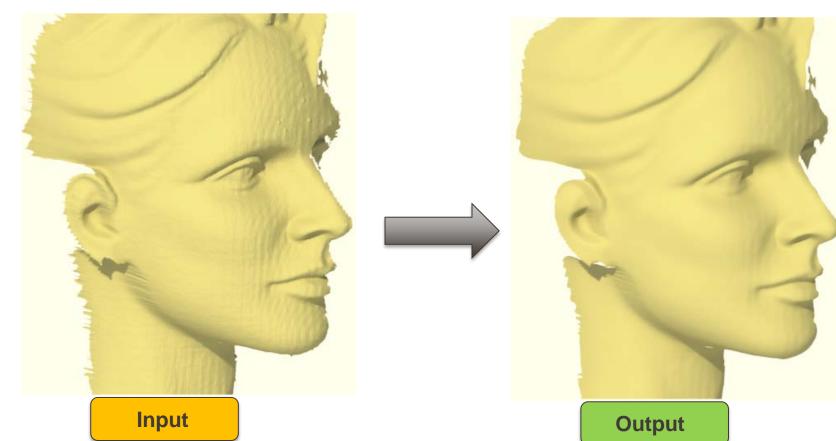


The **41st** International **Conference** and **Exhibition** on **Computer Graphics** and **Interactive Techniques**

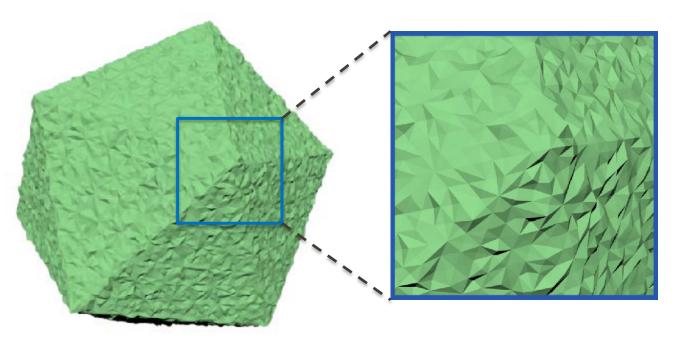
Decoupling Noises and Features via Weighted ℓ_1 -analysis Compressed Sensing

Ruimin Wang Zhouwang Yang Ligang Liu Jiansong Deng Falai Chen University of Science and Technology of China

Denoising 3D Mesh Data



Challenging: Denoising Objects with Sharp Features



Challenging: Denoising Objects with Sharp Features

- Feature detection is unreliable in the presence of noise
 - Feature measures (2nd derivatives) are **sensitive** to noise
- **Denoise** operations might **blur** features
 - Features are **vulnerable** to local filtering operations

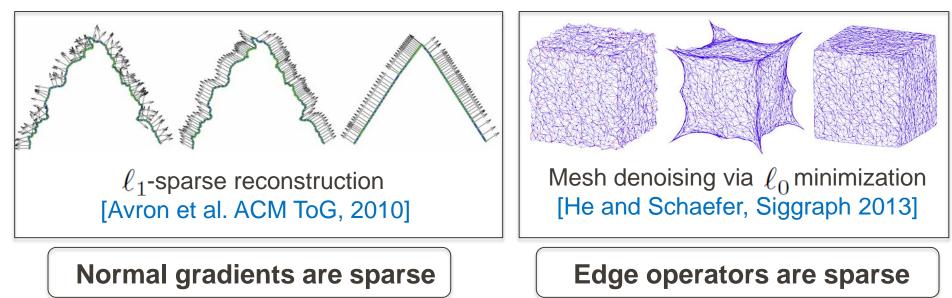
A chicken-and-egg problem!

