a7

(18)

App-5

and
n 1 n
1+k)2>-[e+ k). 19
Bovorzg(e £a) o

To reach Eq. (16), it suffices to show

N2
(f + nl Z?=e+1 Ki 1)

n -2

i (f + % Do Ki )

On the other hand, E[r,(%,)] — 0 since r,,(},) is non-negative, thus

we get n~'tr[A,(%,)’] — 0 and have £ — 0 due to Eq. (19). So it
is not hard to see that (20) holds under the condition (C.3). O

— 0.

(20)

LEmMMA 2.6. For any . such that r,(A) — 0 and

4 S 1\2
(n~ A, )

= 21
n='tr{A,(A)?]
under the condition (C.1) we have
SURE, (&) — 7,(A) — n~!|e||* + o2
\ () = Fa®) = n” el |_>p0! )
ra(2)
and
NG = .02
n”| ()A Ml )0, 23)
rn(2)
) G o))
where SURE,(A) = 0" — 0 477+, (1) = y —

n= NI —An G))y|?

o gt (I — A, )y and 7, (1) = ™' [IF,(0) — £,

Proof of the Lemma 2.6 is left in the Appendix.

LEMMA 2.7. Under Condition§ (C.2)and (C.3),1,(Ag) is consis-
tent, that is, r,(Ag) — 0, where Ag is chosen by GCV.

PROOF. According to the proof of Lemma 5.2 in Li [1985] and
similarly as in Girard [1991], the preceding lemma can be estab-
lished. O

2.1 Asymptotic Optimality Theorem

THEOREM 2.8. Under conditions (C.1), (C.2), and (C.3),£,(%.c)
is asymptotically optimal, where Lg is the GCV choice.

ProOOF. From the condition (C.2), for A} that is the minimizer of
r,(A), we have r,(A;) — 0. According to Lemma 2.5, we have

(n A, G1)

AR @

Hence from Lemma 2.6, we have SURE,(A}) — n~!|lg,||> + 0% =
(AL 4 0,(1)).

On the other hand, from Lemma 2.7 this also holds for A = Xg.
Therefore we have

SURE,(Ag) — n”'|l&, I + 0* = r,(Ae)(1 +0,(1)).  (25)

Since SURE, (L) < SURE,(A) and r,(A*) < r,(ig), we have
raChg) /ra(A%) — 1in probability. O
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Proof of Lemma 2.6

PrROOE. We first prove Eq. (22), which can be rewritten as

9 | Pl = AnGIIYT (s = AnG)e

4 _ 2 _
21y —An Y2 T mer — 1 el +Gz‘

nll(Tn—An Gy I

Fa(X)
- o’ull, — A,()] n~' (1, — A,(V))e|
T = Ay I? ra(A)
o[, — A, n7'|eT A, (Ve — o[ A, (V)]
(L — AL GYIP ra(l)
(it = Do = n~lel?)
rn(A)

(26)

NOte that niltr[ln - An()‘-n)] - ]s n71 ”([n - An()"n))ynz - 02

from Lemma 2.4, and sup, _,, | E{’r‘ (X)J —1| — Oby Lemma 2.2. Thus
it suffices for us to show the following three equations

n (1, — A, (L))
sup

-0, Q@7
A>0 E[rn (}\,)]

n!eT A,(Me — o *tr[A, (W]
sup

0, 28
e Elr, ()] ~ @9

sup (2n " trlL, = A ()] =n"" |(I, = A, G)Y 1P (0 —n~le]P)|
A>0 E[rn()“)]

— 0.

