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a b s t r a c t

We present an algorithm to generate point distributions with high-quality blue noise characteristics on

discrete surfaces. It is based on the concept of Capacity-Constrained Surface Triangulation (CCST),

which approximates the underlying continuous surface as a well-formed triangle mesh with uniform

triangle areas. The algorithm takes a triangle mesh and the number of sample points as input, and

iteratively alternates between optimization of the geometry (positions) of the points and optimization

of their topology (connectivity) until convergence. Since the method is relaxation-based, it allows

precise control over the number of sample points. Differential domain analysis shows that the point

distribution of CCST exhibits typical blue noise characteristics, superior to other relaxation-based

sampling methods and is very efficient compared to other traditional dart-throwing methods. We

generalize CCST to non-uniform sampling by incorporating a density function. This can be useful in

many geometry processing applications, such as curvature-aware remeshing.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of sampling, or point distribution, is ubiquitous in
computer graphics [14]. It can be formulated as follows: given a
domain S and the number of point samples n, position n points
within the domain to form a pattern that satisfies some user-
specified preferences. In practice, different applications require
different patterns, but it seems that among numerous sampling
patterns, the most useful are those which have so-called ‘‘blue
noise’’ characteristic, which, in a nutshell, attest to high spatial
uniformity and low regularity of the distribution. A good generator
of blue noise distributions tends to replace low frequency aliasing
with high frequency noise in order to be less visually objectionable
[16], thus can be used in applications including rendering, sensing,
imaging and geometry processing. One well-known class of sample
patterns having the blue noise characteristic is the so-called Poisson

Disk distribution [7], where the points are positioned such that the
disk with an appropriate radius centered at each point is empty of
other points.

Because of its importance, a large volume of work investigating
the generation of blue noise sample patterns on the plane exists.
However, the problem of efficiently generating such sample patterns
on non-planar surfaces is more difficult and much less work focuses
on this issue. Most of the existing methods use either surface
ll rights reserved.

@zju.edu.cn (Y. Xu),

.ac.il (C. Gotsman),
parameterization to reduce the surface case to the planar case,
introducing distortions into the patterns, or extend the classical dart
throwing algorithm [8] from the plane to the surface, thus are
computationally expensive since geodesic distances must be used.
Moreover, in some application domains such as LED displays, the
number of ‘‘sample points’’ is required to be explicitly set in order to
display an image using a given budget of LEDs, while the variants of
the dart throwing algorithm cannot achieve this effect.

To meet the strong demand for an efficient and high-quality
surface sampling method affording precise control over the
number of points, we present a new relaxation-based approach
for blue noise sampling on surfaces. It is an extension of the
so-called Capacity-Constrained Delaunay Triangulation (CCDT)
method [25], a Delaunay triangulation of a planar domain having
as-uniform-as-possible triangle areas. The point distributions
generated by CCDT have blue noise characteristics, and the
algorithm runs much faster than all other state-of-the-art meth-
ods. We generalize the CCDT method to the surface case by
restricting the movement of points to the surface, which is
approximated by a triangular mesh, and minimizing the variance
of triangle areas. We call this new method Capacity-Constrained

Surface Triangulation (CCST) due to its uniform-area property.
Taking a surface discretized as a piecewise-linear triangle mesh
and the number of sample points as input, CCST generates a new
triangle mesh lying on the input surface, having uniform area
distributions. Similar to CCDT, the CCST algorithm consists of two
alternating phases. The first phase optimizes the geometry (posi-
tions) of points to equalize the triangle areas with the current
connectivity, and the second phase regenerates the topology
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(connectivity) while keeping the geometry fixed. Using frequency
domain analysis, the sampling patterns obtained after conver-
gence of the algorithm are shown to possess typical blue noise
characteristics.

Although CCST can be considered a direct extension of the
CCDT method, the fundamental difference between the flat two-
dimensional plane and the curved 2-manifold surface in three
dimensions implies that the most important and difficult part of
the CCST algorithm is moving points along the surface. We solve
this problem by approximating the local surface around each
mesh vertex with an osculating torus, for which the approxima-
tion error is second order [18]. The objective energy which we try
to optimize when moving the points on the osculating torus is
non-quadratic, thus we resort to a second-order Taylor expansion
to obtain a quadratic approximation of the energy, reducing the
problem to a 2�2 linear system per vertex.