Previous Works (1)

- Feature preserving/aware denoising
 - Laplacian filtering [Taubin 1995, Desbrun et al. 1999]
 - Higher order (e.g., bilateral) filtering [Fleishman et al. 2003, Jones et al. 2003, Duguet et al. 2004]
 - Normal filtering [Zheng et al. 2010, Fan et al. 2010]
 - Global methods [Nealen et al. 2006, Liu et al. 2007]

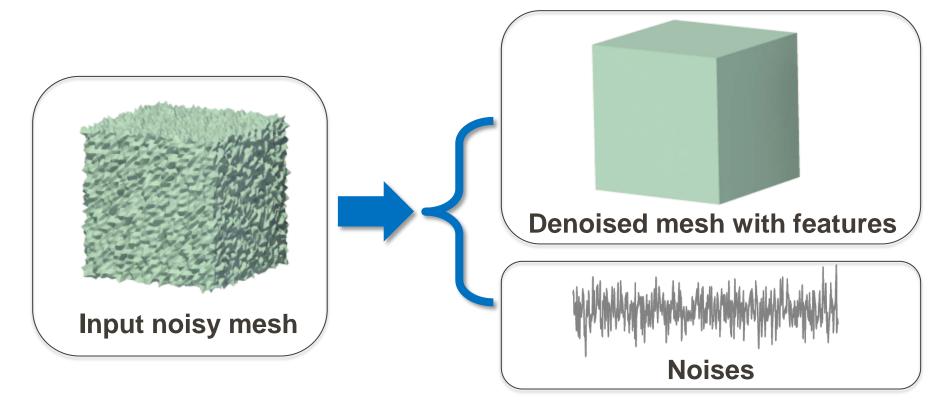
Previous Works (2)

Sparsity optimization based denoising

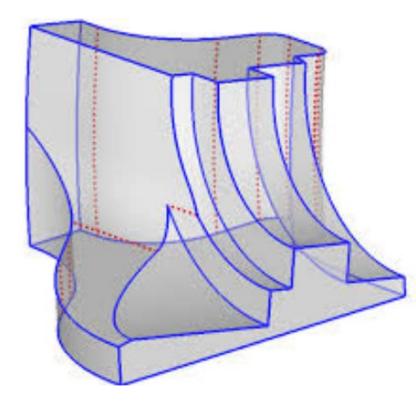


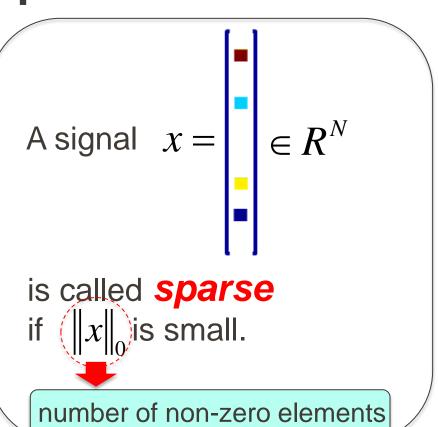
Our Method: Compressed Sensing

• Decouple features and noises simultaneously!

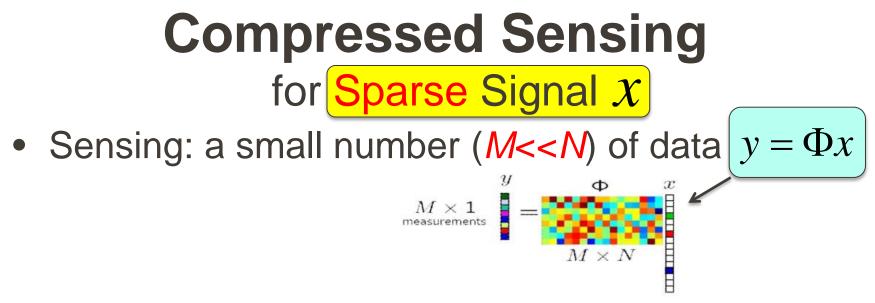


Sharp Features are Sparse on Meshes





Short Overview on Processing Sparse Signal via Compressed Sensing



• Recovering: via an ℓ_0 optimization (if Φ has R.I.P.)

n

$$\begin{array}{c}
\min \|x\|_{0} \\
\text{s.t. } \Phi x = y
\end{array}$$

$$\begin{array}{c} \min \|x\|_{0} \\ \text{s.t.} \ \|y - \Phi x\|_{2} \leq \varepsilon \end{array}$$

If x is corrupted by some noise

Analysis Compressed Sensing for Non-sparse Signal X

If there exists a linear transformation L, such that Lx is sparse

• Sensing: $y = \Phi x$

Recovering:
$$\begin{aligned} \min \|Lx\|_{0} \\ \text{s.t.} \ \|y - \Phi x\|_{2} \leq \varepsilon \end{aligned}$$

