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a b s t r a c t

We present a high-efficiency approach to optimally enhance image composition using a crop-and-

warp-based algorithm. We have designed a piecewise quadratic aesthetic energy function with linear

inequality constraints that measures the distance between original positions and the aesthetic target

positions of visual elements, to assess the target image composition. The target image is cropped by a

sub-window that can zoom and move within the original image window. The optimal cropped window

position can be obtained by solving a piecewise quadratic program that attempts to minimize the

energy function. The salient object and feature line locations in the cropped image are further optimally

adjusted by adopting a triangular mesh-based warping technique, which also allows fitting the

proposed approach for image retargeting. A quadratic optimization controls the mesh warping and

can be achieved by solving a sparse linear system. We illustrate the effectiveness of our approach in

several experimental results and compare them to previous approaches.

Crown Copyright & 2012 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Enhancing the aesthetic appearance of input photos utilizing
computer technology is a research focus in a growing field called
Computational Aesthetics, which emphasizes computational
techniques for making similar aesthetic decisions as humans [1].
Nevertheless, judging photographic aesthetics is always subjec-
tive and includes many factors, such as color, tone, illumination
and composition [2–4].

This paper focuses on enhancing image composition, as com-
position represents the main harmony that an image/photo seeks
to express to viewers. Expert photographers prefer to use profes-
sional composition rules to which amateurs are rarely sensitive
when taking photos. Such rules have been systematically
described in photography courses or textbooks [5,6] as guidelines
to increase aesthetic image appreciation.

Photos taken without considering compositional guidelines
might lack aesthetics or even be powerless to demonstrate what
the photographers intend to tell the viewers. After a camera
produces a photo, users find it tedious to enhance the composi-
tion without complicated digital editing. Assisted by commercial
tools such as Adobe Photoshop, a user might crop the image,
extract foreground objects and paste them back into the image at
targeted positions to enhance the composition. However, the
012 Published by Elsevier Ltd. All
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procedure might be filled with inaccuracy and complexity, while
being un-reproducible for another image.

Automatic techniques for aesthetic image composition
enhancement have also been researched and developed. Liu
et al. [7] have translated several basic composition guidelines
into quantitative aesthetic scores, based on which an automatic
crop-and-retarget approach to enhancing the image composition
has been developed. The method presented by Liu et al. [7]
searches for the optimal composition result in a 4D space; the
4D space contains all cropped windows with various widths and
heights (2D) as well as the cropping window positions (2D),
which include all possible cropping and warping results. This is
actually a passive methodology. Such a passive methodology
guarantees obtaining the optimal solution, but it is slow and
inefficient.

To speed up the algorithm, a real-time image composition
enhancement technique based on triangular mesh warping has
also been presented [8]. This method [8] computes the optimal
composition result by warping the salient objects to target
positions and can be considered an active methodology. Such a
method is efficient and fast. However, it may cause large distor-
tions in the results, as it does not perform any cropping operator
to remove unnecessary parts from the original photo.

To consider effectiveness [7] and efficiency [8] simultaneously,
we present an improved approach to optimally enhance image
composition using a crop-and-warp-based algorithm. We have
designed an active crop operator to replace the passive crop
operator [7] to speed up the algorithm without sacrificing effec-
tiveness. Moreover, the warp operator, which was derived from a
previous version [8], has been improved to significantly reduce
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the opportunity to cause severe distortions and self-intersections.
The crop operator can be transformed into a piecewise quadratic
program that attempts to minimize the energy function, while a
quadratic optimization can control the warp operator, which can
be achieved by solving a sparse linear system. Our method
combines the advantages of both methods (e.g., [7,8]) and can
thus efficiently obtain good results.
2. Related work

This section briefly reviews state-of-the-art techniques related
to aesthetic image composition and image retargeting.

Aesthetic Image Composition: Image composition is determined
by the combinations and locations of visual elements inside an
image frame, including salient objects and feature lines. Profes-
sional photographers prefer to take photos using many defined
composition rules [2] to enhance the aesthetic appearance of their
products. Although no absolute rules can ensure aesthetic com-
position in arbitrary circumstances, some heuristic principles
exist that provide strategies to achieve eye-pleasing composition
when utilized properly, including the rule of thirds, shapes and
lines, amputation avoidance, visual balance and diagonal dom-
inance [5–7].

Attempts to allow automatic image cropping or capturing for
visual quality enhancement have been made throughout the last
decade. Suh et al. [9] have proposed a set of fully automatic image
cropping techniques based on the visual saliency model proposed
by Itti et al. [10]. Gooch et al. [11] utilize the rules of thirds and
fifths to find the aesthetic viewpoint and layout for an image of a
3D object. Byers et al. [12] have developed an autonomous robot
system that takes well-composed photographs of people using
the rule of thirds. Another compositional guideline that describes
how features should be balanced from left to right has been used
to arrange images and texts properly in one window [13]. Santella
et al. [14] present an interactive method for cropping photo-
graphs given minimal information about the location of impor-
tant content based on eye tracking.

