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Most man-made models can be posed at a unique upright orientation which is consistent
to human sense. However, since produced by various techniques, digital man-made
models, such as polygon meshes, might be sloped far from the upright orientation. We
present a novel unsupervised approach for finding the upright orientation of man-made
models by using a low-rank matrix theorem based technique. We propose that projections
of the models could be regarded as low-rank matrices when they have been posed at
axis-aligned orientations. The models are to be iteratively rotated by using the recently
presented TILT technique, in order to ensure that their projections have optimal low-rank
observations. After that, the upright orientation can be easily picked up from the six axis-
aligned candidate orientations by analysis on geometric properties of the model. The
approach does not require any other training set of models and should be regardless of
the model quality. A number of experiments will be shown to illustrate the effectiveness
and robustness of the proposed approach.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction For input models which are not at their upright orienta-
Human usually prefer to recognize objects and models
at a certain upright orientation which is determined by
their eyes. Contemporary, most objects and models have
their own unique support base which guarantees their
standing pose against the gravity in daily life. The upright
orientation is usually defined by the supporting base of the
model, i.e., it can be regarded as a natural property of the
model. However, 3D digital models could be posed in arbi-
trary orientations, since they are always produced by var-
ious modeling techniques and scanning systems which
might be in customized coordinate systems. We try to pro-
vide a novel approach for automatically finding the upright
orientation of the given model.

Given a 3D digital model, finding its upright orientation
and posing it at the right orientation is vital for users to
recognize it. In any commercial 3D geometry processing
systems, such as MAYA or 3Ds Max [1], one of the basic
manipulations in the systems is the rotation operation.
. All rights reserved.
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tion, users have to rotate the models manually if they want
to find the upright orientation. The procedure is usually
time-consuming and inaccurate. Thus, accurate automatic
techniques for finding the upright orientation of models
are necessary which have been ignored by most 3D geom-
etry processing systems, since it is not their focus point
and they usually assume that input models have been
already posed at their upright orientations.

Finding the upright orientation is not only profitable for
human’s natural views, but also useful for a number of
digital geometry processing algorithms, such as shape re-
trieval and shape registration (Section 2). Robust perfor-
mance of such algorithms relies on the consistence of
orientations of the corresponding models. Our algorithm
can be adopted as a pre-process of their algorithms to
enhance their effectiveness and robustness.

In this paper, we focus on standing man-made models
which are designed to stand on a flat supporting surface.
Man-made models include most objects and models in
our daily life, such as buildings, furniture, and vehicles.
Such models have their certain upright orientation with
respect to both human experience and natural properties
of models.
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Fig. 1. (a) Input model (pink) at arbitrary orientation and its axis-aligned projections in the x–y–z (red–green–blue) coordinate system. Projections from left
to right: y–z, z–x and x–y plane projection, accompanied with their corresponding matrix ranks r; (b) axis-aligned model (cyan) and its projections with
matrix ranks; (c) final model (gray) posed at the upright orientation.
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We design our algorithm with respect to the following
observation: If we regard axis-aligned projections of
man-made models as two-dimensional matrices, when
the models have been posed at axis-aligned orientations
in current coordinate system, their projections could be
modeled as ‘‘low-rank’’ matrices. In other words, ranks of
projection matrices at axis-aligned orientations are lower
than their counterparts at other orientations, since man-
made models are mainly composed by horizonal and verti-
cal edges and shapes. As shown in Fig. 1, ranks of projec-
tion matrices of the model posed at axis-aligned
orientation in (b) are significantly lower than those of the
input model at a sloped orientation in (a). Moreover, once
the model has been aligned with the axes, the upright ori-
entation as shown in Fig. 1c should be one of the six orien-
tations determined by the six axis-aligned candidate bases,
i.e., top, bottom, left, right, front and back surface of the
bounding box of the model. This observation is partly in-
spired by the recent work of Transform Invariant Low-rank
Textures (TILT) [23] which proposed a texture rectification
technique based on low-rank matrices theorem. With this
observation, we propose to iteratively rotate the model in
order to make the ranks of its axis-aligned projection
matrices as low as possible by performing the TILT tech-
nique on model’s projections. After that, the model will
be aligned with axes in the canonical coordinate system
and the two-dimensional (spherical) orientation space will
be reduced to as the set of six candidate orientations. The
supporting base of the upright orientation could be easily
picked up from the six axis-aligned candidate bases by
analysis on geometry properties of the model similar to [6].

