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Decoupling Noise and Features via Weighted �1-Analysis
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Many geometry processing applications are sensitive to noise and sharp
features. Although there are a number of works on detecting noise and
sharp features in the literature, they are heuristic. On one hand, traditional
denoising methods use filtering operators to remove noise, however, they
may blur sharp features and shrink the object. On the other hand, noise
makes detection of features, which relies on computation of differential
properties, unreliable and unstable. Therefore, detecting noise and features
on discrete surfaces still remains challenging.

In this article, we present an approach for decoupling noise and features
on 3D shapes. Our approach consists of two phases. In the first phase, a
base mesh is estimated from the input noisy data by a global Laplacian
regularization denoising scheme. The estimated base mesh is guaranteed to
asymptotically converge to the true underlying surface with probability one
as the sample size goes to infinity. In the second phase, an �1-analysis com-
pressed sensing optimization is proposed to recover sharp features from the
residual between base mesh and input mesh. This is based on our discovery
that sharp features can be sparsely represented in some coherent dictio-
nary which is constructed by the pseudo-inverse matrix of the Laplacian
of the shape. The features are recovered from the residual in a progressive
way. Theoretical analysis and experimental results show that our approach
can reliably and robustly remove noise and extract sharp features on 3D
shapes.
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General Terms: Algorithms, Theory

Additional Key Words and Phrases: Denoising, asymptotic optimality, sharp
feature, �1-analysis compressed sensing

The work is supported by the 973 Program 2011CB302400, the NSF of
China (nos. 11031007, 11171322, 61222206), One Hundred Talent Project
of the Chinese Academy of Sciences, the 111 Project (no. b07033), and the
Program for New Century Excellent Talents in University (no. NCET-11-
0881).
Authors’ addresses: R. Wang, Z. Yang (corresponding author), L. Liu,
J. Deng, and F. Chen, School of Mathematical Science, University of Sci-
ence and Technology of China, Hefei, Anhui, China; email: yangzw@ustc.
edu.cn.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2014 ACM 0730-0301/2014/03-ART18 $15.00

DOI: http://dx.doi.org/10.1145/2557449

ACM Reference Format:

Ruimin Wang, Zhouwang Yang, Ligang Liu, Jiansong Deng, and Falai Chen.
2014. Decoupling noise and features via weighted �1-analysis compressed
sensing. ACM Trans. Graph. 33, 2. Article 18 (March 2014) 12 pages.
DOI: http://dx.doi.org/10.1145/2557449

1. INTRODUCTION

With digital scanning devices becoming widespread, more and more
acquired raw data of the sampled 3D models is available. Even with
high-resolution scanners, the raw data contains inevitable noise
from various sources. Although a large number of mesh denoising
schemes already exist [Taubin 1995; Fleishman et al. 2003; Jones
et al. 2003; Zheng et al. 2010], removing noise while preserving
sharp features still remains a challenge.

The reasons are threefold. First, sharp features and noise are
ambiguous since there are no precise mathematical definitions for
them. Features are often hard to distinguish from large amounts
of noise even for human beings (see Figures 10 and 6). Second,
traditional approaches adopt local filtering operators which rely on
various differential properties, such as normal (or tangent plane) and
curvature, to average nearby points to “remove” the noise. On one
hand, computation of the differential properties is a “chicken and
egg” problem, since the definition of geometric differential assumes
local smoothness, and its computation is not reliable and robust in
the presence of noise. On the other hand, the filtering operators
would blur sharp features and shrink the object. Third, most of the
existing denoising methods require fine tuning of various parameters
in order to produce the best results for different inputs, thus making
it difficult for users.

In this work, we present an approach for decoupling noise and
sharp features of 3D shapes. Suppose vertices of the input mesh are
sampled from an underlying surface with additive independent and
identically distributed (i.i.d.) random noise over the surface. Our
idea is to estimate a base mesh to approximate the true underlying
surface and then recover the features from the residual between base
mesh and input mesh.

First, we propose a Discrete Laplacian Regularization Smooth-
ing (DLRS) model to estimate the base mesh. The objective
function consists of a data term which measures how far the
smoothed points are from the original data, and a smoothness term
which uses the discrete Laplacian of the points to measure the
smoothness of the resulted points. Unlike previous approaches that
heuristically select the smoothness parameter to balance the data
term and the smoothness term, we present an automatic scheme,
based on the Generalized Cross-Validation (GCV) scheme, to com-
pute the optimal value of this parameter according to the input
data.

If the true underlying surface is C2-smooth, we prove that the
computed parameter is asymptotically optimal. That is, with this
optimal parameter, the estimated base surface is guaranteed to
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asymptotically converge to the true surface with probability one
when the sample size goes infinity.

In general cases, an underlying surface is a piecewise C2-smooth
surface with sharp features. As we mentioned earlier, it is difficult to
identify these features in the presence of noise. We find that features
are regarded as large-scale noise in the denoising phase and the large
errors produced will be uniformly distributed to other regions in the
base mesh. That is, the presence of sharp features may result in
generating artifacts in regions of C2 during the denoising phase.

We thus propose an approach for identifying and recovering fea-
tures from the residual between the estimated base mesh and the
input mesh. This is achieved by two observations. First, the residual
inevitably mixes the information of features and the noise. We dis-
cover that the pseudo-inverse matrix of the Laplacian matrix of the
mesh is a coherent dictionary for sparsely representing the feature
signal on the shape. Second, we are highly inspired by the promis-
ing development of the technique of compressed sensing in recent
years [Candès and Tao 2005; Donoho 2006; Eldar and Kutyniok
2012].

Therefore, we formulate the identification of sharp features as an
�1-analysis compressed sensing optimization problem. We propose
an iterative procedure to recover the features progressively. In each
iteration, we identify a part of features. After marking the identified
features, we find more features in the next iteration. This is reason-
able as the feature becomes sparser in the latter iterations as the
identified features in previous iterations have already been marked
and do not contribute to the feature detection.

We demonstrate the performance of our method on a number
of diverse inputs, with either synthetic or real noise, and demon-
strate its ability to denoise the surfaces and discover their features.
We also compare with previous methods and the results show that
our approach achieves much better results than the state-of-the-art
methods.

