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Denoising 3D Mesh Data




Challenging:
Denoising Objects with Sharp Features
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Challenging:
Denoising Objects with Sharp Features

e Feature detection is unreliable in the presence
of noise

— Feature measures (2 derivatives) are sensitive to noise

e Denoise operations might blur features
— Features are vulnerable to local filtering operations

[ A chicken-and-egg problem! }




Previous Works (1)

* Feature preserving/aware denoising
— Laplacian filtering [Taubin 1995, Desbrun et al. 1999]

— Higher order (e.g., bilateral) filtering [Fleishman
et al. 2003, Jones et al. 2003, Duguet et al. 2004]

— Normal filtering [zheng et al. 2010, Fan et al. 2010]
— Global methods [Nealen et al. 2006, Liu et al. 2007]



Previous Works (2)

o Sparsity optimization based denoising

¢ {-sparse reconstruction Mesh denoising via ¢y minimization
[Avron et al. ACM ToG, 2010] [He and Schaefer, Siggraph 2013]

[ Normal gradients are sparse} [ Edge operators are sparse }




Our Method: Compressed Sensing

e Decouple features and noises simultaneously!
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Sharp Features are Sparse on Meshes
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Short Overview on
Processing Sparse Signal

via Compressed Sensing



Compressed Sensing
for(Sparse Signal X]

e Sensing: a small number (M<<N) of data|Y = q)x}
Sk, E my <

* Recovering: via an £, optimization (if ® has R.I.P.)

min{|x], min{|x]
s.t. Ox=y OF st |y-ox| <&

[ If X is corrupted by some noise}




Analysis Compressed Sensing
for[Non-sparse Signal X

If there exists a linear transformation L, such that
LX is sparse

* Sensing: Yy =®X

. Recovering: | M X,
st. |y—@x|, <e




Compressed Sensing for Sparse Signal
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The sparse signal can be robustly recovered

INn the presence of noise
by solving some |, optimization!




Our Approach



Our Key Observation

« Any surface is piecewise C?
— Sharp features are CO signal over smooth surface
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Our Key Observation

* Applying Laplacian operator L (2"d derivative
operator) on feature part results in sparse signal
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CO feature part: [ sparse }

\[ piecewise linear } . L y




If feature part is corrupted by noise...
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Our Solution

* Applying analysis compressed sensing on the
noisy feature part
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[ Decouple features and noises simultaneously! }




Remind: Smooth part + Feature part

4 N O N A

//\J
\[Surface/Curve } \[CZ smooth part]/ \[CO feature part}/

|

+
)

<




With noise
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_noisy surface/curve)

With noise
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Key Problem:
How to extract the C?2 smooth part?
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Problem:
Estimation of the Smooth Part

v el
Input: noisy data P = {p;} Output: smoothed data S = {s;}



Global Laplacian Smoothing
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\.Output: smoothed data S = {s;} /
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S

[L: Laplacian}

Smooth'ness term



Solution
S = arg min||S - PH2 +AHLSH2
S

The minimization leads to a linear system
(1+AL)S=P

Thus, the solution is
S=(+AUL)*'P



Choice of the Weight Parameter A4
S=(1+AUL)™*P

Smoothing results

Ground Synthetic
truth noise

Small A: Large A:
noise remains shrinkage (over-smooth)



Optimal Choice of the Weight Parameter 4

We define a Generalized Cross Validation (GCV)
merit function (inspired from statistics)

sP-Sw.
(L-2tr[(1+ A0 D))

Then the optimal value of A can be found:

GCV (1) =

[ Q= argmin GCV (A1) J

A>0




Optimal Weight Parameter A
i /{:arg minGCV (1) }
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Theoretical Guarantee by Statistical Theory

/[Th eorem] The estimated surface asymptotically converges
to the true underlying C? smooth surface with probability 1 as
Ghe sample number goes to infinity. y

Ground Synthetic

truth noise Smoothing results




Smoothing Results

' : Synthetic noise
< with
different deviation
Ground truth
C? surface
Smoothing results
with optimal weight
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Recap: Algorithm
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analysis compressed sensing



Experimental Results



Result: Synthetic Example

[ Octa-flower model } [ Denoised result }
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Result: Synthetic Examples
s p

Synthetic noise
with
different deviation

Cube model
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Smoothing results
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Comparisons

[Clarenz et al. 2000] [Fleishman et al. 2003] [Jones et aI 2003]

i
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[Hildebrandt et al. 2004] [Nealen et al. 2006] [Zheng et aI 2010] Orult




Real Data

Scanning raw data [Jones et al. 2003] Our results



Limitations

 Noise should be independent and identically
distributed (i.i.d.) random variables

— Required in the proof of the convergence theorem
— Practically useful
 Need correct connectivity information

— Correct access to neighboring samples
— Problem with point cloud



Future Work

« Compressed sensing (sparsity optimization) is a
powerful tool for signal processing
* Apply it in other geometry processing problems

Manifold generation Surface reconstruction Barycentric coordinates
To appear in ACM ToG To appear in SigAisa 14 To appear in SigAisa 14



Conclusions

o Asymptotically optimal smoothing
— The generalized cross-validation scheme

e Decoupling features and noise simultaneously
— The compressed sensing tool
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