The main contributions of our approach are summa-
rized in the following:

� We propose an unsupervised approach for finding the
upright orientation of man-made models. Different
from [6], our approach does not need any training set
of models.
� Our approach works for any types of models including

non-manifold meshes and point clouds as only the 2D
projections of the models are used.
Please cite this article in press as: Y. Jin et al., Unsupervised upright
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� Our approach is simple and intuitive which can be eas-
ily used for users.

2. Related work

Several kinds of techniques in computer graphics which
are relevant to our work will be briefly reviewed in this
section.

2.1. Upright orientation of images

Since photos might be usually taken from capture
devices at four orientations, i.e., 0�, 90�, 180�, and 270�,
one kind of techniques for finding upright orientation of
images attempt to classify the upright orientation from
the four candidate orientations [12,20]. Such techniques
transform the problem as a four-class classification which
projects each orientation as a high-dimensional feature
vector and computes a confidence score for each orienta-
tion by a Support Vector Machine [7], with the highest
score corresponding to the best orientation.

Zhang et al. [23] aim to recognize regions in a 2D image
that corresponds to a very rich class of regular patterns on
a planar surface in 3D, whose appearance can be modeled
as a ‘‘low-rank’’ matrix. By utilizing advanced convex
optimization tools from matrix rank minimization, their
approach is able to find an ‘‘upright’’ version of the image
texture by computing an optimal transformation in a cer-
tain Lie Group G. This work could be utilized to signifi-
cantly enhance the performance of face recognition
algorithms [24,21] and optical character recognition
(OCR) algorithms [5,14].

2.2. Upright orientation of 3D models

Kazhdan et al. [9] propose to align 3D models into the
canonical coordinate system by Principal Component
Analysis (PCA). Moreover, Podolak et al. [16] consider sym-
metry analysis when choosing the principal axis. Symme-
try detection methods [13,16] focus on how to detect
meaningful symmetries in digital 3D shapes for geometric
orientation of man-made models, Graph. Models (2012), http://
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purpose rather than how to align models into canonical
coordinate system. Given the symmetry information, the
model could be cut into two similar parts by the symmetry
plane, however, it is hard to identify the support base from
all candidate planes perpendicular to the symmetry plane.

Fu et al. [6] try to reduce the two-dimensional orienta-
tion space to a small set of orientation candidates using
analysis on geometry properties of models. After that, the
best orientation will be determined by a learning based
approach. Nonetheless, the example-based technique re-
quires additional training set of models, while computa-
tion for the set of orientation candidates is tedious and
its robustness extremely relies on model quality. Our unsu-
pervised approach is able to find the upright orientation of
models without any additional training set of models.

2.3. View selection

Automatic viewpoint selection has also been widely re-
searched since it is important to quickly and effectively
view 3D models. Abbasi et al. [2] proposed a new method
for automatic selection of optimal views of models by cur-
vature scale space representation. VÀzquez et al. [19] try to
maximize the visibility of models by using viewpoint en-
tropy theorem. Other metrics as mesh saliency [11] and
shape distinction [17] have also been used to determine
the optimal viewpoint. We believe that it will be easier
to find the optimal viewpoint if the model has been posed
at the upright orientation by using our technique.