Compressed Sensing for Sparse Signal

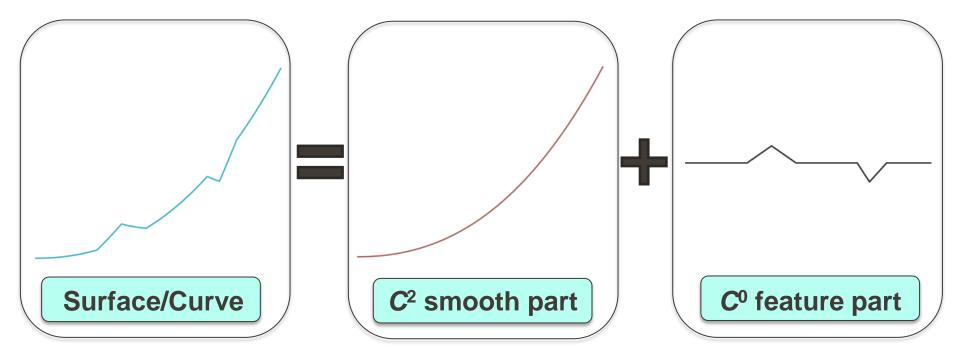
The sparse signal can be robustly recovered in the presence of noise by solving some *I*₀ optimization!

Our Approach

Our Key Observation

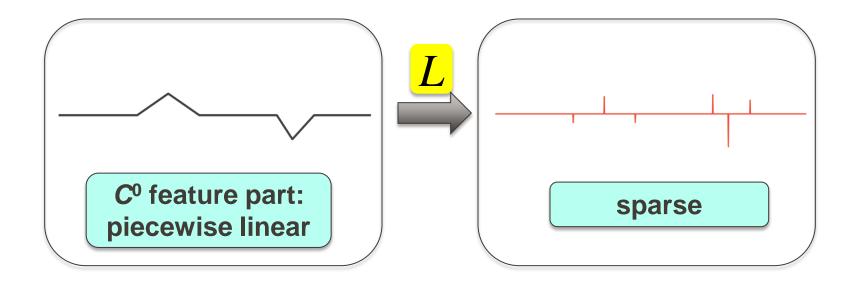
• Any surface is piecewise C^2

– Sharp features are C^0 signal over smooth surface



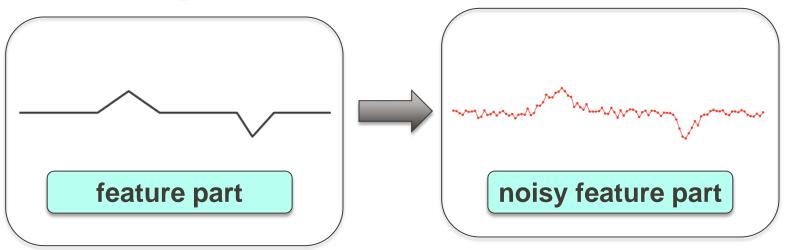
Our Key Observation

 Applying Laplacian operator L (2nd derivative operator) on feature part results in sparse signal



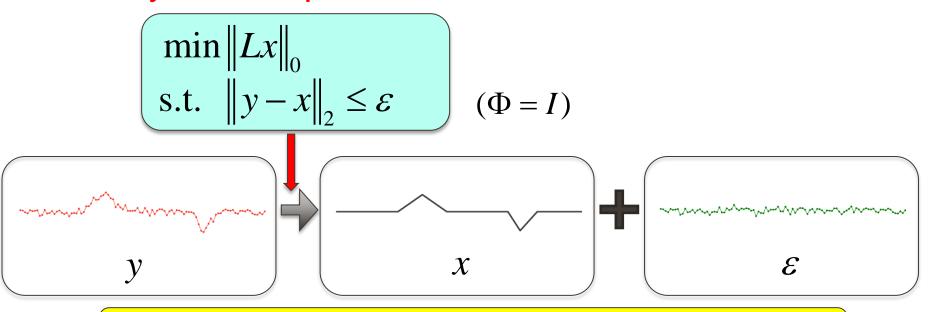
If feature part is corrupted by noise...