The CCST algorithm can also be extended to non-uniform
sampling by incorporating a density function into the objective
energy. This is useful for generating point distributions having
different sampling densities on different regions of the surface,
which are useful in many sampling-based applications, such as
curvature-aware sampling.

The contribution of this work is a simple algorithm for generating
sample patterns on surfaces with the following advantages:
�
 The resulting patterns possess superior blue noise characteristics.

�
 The algorithm allows precise control over the number of

sample points generated.

�
 The algorithm is very fast compared to other relevant methods.
2. Related work

A blue noise sample pattern contains spatially uniform points
while keeping the distribution irregular. In this section we briefly
review previous work on both the planar and surface sampling
problems, and the methods used to analyze and evaluate the
sample quality.

2.1. Blue noise sampling in the plane

Poisson disk distributions were introduced to solve the alias-
ing problem in computer graphics [7]. The classical algorithm for
generating these distributions is the so-called Dart Throwing

algorithm [8] which randomly positions points one by one and
accepts a new point only if there are no other points within a disk
of given radius surrounding it. It generates Poisson disk distribu-
tions with blue noise characteristics, but is very expensive in
runtime. Since then, numerous alternatives have been proposed,
which may be roughly classified into two types of approaches:
variants of the dart throwing algorithm and relaxation-based
methods. The former focuses directly on accelerating the dart
throwing approach [9,11,22,23], and has had some success.
However, using this approach makes it hard to control the
number of points generated and still performs quite slowly,
unless some parallelization is introduced into the algorithm.

Relaxation-based methods introduce some additional topolo-
gical information into the point pattern. Starting with some
inferior pattern, the algorithm progressively adjusts the point
positions so that the distribution is as uniform as possible. The
most obvious advantage of this class of methods is that it is easy
to control the size of the point set. The simplest approach is
Lloyd’s Relaxation [17], which iteratively moves each point to the
centroid of its Voronoi cell, thus converging to the well-known
Centroidal Voronoi Tessellation (CVT). Lloyd’s relaxation is quite
fast, but the limit sample exhibits significant regularity artifacts
without blue noise characteristics. Balzer et al. [4] proposed a
variant of Lloyd’s relaxation called Capacity-Constrained Voronoi

Tessellation (CCVT), forcing all the cells of the generalized cen-
troidal Voronoi diagram of the points to have uniform areas.
When extending CCVT to non-uniform sampling, the triangle area
is replaced by ‘‘capacity’’, which is the integral of the density
function per cell. The CCVT method produces distributions with
good blue noise characteristics, but is extremely slow due to the
fact that it approximates capacity numerically by densely sub-
sampling the domain.

More recently, a new kind of relaxation-based method called
Capacity-Constrained Delaunay Triangulation (CCDT) [25] was pro-
posed, aiming to efficiently generate blue noise samples. Contrary
to the CCVT algorithm, the CCDT method operates on the dual of
the Voronoi diagram, namely the Delaunay triangulation, and
tries to minimize the variance of triangle capacities. The algo-
rithm works directly in the continuous plane, thus performs much
faster than other methods, with no compromise in the quality of
the blue noise characteristics.

Apart from the above two categories, a new kernel-based
method [12] was proposed most recently, and the results are
shown to possess excellent blue noise characteristics while
having linear time complexity. However, it also cannot control
the number of sampling points in precise.

2.2. Blue noise sampling on surfaces

The problem of blue noise sampling on surfaces has become
popular in recent years in graphics applications focusing on
rendering, remeshing and texturing. The existing approaches
may be classified into three types. The first one relies on para-
meterizing the surface to the plane, thus reducing the problem to
two-dimensional blue noise sampling, and mapping the 2D
sample patterns back to the surface [2]. However, this approach
might introduce distortion into the distribution when mapping
from 3D to 2D and back. The second set of methods generates
Poisson disk distributions directly on the surface [5,6]. These are
mostly variants of the dart throwing algorithm, which, as men-
tioned above, require computation of geodesic distances, making
for a relatively slow algorithm. Also, as in the planar case, it is
hard to control the sample size in dart throwing algorithms. The
third set of methods is relaxation-based methods [20,15], which
overcome the problems of efficiency and controllability of sam-
pling size but may fail to provide high-quality blue noise
characteristics. Our CCST algorithm also belongs to the class of
relaxation-based methods, while, as we will show, is able to
provide much better blue noise properties than other algorithms
in this class.