Contributions. Our approach for decoupling noise and features is
quite different from previous methods. To the best of our knowledge,
this is the first time noise and features are analyzed and separated
in such an elegant manner with guarantees by statistical theory. The
contributions of our approach are summarized in the following.

—Asymptotically optimal surface denoising. Our denoising ap-
proach is fully automatic without tuning any parameter. The
smoothness parameter is automatically computed. The denoised
surface is guaranteed to asymptotically converge to the true un-
derlying surface with probability one if the underlying surface is
C2-smooth.

—Faithful feature recovering by �1-analysis. We successfully apply
the �1-analysis compressed sensing technique to identify and
recover sharp features from the residual between the estimated
base surface and the input surface. This is based on our discovery
that the pseudo-inverse matrix of the Laplacian matrix of the
mesh is a coherent dictionary for sparsely representing the sharp
feature signal on the shape.

2. RELATED WORK

2.1 Feature-Preserving Surface Denoising

A wide variety of surface denoising/smoothing algorithms have
been proposed during the past two decades [Botsch et al. 2010]. A
thorough review on this topic is out of the scope of this article.

The most common techniques are based on Laplacian operators.
Taubin [1995] developed a fast and simple iterative local smooth-
ing scheme based on the definition of the Laplacian operator on

meshes. This approach was extended to irregular meshes using a
geometric flow analogy by Desbrun et al. [1999]. Other methods ex-
tended feature-preserving anisotropic diffusion in image processing
to anisotropic geometric diffusion on surfaces [Clarenz et al. 2000;
Bajaj and Xu 2003].

Fleishman et al. [2003] and Jones et al. [2003] extended the bi-
lateral filter from image denoising [Tomasi and Manduchi 1998] to
mesh denoising, which anisotropically averages the nearby vertices
weighted by a monotonously decreasing function in terms of both
spatial difference and vertex difference. Duguet et al. [2004] pro-
posed a higher-order bilateral filter for mesh denoising. The bilateral
filter was also applied to the facet normal field defined over the mesh
by Zheng et al. [2010]. The normal field was first filtered and then the
denoised surface was reconstructed from the filtered normal field.
This scheme obtains better results than previous normal-based fil-
tering methods [Yagou et al. 2002; Sun et al. 2007]. Su et al. [2009]
adopted a mean filter to smooth the vertex Laplacians and then
reconstructed the geometry from the filtered Laplacian. Fan et al.
[2010] applied an anisotropic filter and second-order bilateral filter
to smooth the normal field as well as the curvature tensor field,
which can better preserve curvature details and alleviate volume
shrinkage during denoising. Bian and Tong [2011] designed filter
weights via the classification of vertices and presented a two-step
denoising method that consists of normal vector filtering and vertex
position updating.

A few global and noniterative mesh smoothing approaches have
been developed during the last few years. Nealen et al. [2006]
and Liu et al. [2007] proposed similar global smoothing schemes
by setting the vertex Laplacians to zero and reconstructing the sur-
face with geometric constraints. Hildebrandt and Polthier [2007]
modeled mesh fairing as an optimization problem where a fairness
measure is minimized subject to constraints that control the spatial
deviation of the surface. He and Schaefer [2013] built a discrete
gradient operator on arbitrary triangle meshes and extended the im-
age �0-smoothing method [Xu et al. 2011] to denoise triangulated
meshes of 3D models.

It should be emphasized that most previous methods require the
user to carefully tune the model parameters case by case and rarely
have theoretical guarantees. In contrast, the results obtained from
our approach are guaranteed to asymptotically converge to the true
underlying surfaces by statistical theory.

2.2 Compressed Sensing (CS)

In recent years, Compressed Sensing (CS) has attracted considerable
attention in areas of applied mathematics, computer science, and
signal processing [Candès and Tao 2005; Donoho 2006; Candès
and Wakin 2008; Candès et al. 2010; Eldar and Kutyniok 2012].
The central insight of CS is the sparsity, that is, signals are sparse
with respect to some suitable basis or dictionary, such that signals
can be recovered from very few measurements (undersampled data)
by a convex optimization. Designing measurement/sensing matrices
with favorable properties and constructing suitable dictionaries for
sparse representations are the important research topics in CS. We
will see in Section 5 that the pseudo-inverse matrix of Laplacian
of a mesh is a coherent dictionary for representing the C0-signal
on the mesh and its sharp features can be sparsely represented in
this basis. Then we cast the feature recovery problem into an �1-
analysis CS optimization. Using our �1-analysis approach on the
residual between the denoised mesh and the original mesh, we can
faithfully identify the locations of sharp features. Then the mesh
can eventually be denoised while preserving sharp features by a
modified Laplacian optimization.
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Fig. 1. Main phases of our approach: (a) the input noisy mesh model; (b) Phase I: denoising the model using DLRS (Section 4); (c) Phase II: recovering sharp
features progressively based on �1-analysis (Section 5); (d) the final denoised result with recovered features.

The general idea of �1-regularization for the purpose of sparse
signal reconstruction has been used in the community of geome-
try processing [Avron et al. 2010; Habbecke and Kobbelt 2012]
recently. Instead of applying the �1-regularization in the optimiza-
tion, our approach adopts the �1-analysis CS framework to recover
sparse features on 3D shapes.

3. OVERVIEW

Different from previous methods that simultaneously denoise the
input data and preserve the features, our approach decouples noise
and features in two phases. In the first phase, we obtain an estimated
base mesh by denoising the input mesh. In the second phase, we
recover sharp features from the residual between base mesh and
input mesh. Figure 1 shows the pipeline of our approach, in which
each iteration consists of: (I) one step of the discrete Laplacian
regularization smoothing model followed by (II) one step of feature
detection and Laplacian matrix modification.