Recently, Liu et al. [7] have proposed an approach to optimize
image composition. Several well-known composition guidelines,
including the rule of thirds, diagonals, visual balance, and region
size, are quantified as aesthetic composition scores. The algorithm
searches for the optimized composition with the highest aesthetic
score in the 4D space. Their subsequent work [8] presents a
triangular mesh warping-based technique to achieve the pro-
posed aesthetic composition by moving visual elements towards
their aesthetic target positions.

Image Retargeting: Image Retargeting seeks to display images
on resized screens or frames with different aspect ratios than the
original while preserving salient objects and features, which has
been discussed in a work called Seam Carving [15].
Fig. 1. Overview of optimizing image composition. (a) Input image I I; the pink window

image I S from (a); (c) The optimally warped image IU from (b). (For interpretation of th

of this article.)
The Seam Carving methods [15,16] iteratively remove less
noticeable seams to fit the target image size aspect ratio.
Rubinstein et al. [17] have proposed a multi-operator technique
combined with Seam Carving and Scaling. Setlur et al. [18]
segment an image into regions and identify salient objects. Salient
objects are then cut and pasted into the resized image frame, in
which missing background regions are filled using inpainting
techniques. Quad mesh warping-based techniques have been
widely applied to achieve content-aware image retargeting
[19–21]. A quad mesh is placed over the original image, and an
energy function is employed to preserve the aspect ratios of
salient objects during the warping while fitting the mesh bound-
aries to the target image size. It is also feasible to develop
algorithms based on triangular meshes [22,23]. Jin et al. [23]
propose a method that can preserve feature lines and curves
during image retargeting. More intensive descriptions of image
retargeting techniques can be found in a related survey [24].

Our algorithm is an improved combination of the crop [7] and
warp operators [8]. It overcomes the efficiency bottleneck in the
passive methodology [7] and the effectiveness bottleneck in the
active methodology [8] simultaneously. We suggest replacing the
aesthetic score [7] with a piecewise quadratic energy function
that can accelerate the crop operator, which has been abandoned
due to its lack of efficiency [8]. We also modify the warp operator
to preserve the relative locations of visual elements inside the
image, which could improve the warp operator effectiveness and
reliability. We try to denote the more relevant benefits and
shortcomings of our approach and related techniques throughout
the paper.

The rest of the paper is organized as follows. The next section
overviews the algorithm. Before presenting the detailed algo-
rithm, Section 4 briefly reviews the basic composition guidelines
and discusses related image pre-processing techniques. Sections
5 and 6 propose and detail the crop and warp operators,
respectively. Section 7 presents the experimental results and
comparisons with previous techniques, and the last section
summarizes our conclusions.
3. Overview

The proposed approach to optimize image composition com-
bines two steps: crop and warp. Fig. 1 shows a concise overview
of the approach. The crop operator tries to choose a sub-window
in which visual elements optimally coincide with the basic
composition guidelines. A sub-image (Fig. 1(b)) chosen by the
optimal cropping window (the pink window in Fig. 1(a)) can be
considered a composition improved version of the original image
(Fig. 1(a)). The warp operator further optimizes the composition
of the cropped image to obtain the final version (Fig. 1(c)).
is the optimal cropping window; (b) the optimally cropped and uniformly scaled

e references to color in this figure caption, the reader is referred to the web version



Fig. 2. Image pre-processing for the space shuttle image. (a) Saliency map (Darker

regions have larger saliency values); (b) detected salient object and feature line.
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4. Preliminaries

In this section, we introduce basic composition guidelines for
composing aesthetic images and image pre-analyses, including
how to extract visual elements.

4.1. Basic composition guidelines

Various guidelines for taking well-composed photos can be
found in photography textbooks [5,6]. We consider a primary
subset of basic composition guidelines that are well-defined and
widely disseminated, as in previous research [7,8].

Rule of thirds: The rule of thirds [5,6] maintains that the frame
should be equally partitioned into thirds both vertically and
horizontally. The four lines that separate the thirds are called
power lines. The four intersection points formed by the thirds
lines are called power points. Photographers are encouraged to
place the main subjects around the power points. Moreover,
photographers are encouraged to align the salient vertical and
horizontal components or lines with the power lines in the image.

Diagonal Dominance: Salient diagonal objects or lines should
be located along the corresponding diagonal line, thus creating a
dynamic emphasizing effect [5]. The two diagonal lines are
referred to as an additional two power lines.

Visual Balance: Visual balance is a vital component to image
composition [6]. Salient objects should be placed evenly around
the center of the image frame to achieve a visually balanced
effect.

Region Size: Professional photographers maintain their princi-
ple for determining salient region sizes. Liu et al. [7] have surveyed
over 200 professional photos by studying the area fractions of the
salient objects using the original frames. The fractions have three
dominant peaks in statistics: F ¼ fF1 ¼ 0:1,F2 ¼ 0:56,F3 ¼ 0:82g.
This suggests that the area fractions of salient objects should be
near the three peaks in a well-composed image.