2.3. Evaluation of blue noise sampling

The methodology for analysis of blue noise sampling in the plane
was first developed by Ulichney [21]. It is based on the Barlett’s
method [3] to estimate the power spectrum through averaging the
periodograms of distributions, determined by Fourier transforms.
The radially symmetric periodograms result in two one-dimensional
measures. One is the so-called Radially Averaged Power Spectrum, in
which the typical blue noise characteristic should start with a sharp
transition region, a low-frequency cutoff and a flatter high-fre-
quency region. The second one is called Anisotropy, which measures
the radial symmetry of the power spectrum and indicates high
symmetry when the curves are low and flat [14].

The evaluation of blue noise sampling on surfaces is difficult
since the typical Fourier analysis cannot be extended simply to
surfaces. Bowers et al. [5] addressed this by replacing the Fourier
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basis on manifold surfaces with spectral mesh analysis [13],
reducing the problem of power spectrum analysis to eigen-
decomposition of the mesh Laplacian matrix. The radially aver-
aged power spectrum and anisotropy of a point distribution on
the surface then proceeds similarly to the planar case. This is the
first method that addresses spectral analysis of surface samples,
but is significantly slow and hard to use due to the fact that the
eigen-decomposition must be performed on a very dense mesh
approximating the true underlying surface.

Most recently, Wei and Wang [24] proposed an approach to
analyzing point distributions that generalizes easily to non-uni-
form distributions on both the planar and surfaces. It replaces the
standard Fourier analysis by differential domain analysis, which
depends primarily on the distribution of the pairwise distances.
Here too the statistics are averaged radially and tangentially
around the origin to provide two one-dimensional curves.
3. Capacity-Constrained Surface Triangulations (CCST)

In this section, we first give an overview of the CCST algorithm
and the notations, and then we elaborate on each step in detail.

3.1. CCST algorithm overview

Let S be a 2-manifold surface in three-dimensional space,
discretized to a piecewise-linear triangle mesh M, and n the
number of desired sample points. The CCST algorithm starts by
randomly generating an initial point set X0 on M and introducing
triangular topology (connectivity) information T0 to X0 to form a
sample mesh: M0¼(X0,T0). It then alternates between moving the
vertices of the sample mesh on S and rebuilding the sample mesh
connectivity in order to achieve a sample mesh with well-shaped
triangles having uniform areas.

Algorithm 1. CCST Algorithm
1.
 Generate initial point distribution X0 on M.

2.
 Build initial topology T0 from X0. n’0:E0’

P
t

A2
t ðX0,T0Þ,

where
P

t
A2

t ðX0,T0Þ is the sum of squared triangle areas

formed by ðX0,T0Þ.

3.
 Densely discretize M and compute its principal curvature

information.

4.
 Geometry optimization on S: Xnþ1 ¼ argmin

P
t

A2
t ðXn,TnÞ.
T2
5.
 Rebuild topology Tnþ1 from Xnþ1 by edge flipping.

s
6.
 Mnþ1 ¼ ðXnþ1,Tnþ1Þ:Enþ1’

P
t

A2
t ðXnþ1,Tnþ1Þ.
T1
7.
 If Enþ1 ¼ En, output Xnþ1 and stop.

c2
8.
 Else n’nþ1, Go to Step 4.
k2

c1

k1

Fig. 1. Second order approximation of a point s on surface using an osculating

torus.
3.2. Initialization of point distribution

Since S is given as a piecewise-linear triangular mesh M, all the
n points of X0 should be distributed uniformly on the surface of M,
meaning smaller triangles should contain fewer points. A single
point may be generated by first choosing a triangle with prob-
ability proportional to its area, and then generating a point
randomly with uniform distribution within that triangle. This
process is repeated until the size of X0 reaches n.

After the generation of X0, a triangular topology T0 is built to
form an initial mesh M0¼(X0,T0) in order to continue the iterative
algorithm. We use the Crust algorithm [1] to build an initial
triangulation on X0 and then improve its quality using the edge-
flipping algorithm proposed by Dyer et al. [10] which produces a
mesh with minimal surface area. T0 is thus uniquely determined
by X0 and is closely related to the two-dimensional Delaunay
triangulation due to the fact that it provides quite uniformly-
shaped triangles.