when when the second of the se



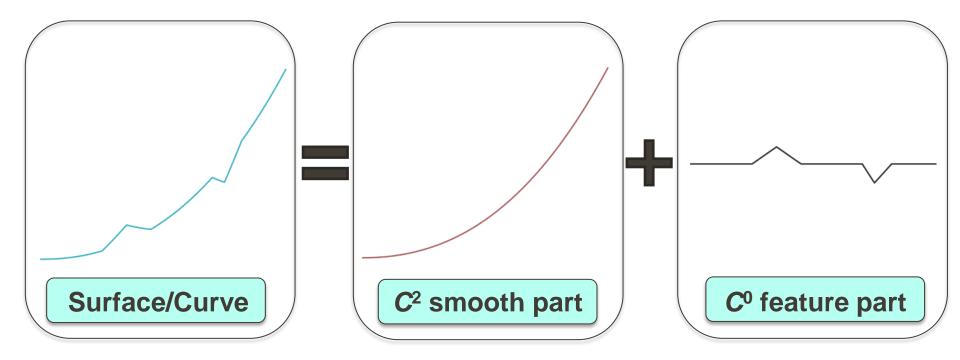
Our Solution

 Applying analysis compressed sensing on the noisy feature part

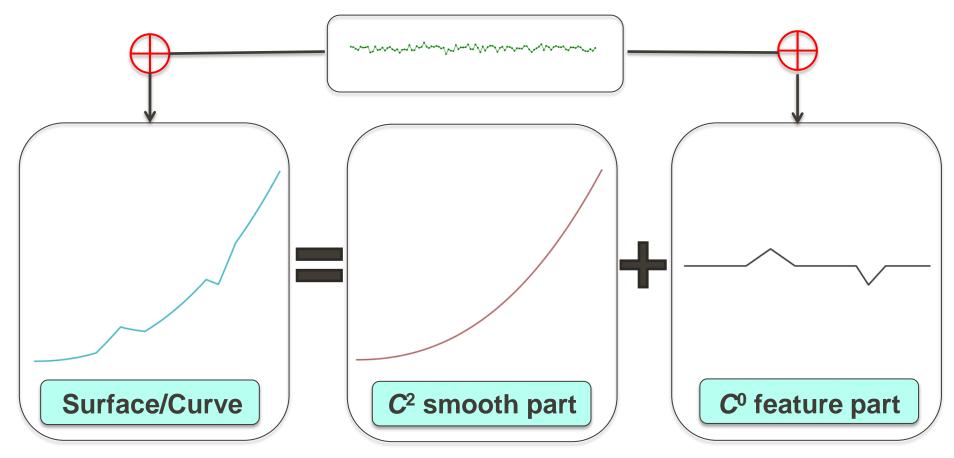


Decouple features and noises simultaneously!