4.2. Image pre-processing

The image composition should be assessed by analyzing the
spatial structure and visual element distribution, including salient
objects and feature lines inside the image. We introduce a brief
algorithm to detect such elements.

Salient Object Detection: We employ an image segmentation
and saliency patch by expanding another technique [7,18] to
extract salient objects. We adopt a saliency map called GBVS [25]
to assign a saliency value between 0 and 1 to each image pixel.
The saliency value suggests which parts of the image are more
important, which helps us recognize salient objects and deter-
mine their importance. Patches with high saliency scores (over a
given threshold) are recognized as part of salient objects. The
salient objects can be obtained by greedily expanding the corre-
sponding patches.

Feature Lines Detection: Feature lines can be automatically
detected using a Hough transformation [26], while small line
segment fragments should be discarded. We consider feature
lines that form an angle with an x-axis less than 151 as horizontal
lines, and if they form an angle with a y-axis less than 151, we
consider them as vertical lines; otherwise, they are considered as
diagonal lines. We also fit line segments to elongated salient
objects, as in a previous study [7]. The algorithm should treat such
elongated salient objects as feature lines.

Fig. 2 shows the saliency map and detected visual elements of
the space shuttle image in Fig. 1(a). Because recognizing visual
elements in images is difficult, our guideline for extracting a
saliency map and visual elements may not work for arbitrary
images. If our algorithms do not make sense in some cases, users
can try other algorithms for this procedure, including a saliency
map constructed from eye-tracking data [27,28] and visual ele-
ment masks computed using the global contrast [29]. Both the
saliency map and visual elements are allowed to be semi-
automatically provided by the user, while the rest of the algo-
rithm does not need to be modified. The following algorithm for
enhancing image composition is designed under the assumption
that visual element information has been successfully provided.

4.3. Notations

Denote I as the image. The width and height of image I are
represented as W and H. The aspect ratio R could be computed as
R¼H/W.

The sets of detected salient objects and feature lines (e.g., the
shuttle plane and horizon in Fig. 2(b)) are expressed as O and L,
respectively. The sets of the four power points and six power lines
are indicated as P and Q.

For each visual element eAO [ L, sðeÞA ½0,1� denotes its
saliency value (as in Fig. 2(a)). AðeÞ represents the area of the
object if eAO, and sðeÞ ¼ sðeÞAðeÞ represents its area-weighted
saliency. GðeÞ represents the feature line length if eAL, and
sðeÞ ¼ sðeÞGðeÞ represents its length-weighted saliency.

CðeÞ ¼ ðCx
ðeÞ,Cy

ðeÞÞ denote the representative coordinates of
elements in I . For each salient object eAO, CðeÞ is its mass center
in the image. For each line element eAO, CðeÞ are the coordinates
of its midpoint in the image.

Denote I I , IS and IU as the input image (Fig. 1(a)), optimally
cropped sub-image (Fig. 1(b)) and output image (Fig. 1(c)),
respectively. For identification purposes, we can add subscripts

I,S,U to the defined symbols. WI and HI can stand for the width and
height of the input image, I I , PS and QS for power point and
power line sets in the cropped image IS and CUðeÞ for the
coordinates of element e in the output image IU .

Sets of salient objects,O, and sets of feature lines, L, are generally
identical in all three image forms. Without loss of generality, we do
not add subscripts to them, including their saliency values, areas
and lengths, all of which denote their counterparts in I I .
5. Optimal aesthetic crop

An image that contains obvious salient objects that are not
well composed usually has abundant background spaces, as in
Fig. 1(a). It is thus possible to find a sub-image with a better
composition by discarding abundant background spaces.

Given input image I I with detected salient objects O, feature
lines L and a saliency map, we attempt to find a sub-image IS

whose composition optimally obeys the defined basic composi-
tion rules (Section 4.1). We establish the sub-window D for
cropping using three parameters: the coordinates of the left-
bottom corner (x,y) and the width w of the sub-window, as in



Fig. 3. Optimal Aesthetic Crop. (a) The sub-window (cyan) uses three parameters: the coordinates of the left-bottom corner (x,y) (yellow) and the window width w. The

sub-window must contain the bounding box BðOÞ(the red box) of the object set O. (b) In the pink sub-window, i.e., the optimized solution, the space shuttle belongs to the

right-top power point. In the green one, the space shuttle belongs to the left-bottom power point. (c) The active region, which is bounded by an image boundary (blue) and

an object bounding box (red), is partitioned into two parts by xþw=2¼ Cx
I ðOÞ(black). (d) The active region is also partitioned into 2 parts by yþRIw=2¼ Cy

I ðOÞ (black) and

yþRIw=2¼ Cy
I ðLÞ (orange). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 3(a). We keep the aspect ratio of the sub-window consistent
with the original image frame. The height of the sub-window
could thus be computed as RIw.