3.3. Restricting movement on the surface

Unlike the CCDT algorithm, which restricts X to the plane, the
CCST algorithm has to restrict X to remain on the surface mesh M,
thus introducing additional constraints on the coordinates of the
points of X. Following Pottman et al. [18], it is possible to
approximate the surface at an arbitrary point s up to second
order using an osculating torus, which is obtained by rotating
the first principal curvature circle c1 centering k1 with signed
radius r1) around the axis of the other principal curvature circle
c2, defined analogously to c1. Swapping the roles of c1 and c2 leads
to two different tori, and usually the circle with larger radius is
selected to be the mother circle. Here we assume jr1j4 jr2j such
that c2 is rotation around the axis of c1 (see Fig. 1).

The position of an arbitrary point s0 on this osculating torus is
uniquely determined by first rotating s by y along the axis of c1

and then rotating by j along the axis of c2. Since the rotation axes
are orthogonal, the position is invariant to the order of the
rotations.

In practice, since the underlying surface S is approximated by a
piecewise-linear triangle mesh M, we use the Rusinkiewicz’s
method [19] to compute the two principal curvatures of M: (T1,
r1) and (T2, r2) where r1 ¼ 1/r1, r2 ¼ 1/r2. For an arbitrary point
s on a smooth surface S, there always exists a three-dimensional
rotation matrix Rs that rotates the local Darboux frame such that
the two principal-curvature directions T1 and T2 coincide with the
x and y axis respectively, and the normal direction with the z axis.
Thus, without loss of generality, we will always assume that the
local Darboux frame of s is the standard coordinate frame and s is
the origin (0,0,0). Using Euclidean geometry, Appendix A derives
the coordinates of s0

s0 ¼

r2sinycosjþðr1�r2Þsiny
�r2sinj

r2cosycosjþðr1�r2Þcosy�r1

0
B@

1
CA¼

xðy,jÞ
yðy,jÞ
zðy,jÞ

0
B@

1
CA

in terms of y and j. Since s0 is a second order approximation to
the points on the underlying surface S, when y and j are close to
zero, s0 can be regarded as lying on S.



Fig. 2. Geometry optimization (right) of some initial sample meshes (left)

containing 5000 samples. The input triangle meshes contain 7402 (eight) and

9756 (kitten) vertices.
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3.4. Geometry optimization on the surface

The CCVT and CCDT algorithms rely on the fact that area
uniformity can overcome regularity artifacts, resulting in high-
quality blue noise characteristics for point distributions in the
plane. We extend this idea to a 2-manifold in 3D and try to
equalize the triangle areas of the sample mesh Mn in order to
generate a sample of the input surface mesh M with blue noise
characteristics. In Step 4 of Algorithm 1, the geometry optimiza-
tion scheme moves the vertices of Mn to their optimal position Xn

on M, where the triangle areas fAtg should be as uniform as
possible under the current topology Tn. By definition, the uniform
area distribution minimizes its variance

var AðX,TÞ
� �

¼
1

m

X
tAT

At�
1

m

X
tAT

At

 !2

where m is the number of triangles in T. The following theorem
states that minimizing varfAðX,TÞg on a surface is equivalent to
minimizing the sum of squared areas

P
tA

2
t .

Theorem 1. For a triangular mesh M¼ ðX,TÞ, minimizing the

variance of triangle areas varfAðX,TÞg is equivalent to minimizing

the sum of squared areas
P

tA
2
t when restricting the movement of X

on M.

Proof. Since X is allowed to move only on M, the sum of all
triangle areas is the constant surface area of M, denoted by
A¼

P
tAt . Then

var AðX,TÞ
� �

¼
1

m

X
tAT

At�
1

m

X
tAT

At

 !2

¼
1

m

X
tAT

At�
1

m
A

� �2

¼
1

m

X
tAT

A2
t�

2A

m

X
tAT

Atþ
A2

m2
¼

1

m

X
tAT

A2
t�

A2

m2

Since both m and A are constants, minimizing varfAðX,TÞg is

equivalent to minimization of
P

tA
2
t : &

By Theorem 1, the geometry optimization scheme should aim
to minimize the sum of squared triangle areas

P
tA

2
t . It does this

locally, meaning it examines each vertex si in turn, keeps its one-
ring neighboring vertices fixed, and then moves si to its optimal
position si’ on S such that the neighboring triangles fNðiÞg have
minimal sum of squared areasX
tANðiÞ

A2
t

This routine is performed in several passes over all the vertices
of the sample mesh until the energy

P
tA

2
t converges.