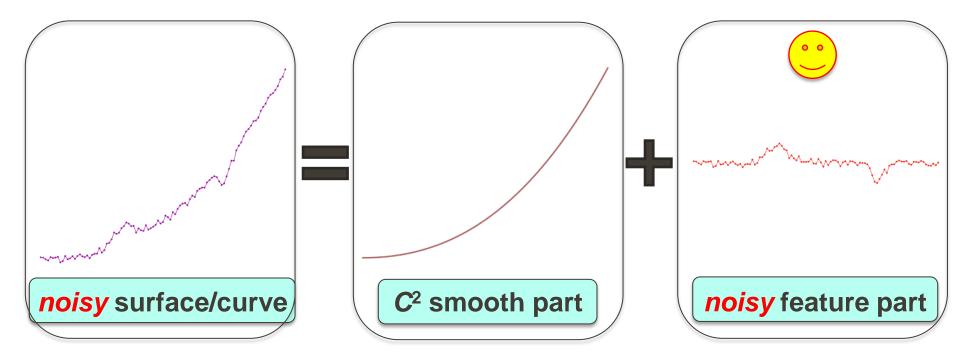
Remind: Smooth part + Feature part



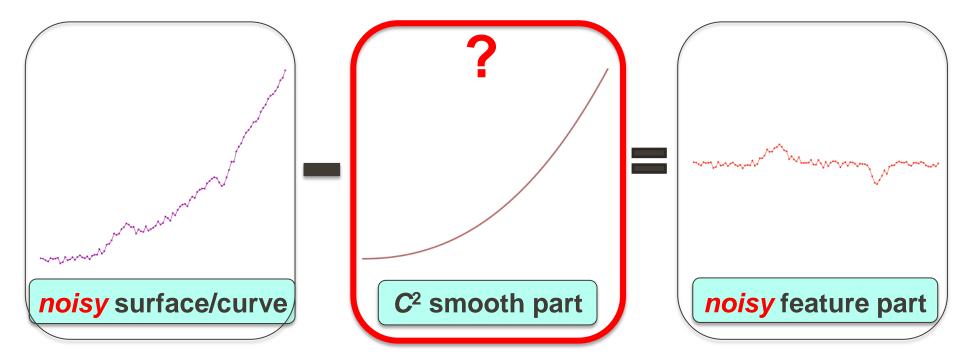
With noise



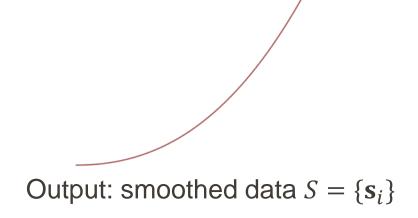
With noise



Key Problem: How to extract the C² smooth part?



Problem: Estimation of the Smooth Part



Global Laplacian Smoothing Input: noisy data $P = {\mathbf{p}_i}$ Output: smoothed data $S = \{\mathbf{s}_i\}$ $\hat{S} = \arg\min\left\|S - P\right\|^2 + \lambda \left\|LS\right\|^2$ L: Laplacian Weight Smoothness term Data term

Solution

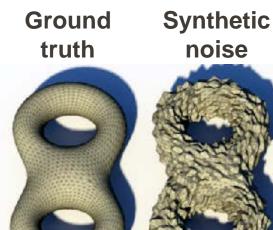
$$\hat{S} = \arg\min_{S} \left\| S - P \right\|^{2} + \lambda \left\| LS \right\|^{2}$$

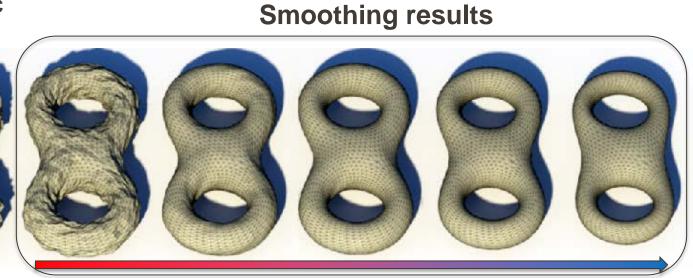
The minimization leads to a linear system $(I + \lambda L^T L)\hat{S} = P$

Thus, the solution is

$$\hat{S} = (I + \lambda L^T L)^{-1} P$$

Choice of the Weight Parameter λ $\hat{S} = (I + \lambda L^T L)^{-1} P$





Small λ: noise remains

Large λ: shrinkage (over-smooth)

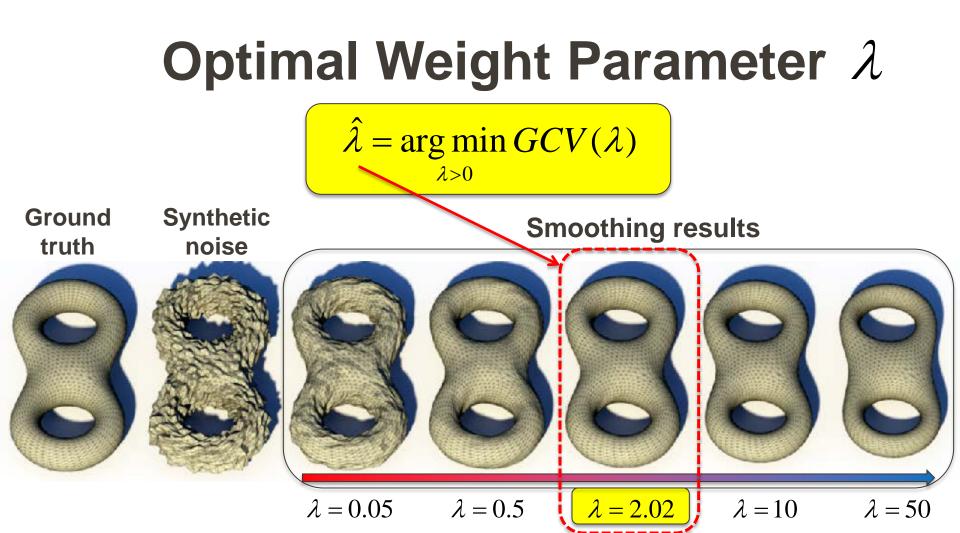
Optimal Choice of the Weight Parameter λ