2.4. 3D model retrieval and registration

3D model retrieval techniques [18,8] attempt to find
similar shapes from databases of models and 3D model
registration techniques [4,22] try to solve the problem of
finding corresponding parts of multiple models. One of
the main challenge of both the two techniques is to design
a robust and effective method for finding the similarity be-
tween two models over the whole space of all transforma-
tions. To cover this challenge, most techniques adopt
typically PCA based or manual adjustment in order to align
all of the models into the same coordinate system before
matching them. Since our algorithm finds the upright ori-
entation of models while aligning the model along the
coordinate axes, it is able to reduce the orientation align-
ment problem from the whole space of all transformations
to a set of only four candidate orientations (Left, Right,
Front and Back).

3. Algorithm

Since most man-made models can be represented as
polygon meshes, with no loss of generality, we describe
our algorithm based on polygon mesh, which can be eas-
ily extended to other digital geometry representations,
such as CSG or BREP models. For clarification, we define
a polygon mesh as set of its facets: M¼ ff ; f 2 Mg. In
our x–y–z coordinate system (red–green–blue1 in all
1 For interpretation of color in Figs. 1, 2–9, the reader is referred to the
web version of this article.
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figures in the paper), we define the positive z-axis as the
upright orientation.

Following the analysis in Section 1, firstly, we will
introduce how to utilize the TILT [23] technique to align
input models (Fig. 1a) with axes in order to obtain axis-
aligned models (Fig. 1b) in Section 3.1. After that, we will
describe the algorithm of picking up the upright orienta-
tion (Fig. 1c) from set of the six candidate orientations in
Section 3.2.

3.1. Align models with axes

Projections of axis-aligned models can be modeled as
‘‘low-rank’’ matrices, since man-made models are mainly
composed by horizonal and vertical edges and shapes.
The model can also be voxelized into a representation of
third-order tensor matrix, consequently, the third-order
tensor matrix ought to have a ‘‘low-rank’’ behavior as well.
However, rank of third-order tensor matrix is not well de-
fined [10]. Fortunately, we are able to utilize the TILT tech-
nique [23] to find the ‘‘low-rank’’ version of projection
image (i.e., 2-dimensional matrix) by computing an opti-
mal rotation transformation.

3.1.1. Rectification of projections as low-rank matrices
Consider the x–y plane projection of the model M, we

can binarize the projection as black and white in order to
generate the projection image I with fixed resolution
N � N, which can also be referred as a two-dimensional
matrix. To avoid affect of noise, suppose I = URV is the
SVD decomposition of I, we can model I as a low-rank ver-
sion L with sparse-error matrix E:

I ¼ Lþ E; L ¼ UTdðRÞV ; ð1Þ

where Td(�) is an operator that set all small elements less
than d in the matrix as zero. If we fix the parameter d as
d0, we regard the rank of L as the no noise rank of I (all rank
appeared in this paper is the no noise rank).

If the model has been posed at axis-aligned orientation,
an appropriate assumption is that the projection matrix
can be modeled approximately as low-rank matrix after
some small imperfect parts being removed because of the
axis-aligned property of man-made models. Thus, no mat-
ter which orientation the model has been posed, we are
able to recover an optimal low-rank representation of x–y
plane projection after applying a rigid rotation transforma-
tion around the image center:

I � R ¼ Lþ E; ð2Þ

where R ¼ cos h � sin h
sin h cos h

� �
which is a counter-clockwise

rotation transformation with the rotation angle h. Refer
to the TILT technique [23], this can be solved by the follow-
ing problem:

min
L;E;R
kLk� þ kkEk1; s:t: I � R ¼ Lþ E; ð3Þ

where k � k⁄ and k � k1 are the nuclear norm (sum of all sin-
gular values) and the l1-norm, which are closely related to
rank of matrix and sparsity of matrix respectively. k > 0 is
the weight.
orientation of man-made models, Graph. Models (2012), http://
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Fig. 2. Rotate the model corresponding to its rectification of x–y plane projection as low-rank matrices; (a) input model; (b) its x–y plane projection image I
(Blue square). Red square: Enlarged window centered at I with rank r = 30. Green square: window transformed by the rotation matrix R; (c) rectified image
I�R with rank r = 24; (d) The low-rank part L; (e) The sparse error part E; (f) The model has been rotated around the z-axis corresponding to the rotation
matrix R.