We adopt a strategy wherein salient objects cannot be even
partly carved. Consequently, the sub-window for cropping the
image can move freely and zoom homogeneously inside the
original image frame only if the sub-window contains the
bounding box BðOÞ of object set O (the red box in Fig. 3(a)).

5.1. Aesthetic composition energy

Basic composition guidelines cannot play a direct role in
numerical computation. We thus utilize quadratic functions to
quantify the composition guidelines, as in previous work [8].
Though this section emphasizes analyzing the coordinate system
of IS, the energy function is written without loss of generality for
reuse in Section 6.

Object term: For each object oAO, we denote PSðoÞAPS as the
power point closest to its mass coordinate CSðoÞ in I S. We define
the object term as the sum of the squared distances between CSðoÞ
and PSðoÞ:

Eob ¼

P
oAOsðoÞJDðCðoÞ,PðoÞÞJ2P

oAOsðoÞ
, ð1Þ

where CðoÞ ¼ CSðoÞ ¼ CIðoÞ�ðx,yÞ, PðoÞ ¼ PSðoÞ and D(,) indicates
the Euclid distance between two points.

Line term: Consider a feature line lAL. We denote its corre-
sponding power line in IS as Q SðlÞAQS, which might be either a
thirds line or a diagonal line. The line term is defined thus:

Eli ¼

P
lALsðlÞJDðCðlÞ,Q ðlÞÞJ2P

lALsðlÞ
, ð2Þ

where CðlÞ ¼ CSðlÞ ¼ CIðlÞ�ðx,yÞ, Q ðlÞ ¼Q SðlÞ and Dð,Þ indicates the
Euclid point-to-line distance.

Visual balance term: The visual balance guideline implies that
the mass of all objects should be located around the image center
CSðI Þ ¼ ðxþw=2,yþRIw=2Þ. The visual balance term is defined
thus:

Evb ¼ D

P
oAOAðoÞCðoÞP

oAOAðoÞ
,CðI Þ

� �����
����

2

: ð3Þ

Here, CðoÞ ¼ CSðoÞ and CðI ÞÞ ¼ CSðI Þ.
Region size term: For each object oAO, we assume that its

corresponding optimal region size fraction is FSðoÞAF , which is
nearest to the fraction of area it actually captures in IS (f SðoÞ ¼
AðoÞ=ðWSHSÞ). Consequently, the optimal sub-image width corre-
sponding to FSðoÞ could be computed as wSðoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðoÞ=ðRIFSðoÞÞ

p
.

The region size term is defined as thus

Esz ¼

P
oAOsðoÞJw�wSðoÞJ

2P
oAOsðoÞ

: ð4Þ

The total energy function for assessing the composition of the
cropped image IS is defined as the weighted sum of the aesthetic
composition energy terms:

Ecr ¼oobEobþoliEliþovbEvbþoszEsz, ð5Þ

where oob, oli, ovb and osz are weights.
The solution to minimize (5) defines the optimal position of

sub-window D in which visual elements best obey basic
composition lines.

5.2. Space partition

The energy terms are not well determined when the sub-
window Dmoves and zooms within the input image frame, as the
corresponding power points PSðoÞ in (1) and the power lines Q SðlÞ
in (2), accompanied by the optimal sub-image width wðoÞ in (4),
might indicate different targets in IS.

In Fig. 3(b), the space shuttle belongs to the right-top power point
in the pink sub-window, which is the optimized solution. In the green
one, the space shuttle belongs to the left-bottom power point.
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To determine the target power point, consider each object
oAO with its coordinate CðeÞ ¼ ðCx

I ðeÞ,C
y
I ðeÞÞ in I I . By defining the

plane Cx
I ðeÞ�x¼w=2 that is parallel to the y-axis, we can partition

the x�y�w space into two sub-spaces:

OR ¼ fR
3,Cx

I ðeÞ�xZw=2g,

OL ¼ fR
3,Cx

I ðeÞ�xow=2g:

PSðoÞ in OR can be determined as the right power point in IS,
and PSðoÞ in OL can be determined as the left power point in IS.
Similarly, the x�y�w space can also be partitioned by the plane
Cy

I ðeÞ�y¼ RIw=2.
For horizontal or vertical lines, we can also define space

partitions as for objects. We only need to judge the left or right
side for a vertical line and the up or down side for a horizontal
line. Moreover, we do not need to define space partitions for
diagonal lines, as their corresponding power lines can be pre-
determined by their slopes.