(29)
For Eq. (27), according to the Chebyshev inequality, we have for
any given § > 0

R
pr { n— |7 (1, — A,(M))e| o5
E[r,(M)]
< 8 2(nE[r, WD E [(F7 (1, — Au(1))e)?]
= 8§ 2(nE[r,(W)]) 7?0t [, — A, £7 (1, — A, (V)]
= §(nE[r,(M)]) (L, — A, O)F|?
— 872(}’1E[}’n()\,)])710‘2 ”U’;I_Ef‘rzgi;}ﬂl

< 820 (E[r,(M]) ™' — 0,

since nE[r,(A)] = [[(1, — A, G|,
For Eq. (28), again using the Chebyshev inequality, we have for
any given § > 0

n~!el A,(Me — oA, (V)]
Elr, (0]
< §2(Elr, (D E[(e” A,(We — o2t A, (1)])’]

Pr >4

E[(7 40(1)9)* ]~ (0214, (1)
HELra (D] :

=8 (nE[r,)D™

Since nE[r,(A)] > o>tr[A,(1)?], we only need to show

E[(7 A,(0e] — (o2tr{4,(01)’

Constant. 30
oA O] < Constan (30)
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Denote A, (L) = (A;jj)nxn, then we have

E [(STA,,(}»)S)Z] = E|:( Z Aij8i8j> (Z Ai’j’£ﬂ£j’>i|
ij irj

(S (2

+ E|:< Z Aij8i8j> ( Z A,‘/j/é‘l‘/é‘j/)]
i#] ) i#j
< (Z A,-l-oz) + Y AZE[e]]+ ) Aot
i=1 i=1 i#]
2

There exists a constant ¢ such that E[¢}] < co? and 0* < co
we get

n 2 n
E[(STAn()\)s)z] < (Z Aii<72> +CZA1'21"72 +CZA1'2102
i=1 i=1 i#]
n 2
= (Z Ai,'0‘2> +CZAI'2]"72
i=1 ij

= (02l A,()])’ + conlA, (P,

, SO

which implies Eq. (30), and immediately leads to (28).
For Eq. (29), using the proved (27), (28), and o> (n ' tr[ A,,(1)])> <
o’n~'tr[A,(M)?] < E[r,(1)], we only need to show
lo? —n~tel?|

S E o GD

since the fact that

|o?n e[l — A, ()] = n (1, — A, ()|
= |o? = o?n "l A, 0] = n7le + £ = E, VI
=lo? — o?n 't A, (V)] — n7"e|? = r,(0) — 207 (F — £,(0) 7]
=02 —n7'e|® — on [ A, (V)]
—r(A) =20~ YT (I, — A,(\)e +2n'eT A, (Ve|
< |o? = n7 el + ra() + 207 7 (L, — A, G
+2n7"e" A, (Ve — o*u[A,(M)]] + o2n~ u[A, (V).

By the Chebyshev inequality, we have for any given § > 0

p o —n~'|le]?| 5
| EnGDE T
< 8 2(Elr, (WD E[(02 = n 7" le])’]
= 02 Elr,(W) " (nEllle]*] — o*)
< 8 2E[r,W]D " (n7*(n*0* + nE[e}]) — o*)
= §72(nE[r,(W])'E[e}] — 0,
which implies (31).
Now it remains to prove Eq. (23), the numerator of which can be
rearranged as
nER) = A
_ (ozn"tr[l,, — A, (W]

n=HI( — Ay

_ (@2 =n"elH=ra ) =20~ "7 (1, — A, 0)e+2n (67 Ay (We—0 A, (WD +o?n~ ulA, [)§
- n= (=AY 12 :

2
- 1) n=UT — A G)YIP
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To get (23), since n~!|(I, — A,(M))yl*> — o2, it suffices to show
the following

(62 —nlel?)’

-0, (32)
n(A) s
—1¢T _
(n "7 (L, — A(W))e) S0, 33)
rn(}) .
—1(T 2
(n~'(e" Au(We — o 2tr[A, (L)) o 34)
)
—1
(ulA00) (35)
ra(A)
Note that sup, _, |Ef;’fgﬂ — 1] — 0, then Egs. (32), (33), and (34)

can be easily proved from (31), (27), and (28) respectively. The last
equation (35) follows from o2n~'tr[A,(1)*] < E[r,(1)] and (21).
Hence, we complete the proof of Lemma 2.6. O
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