Phase I: Mesh denoising. A global Laplacian regularization de-
noising scheme is developed to denoise the input mesh. The de-
noised mesh is considered as an estimated base mesh for an approx-
imation to the true underlying surface (see Figure 1(b)). We use
the Generalized Cross-Validation (GCV) method to automatically
choose an optimal parameter which is used to balance the data term
and the smoothness term in the objective function. We have proved
that by using this parameter the resulting denoised mesh is asymp-
totically optimal, which means it approximates the true underlying
surface with probability one as the sample size goes to infinity if the
underlying surface is C2-smooth without any sharp features. See
Section 4 for the detail.

Phase II: Feature recovering. However, for non-C2-smooth sur-
faces with sharp features, the residual between base mesh and input
mesh inevitably mixes the information from features and noise.
Then we perform the second phase to recover features from the
residual. We discover that the pseudo-inverse matrix of the Lapla-
cian of a mesh is a coherent dictionary for sparsely representing
sharp feature signals on the shape. Also we are profoundly inspired
by the emerging technique of compressed sensing in recent years.
Therefore, we formulate the identification and recovery of sharp
features as an �1-analysis compressed sensing optimization on the
residual. To handle shapes with many features, we employ an iter-
ative process to recover the features (see Figure 1(c)). The detail is
elaborated in Section 5.

4. MESH DENOISING WITH ASYMPTOTIC
OPTIMALITY

Given a noisy mesh with sharp features, our first step is to seek a
base mesh which approximates the original noise-free mesh as much

as possible. To this end, we propose a Discrete Laplacian Regular-
ization Smoothing (DLRS) model for estimating the base surface.
We also prove the theoretical properties of our DLRS model, such
as convergence rate and asymptotic optimality.

4.1 Denoising with DLRS Model

Problem formulation. The problem of surface denoising can be
stated as follows: Assume that we are given a mesh P = {pi}n

i=1,
where pi are sampled possibly with noise from a C2-smooth surface
S̄, that is,

pi = si + εini , i = 1, . . . , n, (1)

where ni is the unit normal of surface at si ∈ S̄ and εi represents
noise. The noise εi, i = 1, . . . , n, are assumed to be independent
and identically distributed (i.i.d.) random variables with zero mean
and finite variance σ 2. The goal of denoising is to produce a smooth
mesh surface Ŝ to approximate the true underlying surface S̄ as
much as possible.

DLRS model. Our denoising model shares much similarity with
other global Laplacian optimization approaches [Nealen et al. 2006;
Liu et al. 2007]. To make the article self-contained and define the
notations for the rest of the work, we derive our DLRS denoising
model in this section. To find a C2-smooth surface Ŝ which is a
reasonable estimate of the true surface S̄, we formulate it as the
following variational minimization problem

Ŝ = arg min
S

1

n

n∑
i=1

d2(pi , S) + λ

∫
S

(2H)2, (2)

where d(pi , S) is the geometric distance from pi to S, H is the
mean curvature of S, and λ is a smoothness parameter. The objec-
tive function consists of two terms: the data term which measures
how well the surface approximates the points, and the smoothness
(regularization) term which measures how smooth the surface. The
smoothness parameter λ plays the role of balancing the two terms.

To simplify the computation, we replace the smoothness term by
its discrete approximation

J (S) = 1

n

n∑
i=1

4H2(si)

= 1

n

n∑
i=1

‖�Ssi‖2 � 1

n

n∑
i=1

‖LiS‖2,

(3)

where S = (s1, . . . , sn)T ∈ R
n×3, �S is the Laplace-Beltrami opera-

tor on the surface, and L = (LT
1 , . . . , LT

n )T is the discrete Laplacian
matrix. The second equality in Eq. (3) is derived by �Ssi = 2Hni .
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Table I. The Performance Statistics of Our Algorithm

#Vertices (Model)

Eigen computation and comparison
Choosing λ/

�1-analysis
Spectrum extrapolation Full eigenvalues

Linear system/Time tr(M) λG Time tr(M) λG

2.5k (8-like in Figure 7) 4s 2.19 × 104 5.67 12s 2.25 × 104 5.56 0.2s/0.03s 1s

5k (upper model in Figure 12) 8s 8.76 × 104 10.41 76s 8.98 × 104 10.13 0.4s/0.07s 2s

7k (fandisk in Figure 1) 21s 3.22 × 105 3.78 150s 3.36 × 105 3.65 0.6s/0.10s 4s

9k (cube in Figure 6) 43s 4.20 × 105 102.23 560s 4.01 × 105 98.41 0.8s/0.13s 5s

10k (pipe in Figure 9) 48s 4.79 × 105 8.13 730s 5.01 × 105 7.84 0.8s/0.14s 5s

12k (torus in Figure 6) 65s 5.12 × 105 18.32 1059s 5.38 × 105 17.97 1.0s/0.15s 6s

28k (lower model in Figure 12) 202s 1.13 × 106 8.59 10428s 1.19 × 106 8.31 2.1s/0.27s 13s

50k (flower in Figure 10) 854s 1.67 × 106 18.40 – – – 3.4s/0.57s 19s

In the implementation, only the q smallest magnitude eigenvalues are computed to extrapolate the remaining ones using the acceleration technique of spectrum extrapolation. We set
q = 2

√
n and obtain a good estimate of λG while greatly reducing the computation time complexity from O(n3) to O(n2). For a mesh model with 50k vertices, there is no output of

computing all the eigenvalues within a tolerable time range. The time costs of three remaining components of our algorithm are listed in the last two columns. “Choosing λ” stands
for obtaining the GCV choice according to (7); “Linear system” stands for solving the linear system (5); “�1 analysis” stands for solving the weighted �1-analysis optimization (14).

Thus we arrive at the following denoising model:

Ŝ = arg min
S

n∑
i=1

‖pi − si‖2 + λ

n∑
i=1

‖LiS‖2. (4)

We call it the Discrete Laplacian Regularization Smoothing (DLRS)
model.

Denote P = (p1, . . . , pn)T ∈ R
n×3. The DLRS model eventually

leads to linear systems

(In + λM)Ŝ = P, (5)

where M = LT L = ∑n

i=1 LT
i Li . Thus, given a specific value of the

smoothness parameter λ, we have the solution

Ŝn(λ) = (In + λM)−1P

as the estimated base mesh of the true underlying surface, where In

is the n × n identity matrix.