Analogously, to determine the corresponding optimal sub-image
width wIðoÞ for each object oAO, we compute the two median
value of the optimal widths: w12ðoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðoÞ=2ðRIðF1þF2ÞÞ

p
and

w23ðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðoÞ=2ðRIðF2þF3ÞÞ

p
. wðoÞ can thus be determined in the

sub-spaces partitioned by the plane w¼w12ðoÞ and w¼w23ðoÞ.
We sort the x-coordinates of objects and vertical feature lines

as X ¼ fx0 ¼�1,x1,: :,xl,xlþ1 ¼ þ1,xirxiþ1g, where l is the total
number of objects and vertical lines. Likewise, the y-coordinates of
objects and horizontal feature lines are sorted as Y ¼ fy0 ¼

�1,y1,: :,ym,ymþ1 ¼ þ1,yiryiþ1g, and the median values
w12,w23 of optimal widths are sorted as W ¼ fw0 ¼�1,w1,: :,
w2n,w2nþ1 ¼ þ1,yiryiþ1g, where m indicates the total number
of objects and horizontal lines and n denotes the number of
objects. The x�y�w space can be partitioned thus:

Oi,j,k ¼ fR
39 xirxþw=2oxiþ1, yjryþRIw=2oyjþ1, wkrwowkþ1g

i¼ 0, . . . ,l, j¼ 0, . . . ,m, k¼ 0, . . . ,2n: ð6Þ

In any region Oi,j,k, the corresponding power points PSðoÞ, power
lines Q SðlÞ and optimal sub-image width wðoÞ are all well
determined.

The sub-window Dðx,y,wÞ is only allowed to move and zoom
inside the original image II. It must contain the object bounding
box B. The active region for computing the sub-window position
D can be expressed as follows:

Oac ¼ fR
3,BðOÞDDðx,y,wÞDI Ig: ð7Þ

Fig. 3(c,d) displays the space partition considering the object
coordinates ðCx

I ðOÞ,C
y
I ðOÞÞ and the y-coordinates Cy

I ðLÞ of the
feature line. For visualization purposes, we show the x�w and
x�y plane side views. In Fig. 3(c), the active region, which is
bounded by the image boundary (blue) and object bounding box
(red), is partitioned into two parts by xþw=2¼ Cx

I ðOÞ(black). The
pink cropping window in Fig. 3(b) belongs to the pink region in
Fig. 3(c), while the green one belongs to its green counterpart. The
space is partitioned into three parts, and the active region is also
partitioned into two parts by yþRIw=2¼ Cy

I ðOÞ(black) and
Fig. 4. Workflow of an optimal aesthetic warp. (a) A triangular mesh is constructed by c

Canny edges (pink), feature lines (orange) and image boundaries (yellow). The blue tria

warped mesh and the final enhanced image composition. (e, f) Optimally warped me

references to color in this figure caption, the reader is referred to the web version of t
yþRIw=2¼ Cy
I ðLÞ (orange) in Fig. 3(d). The partitioned regions

can be further partitioned by the median value of optimal widths
w12ðOÞ,w23ðOÞ, which are not shown in the figures to maintain the
clarity of the figures.
5.3. Implementation

Because all Euclid distances included are linear combinations
of the parameters x,y,w equipped with the space partition (6), the
total energy (5) can be considered a piecewise quadratic function.
Both region constraints (6) and (7) are linear inequality con-
straints. The solution to minimize (5) in the active region Oac ,
which defines the optimal position of sub-window D, can be
easily obtained by solving a piecewise quadratic program.

The size of the optimally cropped image I S may be smaller
than that of the input image I I; however, their aspect ratios are
the same. We can homogeneously magnify IS to fit the size of I I .
Consequently, IS can be considered a composition-enhanced
version of I I , as in Fig. 1(a,b).
6. Optimal aesthetic warp

The composition of the cropped image IS is usually an
obviously enhanced contrast to the input image I I . However,
the cropping window D cannot move out of the original frame
during the crop operator and may miss the optimal solution to the
composition energy (5) without active region constraints (7).
Moreover, tradeoffs may exist in minimizing (5) if multiple
objects and lines crowd into one frame.

We employ a mesh warping technique to actively push visual
elements towards their target power lines or power points, as in a
previous study [8]. The mesh vertices are sampled uniformly from
IS, cooperating with the priorities of boundary pixels, Canny
edges [30] and pixels contained by feature lines. The mesh is
constructed using a constrained Delaunay triangulation algorithm
[31], which asserts that feature lines should be part of the mesh
edges, as in Fig. 4(a,b).

Fig. 4 illustrates the workflow of the aesthetic warp operator.
Blue mesh triangles correspond to triangles in salient objects O.
Orange mesh edges correspond to feature lines L.