Fig. 3. Straightforward strategy: Align the model with axes by iterative rectification of axis-aligned projections as low-rank matrices in turn of the ordinary
sequence iteratively. The corresponding rectification indication is also shown at the right-top of each iteration The right bottom model has also been aligned
with axes.
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The optimal rotation matrix R can be computed itera-
tively by computing its increment DR from the linear dis-
crete version of (3):

min
L;E;DR
kLk� þ kkEk1; s:t:I � RþrIDR ¼ Lþ E; ð4Þ

where rI represents the derivatives of image w.r.t the
transform parameter h. This can be solved effectively by
the Augmented Lagrangian Multiplier (ALM) method,
whose details can be found in the TILT paper [23,3].

Fig. 2 has shown the procedure of rectification. Given
the x–y plane projection image I (blue window in (b)), we
enlarge the image to the resolution of

ffiffiffi
2
p

N �
ffiffiffi
2
p

N (red
window in (b)) with additional black backgrounds which
does not change the rank of I, in order not to discard any
content of the original projection in the window which will
be transformed by the rotation matrix (green window in
(b)). The rectified projection image I�R (c) is composed by
its low-rank part L (d) and the sparse error part E (e). The
rectified image I�R could be modeled as low-rank matrix
L with rank r = 24, while the original projection image I
could be modeled as low-rank matrix with rank r = 30.
Obviously, the rectified image I�R has a better axis-aligned
appearance than the original image I. We can rotate the
model around the z-axis clockwise in the x–y plane with
Please cite this article in press as: Y. Jin et al., Unsupervised upright
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h corresponding to the optimal rotation matrix R, in order
to obtain the rotated model (f) whose projection should
be I�R. As a result, the rotated model (f) should have a bet-
ter axis-aligned appearance than the input model (a).

It is similar if we want to rotate the model by rectifica-
tions of y–z and z–x projections. However, it is impossible
to rectify the three projections simultaneously. Thus, we
have to design an iterative rectification algorithm to decide
which projection should be rectified at first and when the
iteration could be terminated.

3.1.2. Iterative rectification
Our goal is to align the model with axes by iterative rec-

tification of axis-aligned projections as low-rank matrices.
Since it is impossible to rectify the three projections simul-
taneously, one straightforward strategy is that implement
rectification based on the three projections in turn of or-
dinary sequence circularly. For instance, the ordinary se-
quence has been set as y–z plane, z–x plane, x–y plane
circularly as shown in Fig. 3. However, this procedure can
be optimized.

As shown in Fig. 1a, we can imagine that it is most
effective to implement rectification based on x–y plane
projection at first, which has the maximum rank among
the three projections D = {x � y, y � z, z � x}. Moreover,
orientation of man-made models, Graph. Models (2012), http://
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Fig. 4. Rank priority strategy: Align the model with axes by iterative rectification of axis-aligned projections as low-rank matrices with rank priority. (a)
Input model; (b) iteratively rotated models by rectification; (c) final iteration and axis-aligned model.

Fig. 5. Final upright orientation selection. The green polygon is the convex hull of actual supporting base (blue facets), with its center (green point). The
yellow polygon is the convex hull of model projection on current candidate base, with its center (yellow point). The red point is the projected center of
model mass and the purple point is the area-weighted center of actual supporting base. In (a), the projected center of model mass is out of the the convex
hull of actual supporting base. Current supporting base is unstable which could be pre-discarded. Supporting base (c) has better stability and symmetry
than (b). (d) Model posed on supporting base (c), which has been posed at the upright orientation.
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during iteration, it will be more effective to implement rec-
tification based on the projection whose rank has been
changed most.