We define a Generalized Cross Validation (GCV) merit function (inspired from statistics)

$$GCV(\lambda) = \frac{\frac{1}{n} \left\| P - \hat{S}(\lambda) \right\|_{F}^{2}}{\left(1 - \frac{1}{n} tr \left[(I + \lambda L^{T} L)^{-1} \right] \right)^{2}}$$

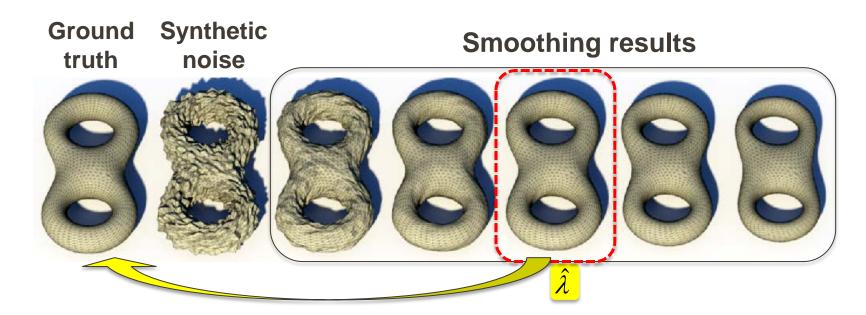
Then the optimal value of λ can be found:

$$\hat{\lambda} = \arg\min_{\lambda>0} GCV(\lambda)$$

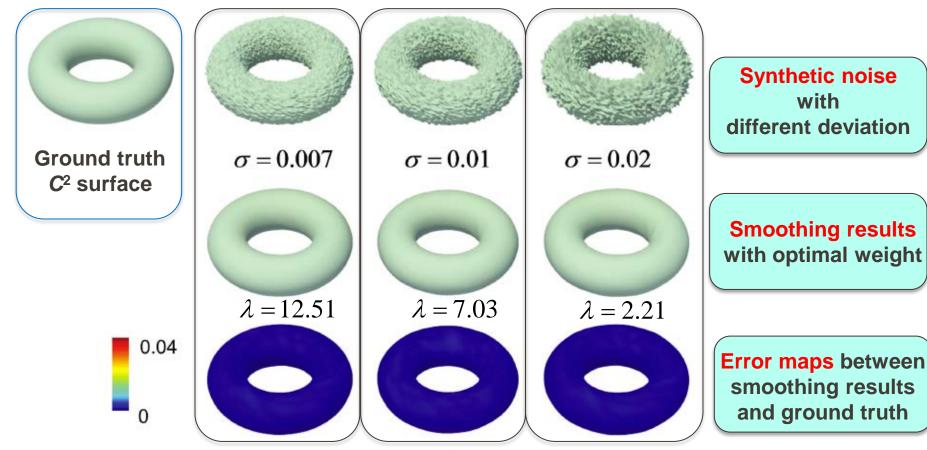


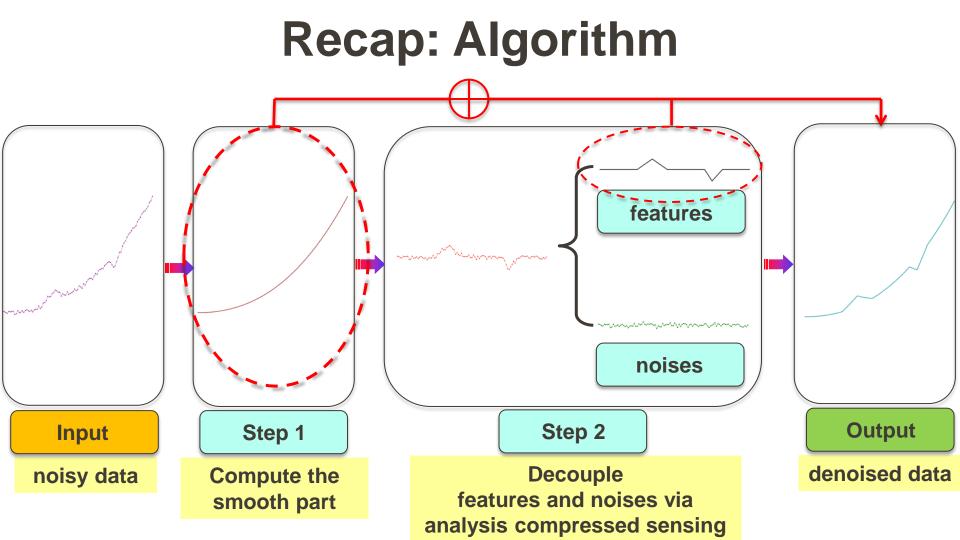
Theoretical Guarantee by Statistical Theory

[**Theorem**] The estimated surface asymptotically converges to the true underlying C^2 smooth surface with probability 1 as the sample number goes to infinity.