We denote the constructed mesh from IS asMS. Our goal is to
compute the vertex coordinates of the output mesh MU , which
has the same topology as MS, and compute the final enhanced
image composition IU . This can be formulated as a problem of
warping the input mesh MS to the output mesh MU . The target
image IU can thus be obtained by texture mapping between the
corresponding triangles in MS and MU , as in Fig. 4(c,d). To
achieve warping, we employ a quadratic optimization framework
that considers several components of energies and is described
below. The width and height of IU do not need to be the same as
their counterparts in IS, as in Fig. 4(e,f). We denote the scaling
factor of the image frame as sx ¼WU=WS,sy ¼HU=HS.
onstrained Delaunay triangulation from IS . Some mesh vertices are sampled from

ngles denote the salient object in the image. (b) Mesh over image. (c, d) Optimally

sh by 60% width and the corresponding image result. (For interpretation of the

his article.)
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6.1. Warp energy

Composition term: We attempt to actively push visual elements
in IS towards their power points or lines. We set CðeÞ ¼ CUðeÞ,
PðoÞ ¼ PUðoÞ, Q ðlÞ ¼Q UðlÞ, and CðI Þ ¼ CUðI Þ in the Object (1), Line
(2) and Visual balance terms (3). The composition term is defined
as follows:

Eco ¼oobEobþoliEliþovbEvb: ð8Þ

Differing from Section 5, the visual element coordinates CUðeÞ
can be represented as linear combinations of vertex coordinates
in the target meshMU . Moreover, target power points and power
lines PUðoÞ and Q UðlÞ are well determined using I S.

We add two mesh deformation terms, i.e., scaling and smooth-
ness, to control the mesh warp operator behavior, as in a previous
study [8]:

Scaling term: Denote the set of all mesh triangles as T . We
assign each triangle t an auxiliary linear transformation matrix:

Gt ¼
sx

t 0

0 sy
t

 !

Here, st
x is the x-scale factor, and st

y is the y-scale factor.
Conversely, the rotation and scaling portions Jt of the actual

affine mapping of triangle t from mesh MS to its counterpart in
mesh MU , which is a 2�2 Jacobian matrix, linearly depend on
the vertex coordinates of (triangles in)MU . We define the scaling
term thus

Esc ¼
X
tAT

sðtÞJJt�GtJ
2
F : ð9Þ

Here sðtÞ represents the area-weighted saliency of triangle t, and
J � JF is the Frobenius norm.

Minimizing the scaling term Esc makes the rotation and scaling
portion Jt of the affine mapping be as close as possible to the
allowed scaling transformation Gt.

Smoothness term: To prevent obvious discontinuities or distor-
tions in the result image, we suggest that the scaling transforma-
tions applied within a region of the mesh be as similar to each
other as possible. Define the following smoothness term:

Esm ¼
X

s,tAT ; s,t are adjacent

sðs,tÞJGt�GsJ
2
F , ð10Þ

where sðs,tÞ ¼ ðsðsÞþsðtÞÞ=2.
The total energy defined for the aesthetic warp operator is

defined thus:

Ewp ¼ EcoþlEscþmEsm, ð11Þ

where l and m are weights.
Fig. 5. Relative positions of visual elements should be preserved to prevent mesh

self-intersection. Upper row: Image IS and its meshMS; middle row: composition

enhanced image IU and warped mesh MU ; bottom row: rough warp [8] causes

severe mesh self-intersection.
6.2. Constraints

We must add essential constraints to perform the optimization.
Boundary constraints: Boundary mesh vertex coordinates

should fit the rectangular boundary of output image IU . For each
vertex v on the left side of the image frame, we impose the
positional constraint vx

¼0. For each triangle t that contains an
edge on the left side of the image frame, we impose the scaling
constraint sy

t ¼ sy. The other boundary constraint sets are similar.
Feature line constraints: The feature lines should be preserved

in a straight line in the output mesh. We predict the normal nðlÞ
for feature line lAL based on the aspect ratio of the output image
frames. For each mesh edge gA l,lAL, we impose the following
constraints to preserve the straightness of l:

g � nðlÞ ¼ 0 8gA l 8lAL: ð12Þ
Salient object constraints: There are two requirements for
imposing salient object constraints. One is that triangles con-
tained by salient objects should better preserve their aspect ratio,
i.e., they ought to be scaled homogeneously.

The other is that the framework should also be able to zoom
into object oAO to fit the optimal region size fraction FUðoÞAF
that is closest to the fraction of the area that the object actually
captured in IU: f UðoÞ ¼ AðoÞ=ðHUWUÞ. Although the optimal zoom
factor for each object o should be sðoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðoÞ=f ðoÞ

p
, objects

should be considered integral when zooming to preserve their
relative proportions. We define the optimal zoom factor as the
saliency-weighted average

a¼
X
oAO

sðoÞsðoÞ
,X

oAO
sðoÞ:

Moreover, we do not allow objects to significantly zoom out, as
doing so might cause mesh edge intersections. We thus define the
actual object zoom factor using the image frame scaling factor as
follows:

b¼minða,
ffiffiffiffiffiffiffiffiffiffi
sxsyÞ

p
:

The salient object constraints are defined as follows:

Gt ¼
b 0

0 b

 !
8tAo 8oAO ð13Þ

Relative position constraints: The composition term (8)
attempts to push visual elements towards their target power
points or power lines. However, if two objects belong to the same
target power point or two lines belong to the same target power
line, a rough push causes mesh self-intersection. Moreover,
objects may also conflict with lines, as in the bottom row of Fig. 5.