Choosing the optimal value of λ. As we mentioned before,
our DLRS model is similar to global Laplacian optimization ap-
proaches [Nealen et al. 2006; Liu et al. 2007]. However, previous
works select the smoothness parameter λ in a heuristic manner or
they allow users to adjust λ to control the smoothness of the de-
noised results.

We observe that there is no specific value of λ which works for
all input data. That is, the parameter λ in Eq. (4) should be chosen
by different values for different input data to gain the best denoised
results. Inspired by the research on smoothing splines in statistics,
we adopt the Generalized Cross-Validation (GCV) [Wahba 1990,
Chapter 4] to determine the smoothness parameter λ in our DLRS
model.

Specifically, the merit function of GCV is defined as

GCVn(λ) =
1
n
‖P − Ŝn(λ)‖2

F(
1 − 1

n
tr[An(λ)]

)2 , (6)

where An(λ) = (In + λM)−1. And the optimal value of λ can be
computed by minimizing the previous GCV function, that is,

λ̂G = arg min
λ>0

GCVn(λ), (7)

which can be easily solved by a line search optimization.

Computation acceleration. The straightforward calculation of
tr[An(λ)] in Eq. (6) is expensive due to the costly computation
of the inverse of In +λM for various values of λ. Here we compute

the eigenvalues μ1 ≤ μ2 ≤ · · · ≤ μn of the matrix M in ascending
order. Then tr[An(λ)] can be simply calculated as

tr[An(λ)] =
n∑

i=1

1

1 + λμi

. (8)

Note that M is a semi-definite sparse matrix. The number of
nonzeros of M is strictly less than (k + 1)2n and empirically 3kn
when k nearest neighbors are used to build the Laplacian matrix
L. Our algorithm benefits greatly from the sparsity of M and the
asymptotic behavior of its eigenvalues. We develop a technique,
namely spectrum extrapolation, to accelerate the computation in
our implementation as follows.

As the eigenvalues of M in ascending order asymptotically sat-
isfy μj = O(j 2) (according to Lemma 1.7 in the supplementary
material), we can use partial eigenvalues to extrapolate a function
that forecasts the remaining ones. Let μ(j ) = c0 +c1j +c2j

2 be the
quadratic function for depicting the asymptotic behavior of eigen-
values wherein c0, c1, c2 are unknown coefficients to be determined.
Specifically, we only compute the q smallest (or largest) magni-
tude eigenvalues {μjk

}q

k=1 using the ARPACK library [Lehoucq
et al. 1998] within O(nq2) complexity. We obtain the coeffi-
cients by least-squares fitting the truncated eigenvalues and predict
the remaining eigenvalues {μjk

}n
k=q+1 by the resulting μ(j ). Then

tr[An(λ)] can be calculated according to Eq. (8). We set q = 2
√

n in
our implementation. The error between estimated and true tr[An(λ)]
is around 5% from our experiments, as shown in Table I. Note that
the ARPACK package is based upon a variant of the Lanczos itera-
tion called Implicitly Restarted Lanczos Method (IRLM) [Sorensen
1997] which is stable in computing either the smallest or largest
magnitude eigenvalues.

Choice of Laplacian. The discrete Laplacian matrix L of a mesh
could be defined in various ways. The geometric Laplacian ap-
proximates the exact Laplacian better than the graph Laplacian.
But for noisy data, the graph Laplacian that contains only informa-
tion of topological connections is more reliable than the geometric
Laplacian. We employ the graph Laplacian since it is robust to
different levels of noise and we have shown its good performance
in our experiments. Undoubtedly, other modifications of geometric
Laplacian can also be optional in our algorithm.

Pseudocode. The pseudocode of computing the estimated base
surface can be seen in Algorithm 1.

ACM Transactions on Graphics, Vol. 33, No. 2, Article 18, Publication date: March 2014.



Decoupling Noise and Features via Weighted �1-Analysis Compressed Sensing • 18:5

ALGORITHM 1: Computing the estimated base mesh Ŝ by our
DLRS model.
Input: the set of points P and its Laplacian matrix L
Output: Ŝ = DLRS(P,L)

1: Calculate M = LT L and its eigenvalues μ1, . . . , μn.
2: Compute the optimal smoothness parameter by minimizing
the GCV function in (6), i.e., λ̂G = arg min

λ>0
GCVn(λ).

3: Obtain Ŝ by solving linear systems (In + λ̂GM)Ŝ = P .

4.2 Asymptotic Properties

We have established the theoretical properties (convergence rate and
asymptotic optimality) of our DLRS model under some regularity
conditions. All the technical proofs can be found in the supple-
mentary material. Specifically, we have the following two main
theorems.

Denote the error between the estimated base mesh surface and
the true underlying surface as

rn(λ) = 1

n
‖Ŝn(λ) − S̄‖2

F .

THEOREM 1. Assume that P is the equidistributed sample of a
C2-smooth surface. As n → ∞ and λ ∼ n−2/3 is chosen, we have
with probability one

E[rn(λ)] = O
(
n− 2

3
)
.

THEOREM 2. If the smoothness parameter λ̂G is the GCV choice
according to Eq. (7), then the estimated base mesh surface Ŝn(λ̂G)
from our DLRS model is asymptotically optimal, that is,

rn(λ̂G)

infλ∈R+ rn(λ)
→p 1, (9)

where →p means the convergence in probability.

Theorem 1 and Theorem 2 give the theoretical guarantees by sta-
tistical theory for our denoising scheme. It is seen that the estimated
base mesh Ŝ asymptotically converges to the ground-truth surface
with probability one as the sample size goes to infinity. In partic-
ular, Theorem 1 ensures the existence of smoothness parameter λ

to achieve the convergence rate of n− 2
3 , and Theorem 2 provides a

numerical means for choosing an asymptotically optimal parameter.

Remark. The DLRS model is similar to an implicit integration
step of the biharmonic flow, which corresponds to a geometric evo-
lution equation. Usually, it is hard to decide the step size and termi-
nal condition for the evolution equations. We have proved that the
DLRS model guarantees the asymptotically optimal convergence by
using statistical theory. To the best of our knowledge, the property
of asymptotic optimality cannot be obtained using the biharmonic
flow formulation for smoothing noisy data.