We proposed our rank priority strategy as follows: Re-
cord history rank �ri for each projection i 2 D. Denote ri as
the current rank of the projection i 2 D. We design the iter-
ation procedure as follows:

1. Initialize the history ranks of projections �ri ¼ 0, "i 2 D
2. Implement rectification based on the three projections

respectively in turn of the priority Dri ¼ jri � �rij; i 2 D
(Larger value, higher priority) as following: For current
projection i, compute the optimal h, update the history
rank �ri only for current projection and rotate the model.
If h P hth, skip to the very beginning of step 2.

hth is the degree tolerance which has been set as 2� in
our implementation. Iteration will be terminated if h of
all the 3 final rectifications in step 2 are smaller than hth.

Fig. 4 has shown detail steps of the iterative rectifica-
tions of the rank priority strategy of the microscope model.
The straightforward strategy in Fig. 3 requires three more
steps than the rank priority strategy, since the 4th and
6th iteration step are unnecessary which have also been
implemented. The rank priority strategy has omitted
unnecessary steps.
Please cite this article in press as: Y. Jin et al., Unsupervised upright
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3.2. Final upright orientation selection

Once the model has been aligned with axes, the upright
orientation ought to be one of the six orientations deter-
mined by the six axis-aligned candidate bases, i.e., top, bot-
tom, left, right, front and back surface of the bounding box
of the model. Moreover, most of the six candidates can be
discarded by simple geometry analysis on the model sim-
ilar to the work [6].

The actual supporting facets of model are not the sur-
face of bounding box itself. Thus, for each candidate sur-
face S of the bounding box of the model. We compute the
actual base of the model as projections of part of the model
facets, which are closely enough to the candidate surface
and have the similar normals to the candidate surface nor-
mal, on the candidate surface:

PSðMÞ¼ fPSðf Þ;distðf ;SÞ<Distth;Nðf Þ �NðSÞ< Costh; f 2Mg;

where PS(f) is the projection of facet f on the candidate sur-
face S; N(f) and N(S) represent the normal of f and S,
respectively; dist(f,S) denotes the distance between f and
S; Distth and Costh are tolerance parameters, which have
been set as 0.05 (Unified Model) and 0.985 in our
implementation. Since some parts of the model might be
composed of ‘‘sharp’’ surfaces, we can discard the
orientation of man-made models, Graph. Models (2012), http://
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candidate surfaces whose actual base PSðMÞ is an empty
set. Moreover, we compute the convex hull H(S) of the ac-
tual base PSðMÞ and the projection of model mass on the
candidate surface CðMÞ. To keep the model stable against
the gravity, one of the condition is that the projection of
the model mass CðMÞ is inside the convex hull H(S) of
the actual base. Thus, we check this condition for each
remaining candidates and discard the candidates in which
the projection is outside, such as in Fig. 5a.

After that, we compute several confidence scores based
on three geometry features of the model described in [6]
for the very few survived candidate bases. As shown in
Fig. 5, we compute the following geometric information
for each survived candidate bases for preparation:

� Convex hull of the actual base H(S) (green polygon) and
its center C(H(S)) (green point).
� Convex hull of the model projection on current candi-

date base HðSÞ (yellow polygon) and its center CðHðSÞÞ
(yellow point)
� Projection of the model mass on the supporting plane

CðMÞ (red point)
� Area weighted center of the actual base CðPSðMÞÞ (pur-

ple point)

3.2.1. Stability score
Since stability is usually better if the projected center of

model mass is far away from the boundary of the convex
hull of the actual base H(S). Moreover, stability will be bet-
ter if H(S) covers most part of HðSÞ. Thus, stability score is
defined as:

Ea ¼ 1:0� min
0<h<2p

dinðhÞ=doutðhÞ;

where din and dout are distances from projection of the
model mass CðMÞ to the boundary of convex hull of the ac-
tual base H(S) and convex hull of the model projection on
current candidate base HðSÞ, along a direction determined
by h.