We therefore try to preserve their relative positions to avoid
such defects. The relative position constraints on both objects and



Fig. 6. Adaptive mesh simplification. (a) Image IS; (b) Meshes MS and MU . Meshes between the two objects are heavily crowded. (c) Simplified meshes MS and MU;

(d) Output image IU .
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lines are defined thus

V?ðCUðe1Þ�CUðe2ÞÞ ¼ V?GðCSðe1Þ�CSðe2ÞÞ,

8e1,e2AO [ L; e1,e2 are conflicted, ð14Þ

where V?ð�Þ denotes the vector if both e1 and e2 are objects or a
component of the vector that is perpendicular to the target power
line if one or both of e1 and e2 are feature lines.

G¼
sx 0

0 sy

� �

is the scaling matrix of the image frame.

6.3. Implementation

The energy function (11) is quadratic with respect to the
vertex coordinates of MU and scale factors fsx

t ,sy
t 9 tAT g for all

triangles. The boundary and salient object constraints (13) can be
considered hard constraints, while the feature line (12) and
relative position constraints (14) are heavily weighted soft con-
straints for the minimization problem. Minimizing (11) can be
achieved by solving a sparse linear system.

Although we solve for both the mesh vertex coordinates ofMU

and the scale factors for all triangles, we are only interested in the
mesh vertex coordinates; the scale factors play an auxiliary role.

6.4. Adaptive mesh simplification

Because we allow users to modify the target image frame size,
the frame size might be reduced in one dimension significantly,
which may concentrate mesh edges in one region, as in Fig. 6(b).
This causes mesh self-intersections and numerical instability
when computing IS from MU .

Consequently, we provide an optional procedure to enhance
the mesh quality of mesh MU . After MS warps to MU , we can
simplify the topology of the two meshes simultaneously for a
defined edge threshold in MU by employing the mesh edge
collapse algorithm [32] to obtain the simplified mesh MS. The
vertex produced by each collapsed edge is set as the edge
midpoint. We then utilize MS to perform the warp operator
and produce the final result image IU , as in Fig. 6(c, d).

The opportunity to cause self-intersection is significantly
reduced using the adaptively simplified mesh MS. Moreover, it
is more numerically stable when computing the warped image IU

from MS than computing it from MS.
7. Experimental results and discussions

All experimental results presented in this paper were made on
a PC with a Duo-Core 1.8 GHz CPU and 2 GB memory. The
piecewise quadratic program contains three parameters; it can
thus be instantly solved using arbitrary convex optimization
algorithms, such as interior-point methods [33]. We also employ
Intel MKL [34] to solve the involved sparse linear system, which is
sensitive to mesh size.
The average edge length in a triangular mesh is within 15–35
pixels. The main computational cost is solving the sparse linear
system. It takes about 50–150 ms to optimize the composition
when choosing a common mesh size for an image with a
resolution around 1024�768.

Our algorithm contains a few energy weights. In our experi-
ence, the whole algorithm is robust over a large range of all
parameters. We set oob ¼ 0:1, oli ¼ 0:1, ovb ¼ 0:03, osz ¼ 0:01 in
(5), (8) and l¼ 1:0, m¼ 0:5 in (11) for their magnitudes and
importance.

Fig. 7 shows retargeting images to different frame sizes while
the image composition has been enhanced simultaneously during
the retargeting. Several images selected from the RetargetMe
database [35] have been used to assess image retargeting algo-
rithms. Within the selected examples, our algorithm is especially
effective for images comprising obvious visual elements with
adequate background space and can intrinsically find an
enhanced composition version of the image. We have also pre-
pared supplemental material to show more representative images
that fit our algorithm, which can be found on our website.

We compare our method and two state-of-the-art image
composition enhancement techniques with each other: the
crop-and-retarget [7] and warp methods [8] in Fig. 8. The three
algorithms perform similarly, including in the first row.

In the second row, the salient objects in the image, including
the sun, boat and girl, are well composed both in our result and
those of Liu et al. [7]. Moreover, the horizon in our result is closer
to its corresponding thirds line, as the warp operator has further
optimally adjusted the composition of our result. Because it lacks
a crop operator, the composition of the result of Liu et al. [8]
seems odd, and an obvious trace exists, caused by warping the
sun to the left-bottom power point.

It is similar to the second row in the example of the third row:
the scene showing more of the lake in both our results and those
of Liu et al. [7] seems more satisfactory than the scene with more
sky. The lake is more essential for emphasizing the duck, which is
the unique subject of the image.

The compositions of the three results are fairly good in the last
three rows. However, the salient object sizes (e.g., boat, building
and wood) in the results of Liu et al. [8], without considering the
region size, seem small. The other two results do not contain such
defects.