5. FEATURE RECOVERING VIA �1-ANALYSIS
COMPRESSED SENSING

If the true underlying surface is C2-smooth, the denoised mesh Ŝ
obtained by our model DLRS with the parameter λ̂G is guaranteed to
be an asymptotically optimal approximation (Theorem 2). However,
the true surface might not be a C2-smooth surface as a whole but a
piecewise C2 surface with C0 sharp features.

The presence of shape features may result in generating artifacts
in C2 regions during the denoising phase (see the small bumps

Fig. 2. 1D illustration of signals and their Laplacians. Left: the residual b
(upper) is a mixture of noise z (middle) and features h (lower). Right: the
corresponding Laplacians of signals on the left.

in the denoised meshes shown in Figures 1(b) and 9(c)). This is
because features are regarded as large magnitude noise and the
errors produced will be slightly diffused to other regions in Ŝ by the
global optimization (4). But compared to the magnitude of these
small bumps, the errors located at sharp features are dominant. In
this section we propose an �1-analysis compressed sensing-based
approach for recovering the features from the residual between the
base mesh Ŝ and the given noisy mesh P .

5.1 �1-Analysis Compressed Sensing on Residual

Residual. By the denoising phase we now have the estimated base
mesh Ŝ = {ŝi}n

i=1 from the input noisy mesh P = {pi}n
i=1. The

residual between Ŝ and P is defined as

bi = (pi − ŝi)
T n̂i , i = 1, . . . , n, (10)

where n̂i is the unit normal vector of surface Ŝ at ŝi . Denote b =
(b1, . . . , bn)T as the residual vector.

As an inference of asymptotic properties presented in Section 4,
the residual signal b is essentially i.i.d. noise if the true underlying
surface of input mesh P is at least C2-continuous as a whole.
When the underlying surface contains sharp features, the residual
b inevitably mixes the information from features and the noise, as
illustrated in Figure 2 (left). The residual can be decomposed as

b = h + z, (11)

where h = (h1, . . . , hn)T is the unknown signal of shape features
and z = (z1, . . . , zn)T is the measurement error.

�1-Analysis compressed sensing. The compressed sensing theory
asserts that if the unknown signal is reasonably sparse, it is possible
to recover it under suitable conditions on a sensing matrix by an �1-
norm convex programming [Candès and Tao 2005; Donoho 2006].
The techniques hold for signals which are sparse in the standard
coordinate basis or sparse with respect to some orthogonal basis.
However, there are numerous applications in which a signal of
interest is usually not sparse in an orthogonal basis but in a coherent
dictionary (see detail in Candès et al. [2010]).

Coherent dictionary for shape features. Considering the feature
signal h in our case, we discover that shape features can be repre-
sented as sparse in some coherent dictionary which is constructed
by the pseudo-inverse matrix L+ of the Laplacian matrix L of the
shape. The key observation is that Lh (Laplacian of feature signal)
has quickly decaying coefficients and is indeed sparse, as illustrated
in Figure 2 (right). Furthermore, the matrix L+ has n (number of
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Fig. 3. Three basis functions corresponding to the 400-th, 900-th, and
1400-th columns of L+ respectively. We use the 1D case as an illustration.

Fig. 4. The discrete Greens functions corresponding to three columns of
L+ in the 2D case. This evidence suggests that L+ is a coherent dictionary
for representing the C0 feature signals on surfaces.

vertices) columns and each column (say, the i-th column) of L+

can be regarded as a discrete Greens function which is C0 at vi and
smooth over all other vertices. Figure 3 and Figure 4 illustrate the
basis functions corresponding to columns of L+ in the 1D case and
the 2D case, respectively. This evidence suggests that the columns
of L+ form a basis (a coherent dictionary) for representing the C0

feature signals on the shape.

�1-Analysis on residual. As we have found a coherent dictionary
D = L+ for representing h sparsely, that is, Lh is sparse, we can
thus formulate the problem of recovering feature signals h from the
residual b as an �1-analysis compressed sensing optimization

In our setting, the sensing matrix is the identity matrix. Thus we
have the following �1-analysis compressed sensing optimization

min
h

‖Lh‖1 s.t. ‖h − b‖2
2 ≤ ε2, (12)

where ε2 is a likely upper bound on the noise power ‖z‖2
2. The roles

of the penalty and the constraint in Eq. (12) might also be reversed
if we choose to constrain the sparsity and obtain the best fit for that
sparsity. An equivalent optimization is given as

min
h

‖h − b‖2
2 s.t. ‖Lh‖1 ≤ τ, (13)

where τ is a tuning parameter controlling the sparsity. We prefer to
solve Eq. (13) instead of (12), since the sparsity parameter τ holds
more intuitive geometric meaning and can be actually controlled
(see Figure 8). Denote ĥ as the solution to the optimization (13).
We assert that Lĥ provides accurate and reliable locations of sharp
features with τ smaller than exact ‖Lh‖1. Otherwise, if Lĥ incor-
rectly locates the features, the optimal solution ĥ might bias the
original feature signal in large error that implies a contradiction.

Weighted �1-analysis. Consider the weighted �1-analysis on the
residual

min
h

‖h − b‖2
2

s.t. ‖W (Lh)‖1 =
n∑

i=1

wi |Lih| ≤ τ,
(14)

where W = diag(w1, . . . , wn) and w1, . . . , wn are positive weights.
The weighted �1-analysis optimization (14) can be regarded as a re-
laxation of an �0-minimization problem. It is desired that the weights
could be to counteract the influence of the signal magnitude on the
�1-penalty function. Ideally, the weights are inversely proportional
to the true signal magnitude, that is,

wi =
{

1
|Li h| Lih 
= 0,

∞ Lih = 0.
(15)

The large entries in W force the Laplacian of feature Lh to concen-
trate on the indices where wi is small. These constructed weights
precisely correspond to the indices where Lh is nonzero. It is of
course impossible to construct the precise weights (15) without
knowing the feature signal h itself, but this suggests more generally
that large weights could be used to discourage nonzero entries in
the recovered Lh, while small weights could be used to encourage
nonzero entries.