3.2.2. Symmetry score
The four points CðHðSÞÞ; CðHðSÞÞ; CðMÞ and CðPSðMÞÞ

should be collinear or even consistent if the model has a
Fig. 6. An example of importance of visibility. Candidate bases in (a) and (b) hav
higher visible score and has been selected as the supporting base of the upright

Please cite this article in press as: Y. Jin et al., Unsupervised upright
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better symmetry. We compute two symmetry-related
distance:

Consistent Distance: the average distance of the four
points to their centroid.

Collinearity Distance: the average distance of the four
points to their least-squares best-fit line.

The symmetry score Es is defined as the average value of
the Consistent distance and Collinearity Distance.

3.2.3. Visibility score
To measure visibility, we employ a similar technique to

[15]. We put model on the current supporting base and
render the model from five uniformly sampled view direc-
tions on the upper semi-sphere with respect to the sup-
porting base (as bottom). We compute the ratio of visible
facets as the visible score Ev.

Ea and Ev are ranged from 0 to 1, while Es can also be
normalized by the radius of the bounding sphere of the
model. Higher Ea, Es and Ev represents better stability, sym-
metry and visibility respectively. Unlike the learning based
method [6], our candidate base set contains very few can-
didates, since the candidate base generates from the axes-
aligned model. Thus, it is effective enough to select the
candidate base which has the highest composite score:
E ¼ aEa þ bEs þ cEv ; ð5Þ

where a, b, c are weights.
As shown in Fig. 5, the projection of the model mass

CðMÞ is outside the convex hull H(S) of the actual base in
(a), which has been pre-discarded. The candidate base in
(c) has better stability and symmetry than that in (b). Con-
sequently, the candidate base in (c) has been selected as the
supporting base of the upright orientation in (d). Fig. 6 has
shown an example of importance of visibility. The cup in
upright orientation in (b) should have a better visibility.

4. Experimental results and discussions

4.1. Implementation

There are a few parameters in the proposed
algorithm. In our experience, the whole algorithm
e similar stability score and symmetry score. Candidate bases in (b) has a
orientation.

orientation of man-made models, Graph. Models (2012), http://
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Fig. 7. Four examples of finding the upright orientation. Left: Input model posed at a randomized orientation; Middle: Model aligned with axes; Right:
Model posed at its upright orientation.
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performs effective over a large range of all the parame-
ters. As a rule of thumb, we set the resolution parameter
N � N of projections as 150 � 150. We set white color as
1.0 and set black color as 0.0 in the projection matrix.
Thus, the noise tolerance parameter d0 as 2.0, which is
Please cite this article in press as: Y. Jin et al., Unsupervised upright
dx.doi.org/10.1016/j.gmod.2012.03.007
able to discard most noise part during rank computation.
The weight parameters in computation of confidence
score E are averagely set as a = 0.3, b = 0.3, c = 0.4 in
(5), since all the three parameters has been normalized
from 0 to 1.
orientation of man-made models, Graph. Models (2012), http://
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Fig. 8. Failure case: Mis-aligned model. Left: Models mis-aligned by using our algorithm; Right: Correct orientation.

Fig. 9. Failure case: Ambiguity. Left: Orientation selected by our algorithm. Right: Correct orientation.
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Fig. 10. More models which have been successfully tested through our algorithm.
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All experimental results presented in this paper have
been tested on a PC with DUO CPU 2.5 GHz and 2 GB
memory. Computation is mainly costed during the
iterative rectification. Computation of confidence score E
is quickly enough to be ignored. Each step of the iterative
rectification requires about 1–2 s and it requires about 5–
7 iterations for most models. Consequently, it requires
around 10 s to find the upright orientation of one model.
The performance on timing is close to the performance of
the similar work [6].
4.2. Results

In Fig. 7, four input models have been posed at a ran-
domized orientation. We show both their axes-aligned
model and model posed at its upright orientation, which
has been found by our algorithm. It can be found that
although the robot model in the third row is composed
of multiple parts and the artwork model in the last row
contains curved parts, the algorithms also works only if
their projections fulfill the low-rank property. More
models which have been tested successfully through our
algorithm has been shown in Fig. 10.