We also conducted a user study to compare the results
produced in previous studies [7,8] as well as those produced
using our algorithm. We invited students in our research group to
attend the user study, as all students in our group had been
trained in computer graphics. They possessed basic knowledge
about digital image processing algorithms. In our user study
questionnaire, we showed training images to clarify the composi-
tion rules, including the rule of thirds, visual balance and initial
region size. The six rows of images in Fig. 8 were then shown to
the participants, and the algorithms were kept anonymous. The
participants were requested to select their favorite and least
favorite images. The most favorite image gained 2 points for its
corresponding algorithm, while the least favorite one gained



Fig. 7. Retargeting the images into different frame sizes while enhancing the composition simultaneously. (a) The input image and the optimal sub-window for cropping;

(b) the cropped image; the image is retargeted to 80% (c), 100% (d), and 120% (e), respectively, of the original frame width.
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0 points and the remaining one gained 1 point. We received 15
responses. The algorithm [8] received 19% of the total points, the
algorithm [7] received 46% points, and our algorithm received 35%
points. The algorithm presented by Liu et al. [7] and our algorithm
obtained similar vote percentages. To check their significant
difference, the votes of the six test images were accumulated
for each participant. We then performed a one-way ANOVA
analysis [36] on the accumulated points using Matlab [37].
Fig. 9 presents the results. Although the average value of our
algorithm is lower than that of Liu et al. [7] by approximately
1 point, the F- and p-values of the ANOVA analysis are 4.15 and
0.0513, respectively, illustrating that the statistical differences
between the algorithms are not significant. The user study shows
that our method obtains results comparable to one previous
algorithm [7] and slightly better than another [8].
Though our approach and the previous method of [7] per-
formed remarkably, our approach is much more efficient
(Table 1). Our method takes approximately 100 ms to enhance
the composition of one image, while the previous method [7]
claims that it takes 2–14 s to optimize the composition of a photo
with a resolution of 1024�768.

Table 1 shows the image size, mesh size and timing statistics
for most examples in this paper to illustrate the performance of
our algorithm. The running time depends on the mesh resolution
adopted by the warp operator and the number of visual elements,
while it is independent of the image resolution. Our approach can
also handle large-size images.

Limitation: Our algorithm especially fits images with obvious
focuses or visual elements, as it is easier to compose visual
elements using the aesthetic guidelines in such images.



Fig. 8. Comparison with two state-of-the-art image composition enhancement techniques. (a) Input Image; (b) result of the warping method [8]; (c) crop-and-retarget

method results [7]; (d) results of our approach.
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Consequently, our algorithm cannot work on images with multi-
ple visual elements and limited background space, as in Fig. 10(a).
The cropped image is usually the original image itself; hence, the
composition is hardly enhanced.

Moreover, although the improved warp operator significantly
reduces the opportunity to cause self-intersections and severe
distortions, obvious distortion may still exist in images with
strongly identifiable background spaces that contain a long-
distance warp operator in the result image, as in Fig. 10(b). For
such cases, we suggest that the crop operator be omitted.
8. Conclusions and future work

We have presented an improved approach to enhance image
composition using a crop-and-warp-based algorithm. A sub-image
in which visual elements optimally coincide with basic composi-
tion guidelines is cropped. The locations of visual elements in the
cropped image are then further optimally adjusted by adopting a
triangular mesh-based warping technique. The algorithm is per-
formed by solving a piecewise quadratic program and a sparse
linear system in succession. Several experimental results have
shown the effectiveness and efficiency of our approach, which can
be integrated into image processing tools.

It would be interesting to consider more guidelines for produ-
cing aesthetic images, such as colors or tones, in future work.
Moreover, it might be possible to better judge the optimal
positions of visual elements and the image aspect ratios using
eye-tracking-based techniques [27,28]. For images with multiple
visual elements, i.e., Fig. 10(a), it might be possible to inpaint the
background space and perform the crop operator to obtain a well
composed image using the proposed composition rules.



Fig. 9. One-way ANOVA analysis on accumulated points for a previous algorithm

[7] and for ours. Column 1 represents Liu et al. [7], and column 2 represents our

algorithm.

Table 1
Timing statistics.

Fig. Image size Mesh size Time (ms)

4 544�382 155 V/258 T 47
5 640�480 594 V/1078 T 125
7 (1st. Row) 472�472 313 V/548 T 109
7 (2nd. Row) 800�600 205 V/347 T 94
7 (3rd. Row) 800�600 251 V/431 T 94
7 (4th. Row) 472�318 124 V/200 T 47
7 (5th. Row) 460�300 220 V/372 T 52
7 (6th. Row) 600�429 187 V/315 T 31
7 (7th. Row) 615�461 202 V/240 T 62
7 (8th. Row) 1024�594 452 V/802 T 110

Fig. 10. Two kinds of failure cases. (a) An image (left) with multiple visual

elements with limited background space. The optimal cropped image (right) is the

original image; (b) an image (left) with a strongly identifiable background. The

warp operator (right) may cause noticeable distortion.
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