Since si’ is a function of y and j, the sum of squared areas of its
neighboring triangles can also be represented as a function f ðy,jÞ,
which is the special case of a more general representation (see
next section) for the non-uniform sampling problem. The opti-
mization of f is a non-linear system

@f
@y ¼ 0
@f
@j ¼ 0

8<
:
which is numerically difficult to solve. Therefore, we use a second
order Taylor expansion to approximate f as a quadratic function of
y and j at (0,0)

gðy,jÞ ¼ f ð0,0Þþ
@f

@y
ð0,0Þyþ

@f

@j ð0,0Þj

þ
1

2

@2f

@y2
ð0,0Þy2

þ
1

2

@2f

@j2
ð0,0Þj2þ

@2f

@y@j
ð0,0Þyj
As shown in Appendix A, f is quadratic in some trigonometric
functions. The second-order Taylor expansion g is sufficient to
approximate f precisely for small y and j. Thus, the minimization
of f reduces to solving a linear system.

In order to preserve the shape of the sample set during the
geometry optimization scheme, the vertex should be projected
back to the input surface mesh M after each movement. We use
the ANN [26] library to densely discretize M in a preprocessing
step and then, given a query point, find the nearest point on M to
estimate its projection. Fig. 2 shows some results of the geometry
optimization scheme for a sample size of 5000 points. It is evident
that the triangles of the resulting meshes have more uniform
areas than the initial ones, while preserving the shape.

3.5. Rebuild topology from geometry

As seen in Fig. 2, the triangles of the sample mesh might
become long and skinny during geometry optimization scheme
due to the uniform area distribution. Hence the topology needs to
be regenerated to form a more well-shaped triangulation. This is
achieved by again applying the edge-flipping algorithm to the
sample mesh with its new geometry (Xnþ1, Tn). This will, of
course, require the geometry to be optimized again. Thus, the two
steps are alternated until convergence.

Fig. 3 shows the evolution of the sample point set over the
iterations of CCST, displaying the triangle meshes and point
distributions as the iterations proceed. The energy curve is also
shown, typically it will increase after rebuilding the topology
(marked with red stars). Usually the energy converges in less than
10 iterations after rebuilding the topology.
4. CCST for non-uniform surface sampling

The CCST algorithm described in Section 3 generates uniform
distributions on surfaces having good blue noise properties.
However, in many cases, non-uniform distributions which con-
form to a given density are required. For instance, surface regions
with high curvature may require denser point distributions to
achieve a more precise sampling accuracy. In this section we
extend the uniform CCST algorithm to the non-uniform case.

Given a piecewise-constant density function rðTÞ defined on
triangles of a mesh M, we generalize the concept of area to assign
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to each triangle a capacity that integrates rðTÞ over the triangle
areas Ct ¼ Atrt . The non-uniform CCST algorithm then aims at
minimizing the sum of squared triangle capacities of the surface

Xnþ1 ¼ argminX

X
t

C2
t ðX,TnÞ ð1Þ

Appendix B shows the closed-form solution of each vertex
when updating it in turn, assuming that rðTÞ and the positions of
all other vertices are kept fixed. In this case, Algorithm 1 can be
directly applied by replacing the objective energy with the sum of
squared capacities. Since rðTÞ is outdated after several passes over
all vertices, the geometry optimization scheme is terminated. rðTÞ
is updated after rebuilding the topology of Mn.

The number k of passes over all vertices in the geometry
optimization phase depends on the density function. We found
that a value of 5–10 is sufficient to produce good results. Some
curvature-aware sampling results are shown in Fig. 4, where the
density function is taken to be the square-root of the total
Gaussian curvature on each triangle.
Fig. 4. Results of non-uniform placement of 10,000 points using CCST algorithm

with Gaussian curvature-based density function. The input bunny model contains

6289 vertices and the kitten 9756 vertices.
5. Experimental results

In this section, we show results of the CCST algorithm in both
the uniform and non-uniform cases. We compare them with other
competing algorithms and measure their quality using differential
domain analysis. The efficiency of CCST is also analyzed.
5.1. Blue noise characteristics

We use the method of Wei and Wang [24], mentioned in
Section 2.2, to perform differential domain analysis of surface
samples. We compare CCST with a typical relaxation-based
sampling method: Lloyd’s relaxation on surfaces [15], and stan-
dard dart-throwing Poisson disk distribution on surfaces [5]. Each
case is estimated by 8 sets with �1700 samples. The results are
shown in Fig. 5, where it is evident that the spectra of CCST
algorithm reveals typical blue noise characteristics, similar to
those of the Poisson disk distribution and superior to those of
Lloyd’s relaxation.

