Render the Possibilities SIGGRAPH2016

THE 43RD INTERNATIONAL CONFERENCE AND EXHIBITION ON

Computer Graphics Interactive Techniques
24-28 JULY

ANAHEIM, CALIFORNIA

THE 43RD INTERNATIONAL CONFERENCE AND EXHIBITION ON

© Computer Graphics Interactive Techniques

Construction of Manifolds via Compatible Sparse Representations

Ruimin Wang, <u>Ligang Liu</u>, Zhouwang Yang, Kang Wang, Wen Shan, Jiansong Deng, Falai Chen *University of Science and Technology of China*

Problem: Fitting Data with Smooth Surface

Point Cloud

Problem: Fitting Data with Smooth Surface

• Challenging: capturing sharp features

Problem: Data Fitting

- Input: A set of points $(x_i, y_i), i = 0, ..., n$
- Output: A function which fits the point set

Data Fitting: What Function?

• What type of functions for f(x)?

Data Fitting: Function Space

- Assuming: basis functions $\{b_i(x), i = 0, ..., m\}$
- Finding a member in a family of functions:

$$f(x) = \sum_{k=0}^{m} \alpha_i b_i(x)$$

i.e., representing f(x) as a (coefficient) point $\alpha = (\alpha_0, \alpha_1, ..., \alpha_m)$ in \mathbb{R}^{m+1}

 \iff Finding optimal $(\alpha_0, \alpha_1, ..., \alpha_m)$ by minimizing the fitting error:

$$\min_{\alpha}(y_i - f(x_i))^2$$

Data Fitting: Function Space

• Basis functions $\{b_i(x), i = 0, ..., m\}$

...

- Polynomial function basis $\{1, x, x^2, ..., x^m\}$
- Trigonometric function basis $\{1, sin(x), cos(x), sin(2x), cos(2x), ...\}$
- Exponential function basis $\{1, e^x, e^{2x}, \dots, e^{mx}\}$
- If we choose enough number of basis (m = n), the fitting error can be 0!
 - the fitting function f(x) is an interpolation

Overfitting Problem

• How to choose appropriate number of basis?

Sparse Representation

- An over-complete dictionary (atom functions)
 - Finding a 'best' fit from larger family of functions
- Choose as least number of basis as possible
 - most of the elements of $\alpha = (\alpha_0, \alpha_1, ..., \alpha_m)$ are 0
 - i.e., $\|\alpha\|_0$ (number of non-zero elements) is less than some threshold δ

$$\min_{\alpha} (y_i - f(x_i))^2 \implies \min_{\alpha} (y_i - f(x_i))^2$$

s.t. $\|\alpha\|_0 \le \delta$

3D Surface Case

Parameterization of Local Patch

Representing Sharp Features?

• Smooth functions cannot represent C⁰ sharp features

Idea: C⁰ Atom Functions

- Introduce C^0 atom functions in the dictionary
 - Shape functions representing non-smooth finite elements in FEM
- Each atom function
 - A bilinear quadrilateral element shape function defined on one edge

A C^0 atom function defined on the edge (in red) of a vertex (in green) with valence 5

C^0 Atom Functions

- A total of 55 shape functions for vertices with valence 3-7
 - Add more atom functions for vertices with valence > 7

Dictionary: Total Atom Functions

- 120 polynomial functions with degree up to 14
- 55 C^0 atom functions

How to stitch local patches?

Manifold Representation

Previous Works on Manifold Construction

- [Grimm and Hughes 1995]
- [Ying and Zorin 2004]
- [Gu et al. 2006]
- [Wang et al. 2008]
- [Della Vecchia and Juettler 2009]
- [Tosun and Zorin 2011]

Application 1: Approximating Subdivision Surface

Problem

- Construct manifolds to approximate subdivision surfaces with sharp features
 - Orange lines are specified as sharp features

Construction of the Charts

Incompatible Local Patches

Global Fitting Error

Global Fitting Error

Optimization Solver

Optimization Solver

Local sparse optimization and Global sparse optimization iteratively

Example

Different Subdivision Rules

More Examples

Application 2: Manifold from Curve Network

Sampling Points on Curves **Domain manifold** Input curve network **Result manifold Sampled points Parameterization**

Different manifold surfaces from different geometries

Results

Conclusions

- A novel manifold construction method
- Sparse representation for local geometry
- Global compatibility
- Representing sharp features

Future Work

- No guarantee to capture all geometric features
 - Learning geometry features
- Slow sparsity optimization
 - Speed up
- Other applications
 - Surface reconstruction, denoising, and compression

THE 43RD INTERNATIONAL CONFERENCE AND EXHIBITION ON

© Computer Graphics Interactive Techniques

Thank you!

Ligang Liu, http://staff.ustc.edu.cn/~lgliu