Our algorithm succeeds to align 3D models with coordi-
nate axes based on the observation that projections of
models could be modeled as ‘‘low-rank’’ matrices when
they have been posed at axis-aligned orientation. Models
that contain main parts which are ‘‘parallel’’ to its support
base especially fit for our algorithm. For instance (in Fig. 7),
seat of the chair model is parallel to its support base. Alter-
natively, the four tires of the car model can be regarded as
an integrated part of the model which is parallel to the
support base of the car, although it is hard to assert
whether an individual tyre is parallel to the support base
or not. Such property severely penalties the projection
Please cite this article in press as: Y. Jin et al., Unsupervised upright
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matrix rank of the model projection if the model is not
aligned with coordinate axes, which lead the model to
it’s axis-aligned orientation during iterative rectification
of projections as low-rank matrices.

After aligning model with axes, the two-dimensional
(spherical) orientation space for searching the support
base will be reduced to as the set of six candidate
orientations. It is much easier to find the support base from
the set of six candidate orientations by using geometric
analysis than from set of all planes of convex hull as
adopted by [6].
4.3. Limitation

Although our algorithm performs quite effectively and
robustly, there also exists failure cases. As shown in
Fig. 8, the top left model has been mis-aligned by our algo-
rithm since the three main part of the receptor have their
own low-rank orientation which conflicts. Similarly,
speaker of the bottom left model is not parallel to the sup-
porting base, has also been mis-aligned. The two models
have passed the test by technique of [6], since their learn-
ing method does not contain the align-model step. Our
algorithm will fail if the model is composed by several
equivalently main parts which have low-rank observation
in different orientations or which are not parallel to the
supporting base.

Similar to technique of [6], our algorithm is also not
able to identify ambiguity, such as the two examples
in Fig. 9. The algorithm is able to align such kind of
models with axes, but the six-candidate orientation have
similar confidence scores. In such case, our system
provides an optional operation for users to select the up-
right orientation manually from the six candidate
orientations.
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4.4. Comparison

To compare our technique with [6], the advantage of [6]
is that any model without ambiguity ought to fit for their
technique theoretically if the training set has been prop-
erly set. On the contrary, our unsupervised algorithm does
not require any additional training set of models and can
be implemented independently, while the precision of
their algorithm relies on the quality of the training set
more or less. Our unsupervised technique might be pre-
ferred for models without priori information.

Moreover, whether a model fits for our algorithm de-
pends on if the model contains dominant parts parallel to
the supporting base, which is able to model a ‘low-rank’
projection matrix. On the other hand, whether a model fits
for the technique of [6] mainly depends on the training set
of models. It is really hard to assert which one performs
better.

5. Conclusion and future work

This paper has presented an effective and robust algo-
rithm for finding the upright orientation of man-made
models. We align the model with axes by iteratively rotat-
ing it by using the recently presented TILT technique, in or-
der to ensure that axis-aligned projections of the model
have optimal low-rank observations. After that, the upright
orientation could be easily selected from the six axis-
aligned candidate orientations by analysis on geometric
properties of the model. Our unsupervised technique does
not require additional training set of models and performs
effectively and relatively robust, which is valuable to be
integrated into popular software systems of digital geome-
try processing.

It will be interesting to utilize suitable low-rank theo-
rem of third-order tensors, which has not been widely
developed yet, to better align the model with axes in our
future work. Since it is easier to do symmetry analysis
when models have been posed in upright orientation, it
is also reasonable to make effort to utilize our algorithm
framework to survey symmetry information of 3D models.
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