5.2. Relationship with CCDT

The CCST algorithm can also be regarded as the generalization
of the CCDT method for planar surfaces to curved surfaces. To
verify this, we apply uniform CCST to a developable surface and
map the points back to the plane. We then compare the result
with the planar CCDT sampling result using Ulichney’s planar
spectral analysis [21], shown in Fig. 6. As expected, it turns out
that the radially averaged power spectra and anisotropies of these
two methods are quite similar.
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5.3. Relationship with CCVT

As relaxation-based sampling methods, both CCST and CCDT
could be regarded as the dual versions of CCVT method. CCVT
operates on Voronoi diagrams while CCST/CCDT generates the
dual Delaunay triangulations. All of these three methods start
with some random initializations and will converge to some local
minimums of area variance that possess spatial uniformity of
points after several alternations between geometry and topology
phases. These local minimums also avoid from regularity artifacts
that are caused by global minimums, namely all the triangles/
cells are equilateral, thus achieving blue noise characteristics.
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anisotropy plots.

Fig. 8. Non-uniform distributions generated by CCST algorithm using texture

grayscale intensity as the density function.
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The iterative algorithm of CCVT could be categorized into Llyod’s
relaxation method, typically requiring about 100 alternations
between geometry and topology phases. In contrast, CCST/CCDT
method aims at directly minimizing variance of Delaunay triangle
areas, leading the algorithm converges in less than 10 alternations
between geometry and topology phases, thus is much faster than
CCVT method [25].

5.4. Sensitivity to initialization

The CCST algorithm starts with a random initial distribution of
n points. Fig. 7 shows two results of different initial sampling
patterns and their corresponding differential analyses, which are
quite similar.

5.5. Non-uniform sampling on surfaces

Algorithm 1, described in Section 4, can be applied to numer-
ous types of density functions to non-uniformly sample points on
surfaces, such as curvature-aware sampling. Another useful
application is to sample a texture-mapped mesh to produce an
image halftone effect on the surface. In this case, the grayscale
value of the texture pixel is taken to be the density function. Fig. 8
shows an example generated using the non-uniform CCST
algorithm.

5.6. Algorithm efficiency

The CCST algorithm alternates between modifying the geometry
and the topology of the surface triangle mesh until convergence.
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Since the geometry optimization computes the new position of a
vertex by explicitly solving a 2�2 linear system and the edge-
flipping re-triangulation routine is very efficient, the speed of
algorithm is comparable with other relaxation-based methods such
as retiling [20] and Lloyd’s relaxation on surfaces [15]. Apart from
the preprocessing routine from Step 1 to Step 3 in Algorithm 1, the
theoretical time complexity of CCST consists of two parts. Although
the topology modification phase of CCST has time complexity
OðNlogNÞ where N is the number of sampling points, its run time
is dominated by the geometry optimization phase, whose time
complexity is O(N), as opposed to the time complexity of OðNlogNÞ

of most dart throwing-based methods which need to compute
geodesic distances. CCST can be accelerated significantly using
GPGPU parallelization for the geometry optimization.
6. Conclusion

We have presented the CCST algorithm—a novel and efficient
approach to generate point distributions on a surface. The algo-
rithm alternates between a geometry optimization phase, which
minimizes the variance of triangle capacities, and an edge-
flipping based re-triangulation phase, until convergence. When
applied to a uniform distribution, the result has been shown to
possess superior blue noise characteristics. Our method is the first
relaxation-based approach to generate blue noise samples on
surfaces, thus easier to control the number of points generated,
compared with other variants of the dart throwing algorithm. As
an application, the density function can use surface curvature
information to generate curvature-aware samples. The CCST
algorithm is very efficient compared to other dart throwing-based
methods. It can also be accelerated significantly using the GPGPU
parallelization.