An iterative algorithm of reweighted �1-minimization is proposed
by Candès et al. [2008] to enhance the sparsity in signal recovery.
There exists such a possibility of constructing a favorable set of
weights based on an approximation of Lh or on other information
about the vector magnitudes. Based on the geometric information
of the estimated base surface Ŝ, we design the weights as

wi = 1

ρ + ‖LiŜ‖ , i = 1, . . . , n,

where ρ is a small number (ρ = 10−7 by default) that provides nu-
merical stability and should be set slightly smaller than the expected
nonzero magnitudes of Lh. With these well-designed weights, we
then perform a weighted �1-analysis (14) on the residual for recover-
ing the feature signal. We employ the interior-point method [Boyd
and Vandenberghe 2004] to solve this convex optimization prob-
lem (14) in our implementation.

5.2 Iterative Feature Recovering

If we set large value of the sparsity parameter τ , the optimiza-
tion (14) will recover features but may introduce some nonfeature
points in the result. Thus we prefer to choose a small value of τ . For
some models with large portion of features, the solution to Eq. (14)
returns only the most prominent (sharpest) features.

To recover the other features, our idea is to modify the rows (of
Laplacian matrix L) corresponding to the identified features and
perform the weighted �1-analysis optimization (14) in an iterative
manner. In each iteration, the most salient features in the current
residual are identified. After marking the identified features, we find
more features in the next iteration. This is reasonable as features
become sparser in following iterations as the identified features in
previous iterations have already been identified and do not con-
tribute to the residual b in feature recovering model (14).

Feature classification. Generally there are two types of sharp
features, namely corners and creases, as shown in Figure 5, on
3D shapes. A corner point is the one at which the tangent of any
passing curve on the surface is discontinuous. A crease curve intro-
duces the discontinuities of first derivatives across it, but preserves
C2-continuity along it. Corners can also be the intersections of
several creases.

After identifying locations of the features by the weighnted �1-
analysis (14) on the residual, we adopt a simple scheme to classify
their types. If a feature point has a few feature points in its neighbor,
we compute a dominant direction by PCA and classify it as a crease
along this direction. If a feature is isolated from others or the PCA
direction is degenerated, it is identified as a corner (see Figure 5).
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Fig. 5. Two types of feature points: (a) corner; (b) crease.

Feature-aware modification of Laplacian matrix. If the vertex si is
identified as a corner, we remove the Laplacian penaltyL(si) = LiS
by setting the i-th row of the Laplacian matrix Li = 0. If the vertex
si is identified as a point on a crease E , we only remove the straddling
smoothness penalties and yield a term of the form

L(si) = LiS =
∑

j∈N (i)∩E
(sj − si) = sje− + sje+ − 2si ,

where sje− and sje+ are the adjacent neighbors of si along the crease
E , as illustrated in Figure 5(b).

Termination criterion of iterations. We adopt a statistical method
of nonparametric test for checking whether the residual b contains
more features. Specifically, residuals were randomly divided into
two sets b1 and b2. We use a two-sample Kolmogorov-Smirnov
test [Massey 1951] to compare the distributions of the values in the
two sets b1 and b2. We state that:

—the null hypothesis H0 that b1 and b2 are from the same continu-
ous distribution;

—the alternative hypothesis H1 that they are from different contin-
uous distributions.

This hypothesis does not specify what the common distribution is
(e.g., normal or not normal). In statistics, a result is called statisti-
cally significant if it is unlikely to have occurred by chance alone,
according to a predetermined threshold probability, the significance
level. The result is 1 if the test rejects the null hypothesis at the α sig-
nificance level; 0 otherwise. We use the significance level α = 0.05
in our implementation.

Pseudocode. The pseudocode of the iterative feature recovering
via �1-analysis can be found in Algorithm 2.

ALGORITHM 2: Iterated procedure for feature recovering
Input: the points P , its Laplacian L, and the sparsity parameter τ
Output: denoised mesh with features

1: Call Algorithm 1, Ŝ = DLRS(P,L).
2: Calculate the residual b according to (10).
3: If the result of the two-sample Kolmogorov-Smirnov test on
residual b is 1, go to Step 4; Otherwise, exit and output the current
Ŝ.
4: Recover the features ĥ by the weighted �1-analysis (14), and
get the reliable locations of ĥ indicated by Lĥ.
5: Classify the features ĥ and modify accordingly the Laplacian
matrix L based on their feature types.
6: Go to Step 1.

Fig. 6. Our approach is robust to different levels of noise. Upper example:
a C2-smooth torus shape; lower example: a cube model with sharp features.
For each example, the first row shows the ground-truth model followed by
the noisy models with different levels of noise (the standard deviation is
shown below each model), the second row shows the denoised models, and
the third row visualizes the differences between the denoised models and
the ground-truth model.

6. EXPERIMENTAL RESULTS

We have implemented our approach and tested it on a large variety of
models with different types of features. All the examples presented
in this article were made on a dual-core 3 GHz machine with 8G
memory (see more results in the accompanying video accessible
from the ACM Digital Library).

Like previous works, we mostly use ground-truth models with
synthetic noise for evaluating our approach and comparing with
other methods. The synthetic noise is generated by an i.i.d. random
variable generator with zero mean and a standard deviation σ which
is proportional to the diagonal of the bounding box of the model.

Figure 7 shows a denoising example on a model which is dis-
cretized from a C2-smooth 8-like surface. We added severe syn-
thetic noise (σ = 0.02) on the model as shown in Figure 7(b). The
denoised results with different values of the smoothness parameter
λ are shown in Figure 7(c)–(g). It is seen that small λ cannot filter
out the noise (see (c) and (d)) while large λ may shrink the object
(see (f) and (g)). Thanks to the GCV method, our algorithm can
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Fig. 7. Our approach computes the optimal smoothness parameter to denoise the mesh. (a) the ground-truth 8-like model which is a C2-smooth surface;
(b) the model artificially corrupted by severe synthetic noise; (c)–(g) denoised results by the global smoothing approach with various parameters λ in (4). Our
approach obtains the best smoothing result (e) via the automatically chosen optimal parameter λ = 2.02.