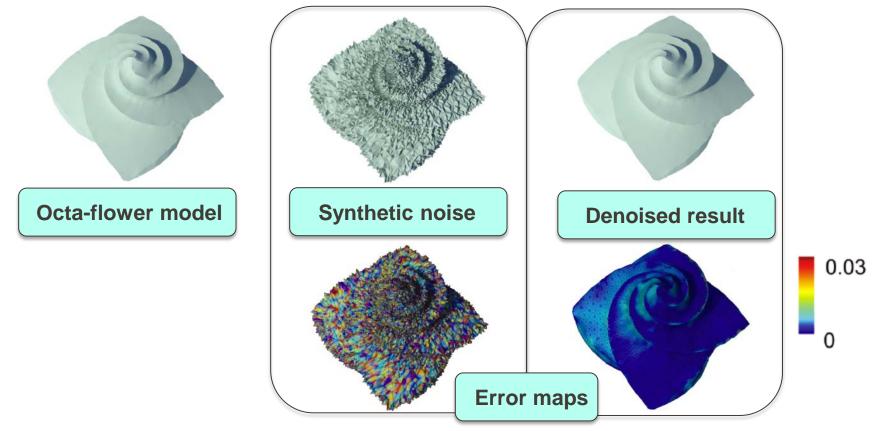
Smoothing Results



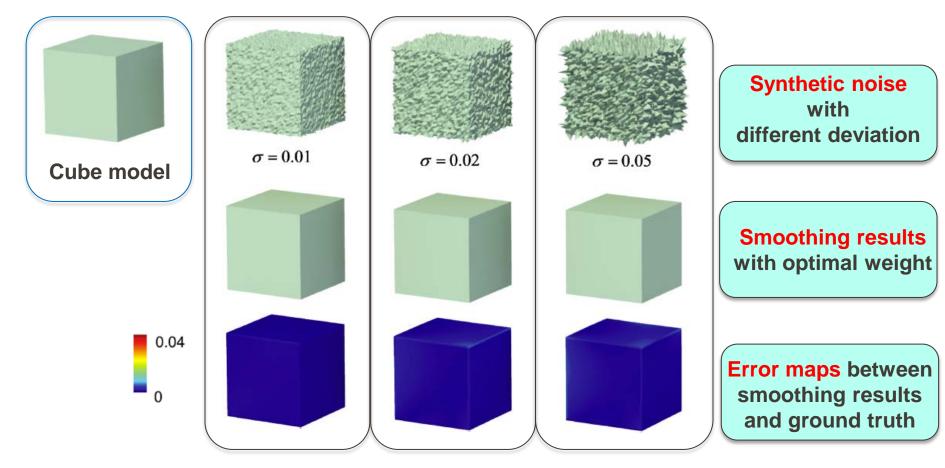


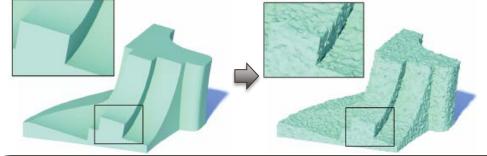
Experimental Results

Result: Synthetic Example

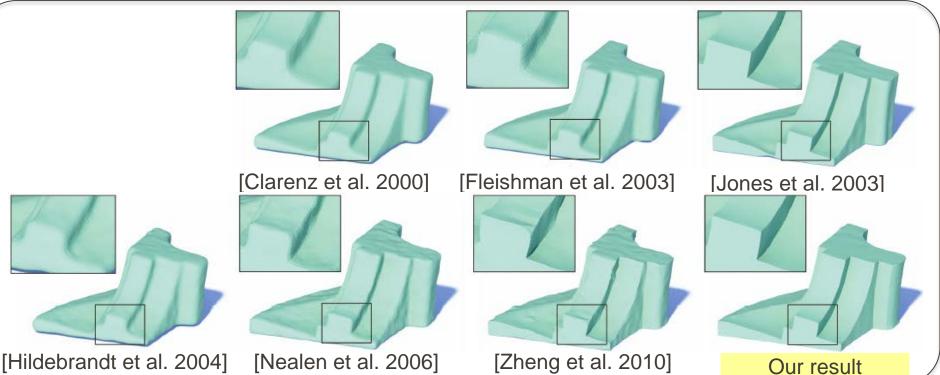


Result: Synthetic Examples

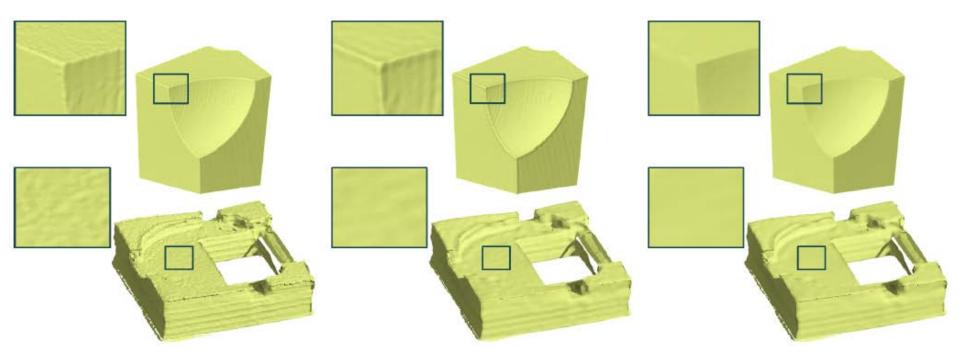




Comparisons



Real Data



Scanning raw data

[Jones et al. 2003]

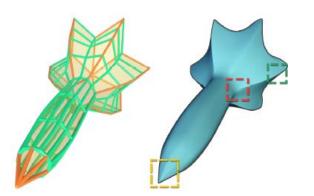
Our results

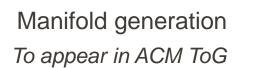
Limitations

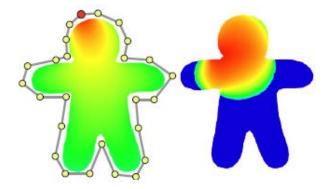
- Noise should be *independent and identically distributed* (i.i.d.) random variables
 - Required in the proof of the convergence theorem
 - Practically useful
- Need correct connectivity information
 - Correct access to neighboring samples
 - Problem with point cloud

Future Work

- Compressed sensing (sparsity optimization) is a powerful tool for signal processing
- Apply it in other geometry processing problems







Barycentric coordinates To appear in SigAisa 14

Conclusions

- Asymptotically optimal smoothing
 - The generalized cross-validation scheme

Decoupling features and noise simultaneously
 The compressed sensing tool

The 41st International Conference and Exhibition on Computer Graphics and Interactive Techniques

Thank you!

Project page: http://staff.ustc.edu.cn/~lgliu/Projects/2014_DecouplingNoise/default.htm

Google "Ligang Liu"