A limitation of our work is that, ironically, in order to achieve
blue noise characteristics, the objective energy has to converge to
a local minimum. A global minimum, where all the triangles are
equilateral with identical areas, introduces significant regularity
artifacts into the sampling patterns. Thus a sufficiently random
initialization is required for the CCST algorithm.
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Fig. B1
Appendix A. Moving on a surface

For an arbitrary point s on a smooth surface S, we assume that
the local Darboux frame of s is the standard coordinate frame
with s at the origin (0,0,0). We derive the coordinates of s0, an
arbitrary point on the osculating torus of s. As mentioned in
Section 3.2, s0 is uniquely determined by two rotation angles y
and j around orthogonal axes c1 and c2. For simplicity, we first
rotate s by j around c2 and then rotate by y around c1.

After rotating s by j around c2, we get sj ¼ T�1
2 URjUT2ðsÞ ,

where Rj ¼

1 0 0

0 cosj �sinj
0 sinj cosj

0
B@

1
CA, T2ðsÞ ¼ sþð0,0,r2Þ

0 , T�1
2 ðsÞ ¼

sþð0,0,�r2Þ
0 .

Then we rotate sj by y around c1, resulting in s0 ¼

T1
�1

URyUT1ðsjÞ, where Ry ¼

cosy 0 siny
0 1 0

�siny 0 cosy

0
B@

1
CA, T1ðsÞ ¼ sþ

ð0,0,r1Þ
0 , T1

�1
ðsÞ ¼ sþð0,0,�r1Þ

0 .
Therefore

s0 ¼ T1
�1

URyUT1UT2
�1

URjUT2ðsÞ

¼

r2sinycosjþðr1�r2Þsiny
�r2sinj

r2cosycosjþðr1�r2Þcosy�r1

0
B@

1
CA

Appendix B. Closed-form solution of Eq. (1)

Consider a point s and its k one-ring neighbors, denoting by Ai

and di the area and density of the triangle whose vertices are s, si

and siþ1 (see embedded (Fig. B1).

Ai
2
¼ 9ðsiþ1�sÞ � ðsi�sÞ92

Denoting ai ¼ xi�xiþ1, bi ¼ yi�yiþ1, ci ¼ zi�ziþ1, ei ¼ xiyiþ1

�xiþ1yi, f i ¼ xiziþ1�xiþ1z, gi ¼ yiziþ1�yiþ1zi, we have

Ai
2
¼ ðb2

i þc2
i Þx

2þða2
i þc2

i Þy
2þða2

i þb2
i Þz

2

�2biciyz�2aicixz�2aibiþ2ðcif iþbieiÞx

þ2ðcigi�aieiÞyþ2ð�aif i�bigiÞzþe2
i þ f 2

i þg2
i

Now replace s by s’, thus Ai
2 becomes a function of y and j.

After that, we use a second order Taylor expansion to approx-
imate Ai

2 as a quadratic function of y and j at (0,0)

~A
2

i ¼
1

2
ðb2

i þc2
i Þr1

2�ðaif iþbigiÞr1

h i
y2

þ
1

2
ða2

i þc2
i Þr2

2þðaif iþbigiÞr2

� �
j2þaibir1r2yj

þðcif iþbieiÞr1yþðaiei�cigiÞr2jþe2
i þ f 2

i þg2
i

For the sum of neighboring squared capacities
Pk

i ¼ 1 C2
i , there

also exists a second order Taylor expansion to approximate it by

Xk

i ¼ 1

C2
i �

Xk

i ¼ 1

~C
2

i ¼
Xk

i ¼ 1

di
~A

2

i
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The second equation is a simple 2�2 linear system for the

angles y and j that satisfy C
y
j

 !
¼ b, where

Cð1,1Þ ¼
Xk

i ¼ 1

di½ðb
2
i þci

2Þr1
2þðaif iþbigiÞr1�

Cð1,2Þ ¼ Cð2,1Þ ¼
Xk

i ¼ 1

diaibir1r2

Cð2,2Þ ¼
Xk

i ¼ 1

di½ða
2
i þc2

i Þr2
2þðaif iþbigiÞr2�

bð1Þ ¼
Xk

i ¼ 1

�diðcif iþbieiÞr1

bð2Þ ¼
Xk

i ¼ 1

�diðaiei�cigiÞr2
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