Fig. 8. 1D illustration of results using different sparsity parameters τ in
the �1-analysis optimization. Left: the residual signal b (upper) and its
Laplacian (lower); Right: the recovered feature signals ĥ corresponding to
different values 0.1 (orange), 1 (blue), and 5 (magenta) of τ (upper) and their
Laplacians (lower). It is seen that only the prominent feature is identified
using small τ = 0.1 and more features are identified using larger τ = 1 and
τ = 5. The �1-analysis optimization always provides accurate and reliable
locations (nonzeros of the Laplacians) of features.

automatically choose an optimal value of λ = 2.02 and obtain the
best denoised result as shown in Figure 7(e).

The torus model in Figure 6 (upper) is also a C2-smooth surface.
We added different levels of noise on the model and our algorithm
obtains good denoised results as shown in Figure 6 (also see the color
maps which encode the difference between the denoised models and
the ground-truth model).

For C2-smooth surfaces, we only need to perform the first phase
to obtain the final denoised results. For nonsmooth surfaces with
sharp features, we need to perform the second phase to recover
the features. Figure 9(a) shows a surface with sharp features. We
added some synthetic noise on it shown in Figure 9(b) and applied
our smoothing algorithm on (b). The denoised result filters out the
noise but also blurs the sharp features as shown in Figure 9(c).
The sharp features are progressively recovered using our approach,
as shown in Figure 9(d) and (e). All sharp features are correctly
recovered in the final result (f).

We also tested our algorithm on the cube model with corners
and creases, as shown in Figure 6. It is seen from the results that
our approach can faithfully recover features corrupted by different
levels of noise, even by heavily added noise. Figure 10 shows a
more complex model with many sharp features. Sharp features are
correctly recovered and the resulting mesh has slight difference with
the ground truth from the color map.

Comparisons. We compare our approach with some state-of-the-
art methods, including the anisotropic geometric diffusion [Clarenz
et al. 2000], vertex-based bilateral filtering [Fleishman et al.
2003], noniterative smoothing [Jones et al. 2003], anisotropic fil-
tering [Hildebrandt and Polthier 2004], Laplacian mesh optimiza-
tion [Nealen et al. 2006], and normal-based bilateral filtering [Zheng
et al. 2010]. The comparisons are given in Figure 11, with close-up
views showing the differences. For all those methods to be com-
pared, we carefully chose the parameters to enable them to produce
visually the best denoised results as shown in the figure. In the meth-
ods of Clarenz et al. [2000] and Hildebrandt and Polthier [2004], the
selection of step size has serious impact on the denoised results and
an inappropriate step length will often lead to the self-intersection of
resulting mesh. The anisotropic filtering method [Hildebrandt and
Polthier 2004] also provides a scheme to preserve the features while
denoising, which performs much better if taking the precise loca-
tion of features as an input. The methods of Clarenz et al. [2000],
Fleishman et al. [2003], and Hildebrandt and Polthier [2004] always
blur sharp features (see (a1), (a2), (b1), (b2), (d1), (d2) in Figure 11).
The method in Nealen et al. [2006] uses a weighted goodness-of-fit
measure and the geometric Laplacian to fair the input mesh, while
sharp features in the resulting mesh have been largely oversmoothed
(see (e1), (e2) in Figure 11). The methods of Jones et al. [2003] and
Zheng et al. [2010] preserve the sharp features for input meshes
with light noise. However, for heavy, noisy meshes they may intro-
duce bumps in smooth regions and visual artifacts in the results (see
(c1), (c2), (f1), (f2) in Figure 11).

Real data. Our algorithm can also be applied for denoising real
scanning data which is generally point cloud without topological
connections. The idea is to build a graph and then denoise the data
using its graph Laplacian. For each point in the cloud, we connect
this point and its neighbors within a certain distance and obtain a
graph for all the points. The Laplacian matrix can be defined on
the graph, thus our algorithm can be applied. Figure 12 shows two
examples of denoised results on raw scanning data of real objects,
which demonstrates that our algorithm removes the noise in the raw
data while preserving the features well.

Parameter. Previous methods need to fine tune various parameters
to produce the best results for different inputs. There is only one pa-
rameter in our approach, namely the sparsity parameter τ used in the
weighted �1-analysis (14). We prefer to set a small value of τ that is
necessarily smaller than exact ‖W (Lh)‖1 and perform the iterative
process to recover features from the residual sequentially. Using
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Fig. 9. Our algorithm progressively recovers sharp features. (a) the ground-truth model; (b) the noisy model; (c) the denoised model using our DLRS
algorithm; (d)–(e) progressively recovered features shown in red dots with two iterations; (f) the final result.

Fig. 10. Our approach is able to faithfully recover sharp features corrupted by noise. (a) The octa-flower model as a ground truth; (b) the model artificially
corrupted by independent and identically distributed (i.i.d.) noise (with zero mean and standard deviation σ = 0.01 of the diagonal of the bounding box of the
model); (c) the error map of (b); (d) the denoising result by our approach; (e) the error map of (d). The colored models (c,e) visualize the errors between the
processed models and the ground-truth model (a). Note that sharp features such as creases and corners are well retained in our result (d).

an iterative procedure to recover the features on shapes tends to
allow for successively better estimation of the nonzero coefficients
of Laplacian of features. Even though the iteration may find inaccu-
rate feature estimates with an inappropriate sparsity parameter, the
largest coefficients of Lh are most likely to be identified as nonzero.
As shown in Figure 8, the solutions ĥ from the weighted �1-analysis
optimization (14) with different τ = 0.1, 1, 5 provide accurate and
reliable location of features. Once these locations are identified,
their influence is eliminated by modifying the corresponding rows
in the Laplacian matrix. Then it allows more sensitivity for identi-
fying the remaining features whose Laplacian coefficients are small
but nonzero.

The spasity of features on surface means O(
√

n), where n is
the number of vertices, because this is the amount of points on
smooth feature lines. In the implementation, we set a default value
of τ = 0.1∗√

n which works quite well for most models tested in our
experiments. We also allow the user to adjust τ . As τ constrains the
sparsity of the features detected from the residual, it is very intuitive
for the user to adjust its value. If the input mesh is supposed to have
lots of features, the user can set a slightly larger value of τ to recover
features faster. However, large τ likely returns fake features in the
results.

Timing. Table I shows exhaustively the time cost of our algorithm.
The most time-consuming part in our algorithm is the computation
of the eigenvalues of the matrix M in the denoising phase. We
accelerate the algorithm by developing a technique of spectrum
extrapolation which only requires to compute the q smallest mag-
nitude eigenvalues as mentioned in Section 4. The spectrum extrap-
olation has a significant acceleration compared to full eigenvalues
computation (see Table I). The Reverse Cuthill-Mckee (RCM) or-
dering [Cuthill and Mckee 1969] is employed as a preprocessing for
the full eigenvalues computation based on the QR factorization. For

the spectrum extrapolation, we use the well-known ARPACK li-
brary which is based upon the Implicitly Restarted Arnoldi Method
(IRAM) to compute the truncated eigenvalues. IRAM reduces to the
Implicitly Restarted Lanczos Method (IRLM) when the input ma-
trix is symmetric. These variants can be viewed as synthesis of the
Arnoldi/Lanczos process and the Implicitly Shifted QR technique,
which ensures they are numerically stable in computing either the
smallest or largest magnitude eigenvalues.

We have tested our algorithm on a variety of models in our article
with mesh size n from 2k to 50k. The statistics of performance
in Table I show that we can obtain a good estimate of λG while
reducing the computation complexity from O(n3) to O(n2) when
we set q = 2

√
n in the implementation. In the last two columns of

Table I, we also give the time costs of other components including
the GCV choice in Eq. (7), the linear system in (5), and the weighted
�1-analysis optimization in (14). It is obvious that the computation
of eigenvalues is the dominant cost in our algorithm.

Limitations. Our approach relies on the assumption that the noise
is i.i.d. random variable, which is correct for most of the noise and
assumed in most of the previous papers. However, if the noise is not
i.i.d., our DLRS model in the denoising phase may not guarantee to
obtain the optimal base mesh, which might affect the result of our
�1-analysis feature recovering scheme. Fortunately, our experiments
show that our algorithm can successfully decouple the noise and
features on real scanning data (see Figure 12), which means that
our approach is practically useful.

Our approach can be applied to either meshes or point clouds.
The advantage of denoising a mesh rather than a point cloud is that
the connectivity information implicitly defines the surface topology
and serves as a means for fast access to neighboring samples. Thus if
we have the correct topology of the underlying surface, our scheme
is very robust to noise, even for very heavy noise as shown in
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Fig. 11. Comparisons with previous methods. The first column from top to bottom: the ground-truth Fandisk and the models corrupted by different levels
of artificial noise (σ = 0.005 in the upper row and σ = 0.01 in the lower row). (a1)–(a2) denoised results by the anisotropic geometric diffusion [Clarenz
et al. 2000]; (b1)–(b2) by the vertex-based bilateral filtering [Fleishman et al. 2003]; (c1)–(c2) by the noniterative smoothing [Jones et al. 2003]; (d1)–(d2) by
the anisotropic filtering [Hildebrandt and Polthier 2004]; (e1)–(e2) by the Laplacian mesh optimization [Nealen et al. 2006]; (f1)–(f2) by the normal-based
bilateral filtering [Zheng et al. 2010]; (g1)–(g2) by our appoach. The small regions with the frames are magnified to clearly show the differences. All meshes
are flat-shaded to show faceting.

Figure 6. For point clouds, it is not easy to get the correct topology
information. In our implementation, we adopt the nearest neighbors
to build the graph of the points. Thus, if the graph incorrectly reflects
the topology, the result might not be reliable. This is a fundamental
limitation of any point-based processes.

7. CONCLUSION AND FUTURE WORK

This article presents a two-phase approach for decoupling features
and noise on discrete surfaces. The first phase generates a base
mesh which is obtained by denoising the input data using a global
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Fig. 12. Applying our approach to scanning data of real objects. From left to right: the input scanning raw data; the denoised results using the method of Jones
et al. [2003]; the denoised results using our approach. The close-up views show the details in framed regions.

Laplacian regularization smoothing optimization. The smoothness
parameter is automatically chosen by adopting the generalized
cross-validation scheme and is proved asymptotically optimal. The
second phase extracts sharp features from the residual between base
mesh and input mesh based on an �1-analysis compressed sens-
ing optimization. This is achieved by our insight that the pseudo-
inverse of Laplacian matrix of a mesh is a coherent dictionary for
representing the C0-signal on the mesh and its sharp features can be
sparsely represented in this basis. We have tested our approach on
a large number of mesh surfaces with various feature types. Exper-
imental results have shown that our method can faithfully decouple
noise and sharp features.

It is not surprising to see that features can be detected by the
�1-analysis Compressed Sensing (CS) techniques since Lh (the
Laplacian of the feature signal) is indeed a sparse signal. By remov-
ing the unnecessary smoothness penalty at locations of features, the
DLRS scheme with the optimal parameter λ̂G determined by GCV
performs equivalently as denoising each C2 patch individually and
thus eventually obtains the optimal approximation to the underlying
surface with theoretical guarantee.

Future work. First, we would like to apply the emerging frame-
work of �1-analysis compressed sensing to other problems in geom-
etry processing. Second, the framework of �1-analysis has potential
in detecting higher-order features. The key is to design some co-
herent dictionaries which can sparsely represent the features. It is
worthwhile to investigate it. Third, we observe that the information
of a shape can be separated into two orthogonal components: a
normal component which encodes the geometric information, and
a tangential component which encodes the parameter information.
Our current scheme modifies the geometry of the mesh by moving
vertices along their normal directions. It is highly worthwhile to an-
alyze and remove the noise of the input data in the parameterization
domain. We believe that this is feasible but not straightforward.

ELECTRONIC APPENDIX

The electronic appendix to this article is available in the ACM
Digital Library.
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