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Abstract: A lot of 3D shape descriptors for 3D shape retrieval have been presented so far. This paper proposes a new mechanism, 
which employs several existing global and local 3D shape descriptors as input. With the sparse theory, some descriptors which play 
the most important role in measuring similarity between query model and the model in the dataset are selected automatically and an 
affinity matrix is constructed. Spectral clustering method can be implemented to this affinity matrix. Spectral embedding of this af-
finity matrix can be applied to retrieval, which integrating almost all the advantages of selected descriptors. In order to verify the 
performance of our approach, we perform experimental comparisons on Princeton Shape Benchmark database. Test results show that 
our method is a pose-oblivious, efficient and robustness method for either complete or incomplete models.  
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1. Introduction 

With the development of the Internet, more and 
more 3D model databases can be acquired on the web 
[1-2] for free. Users can acquire the shape they want 
through the web or other ways conveniently [3]. At 
this time, how to accurately find the right model be-
comes an important issue. In order to solve this prob-
lem, content-based 3D shape retrieval arouses a strong 
concern in computer graphics, computer vision and 
pattern recognition community [4].  

Many algorithms have been proposed for con-
tent-based 3D shape retrieval [5]. Most of them repre-
sent a shape with a feature vector. And then, a similar-
ity metric is defined to measure the similarity distance 
between shapes, such as Euclidean distance, x2 dis-
tance and Earth mover distance. With the feature vec-
tors and similarity metric, a shape retrieval algorithm 
can be performed. That is to say, given a query shape, 
a shape retrieval algorithm will return the models with 
the descending order of similarity distance between 
the query model and the model in the dataset. 

Most methods extract feature vectors according to 
the geometrical or topological properties of the mod-

els. With the extracted feature vectors, performance is 
evaluated by some common evaluation criterion, i.e. 
precision-recall (PR) curve [2]. These feature vectors 
are often invariant under different kinds of transfor-
mations, such as translation, rotation and non-rigid 
transformation, but none of them gives perfect results 
for all of the transformations. For some models in the 
different classes may have the same geometrical 
properties or topological properties, which leads some 
algorithms cannot distinguish these models. Inspired 
by the work of Hu et al. [6], we develop a mechanism 
by applying several descriptors existing at one time to 
construct our new descriptor. For a query, our method 
automatically selects several descriptors for different 
models in the dataset that play a key role in measuring 
the similarity of the query and this model. Descriptor 
obtained by our method integrates most of the advan-
tages of the descriptors that are selected with sparse 
subspace clustering. 

Our method is divided into four main steps: 

Firstly, pose normalization. In order to make dis-
similarity measure are invariant under scale, transla-
tion, rotation or non-rigid transformation, we first 
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align all of the models in a canonical coordinate sys-
tem using the principal component analysis (PCA) [7], 
and then multidimensional scaling (MDS) [8-9] is ap-
plied to eliminate the influence of the pose (see Fig.1). 

Secondly, several existing global and local de-
scriptors which are represented by histogram are cal-
culated to form our feature space. 

Thirdly, the sparse subspace clustering method [10] 
is applied to select some important descriptors auto-
matically, which play crucial role in distinguishing 
between query model and the model in the dataset. At 
the same time, a similarity matrix will be generated.  

At last, a spectral clustering method is used to ob-
tain a new shape descriptor for each model which will 
be used to measure the similarity between the query 
model and the model in the dataset.  

We compare our method with some other algo-
rithms which only use a single feature vector. The re-
sults show that the retrieval performance of our 
method is the best. It can address the case of non-rigid 
or deformable shapes, which includes a wide range of 
shape transformations, such as, bending, articulated 
motion and case of incomplete models.  

The main contributions of this work are: 

Sparse subspace clustering is adopted to select sev-
eral existing descriptors which play a key role in 
measuring the similarity between the query and the 
model in the dataset for different models and construct 
an affinity matrix; 

Spectral clustering method is applied to obtain a 
feature vector for each model which integrates almost 
all the advantages of the selected descriptors. 

The rest of the paper is organized as follows. Some 
related work will be introduced in section 2. In section 
3, we will briefly introduce sub-space clustering and 
the detail of ours algorithm. Some experimental re-
sults and compared results will be shown in section 4. 
Finally, conclusion, limitations and future work will 
be recommended in section 5. 

 
Fig. 1. Glasses with low dimensional embedding. The first 
column are two original glasses with different poses, the 
second column are the embedded results with multidimen-
sional scaling (MDS)[8-9]. 

2. Related work 

Great deals of algorithms have been proposed for 
3D shape retrieval recently. For the detail of the recent 
review, we refer the reader to [5, 11] which give a de-
tailed classification of existing methods. In the fol-
lowing, some related work will be introduced briefly. 

2.1 Feature vector based global methods 

Extended Gaussian Image (EGI) is proposed in [12], 
which is a spherical function and describes the distri-
bution of surface normals. Complex Extended Gaus-
sian Image (CEGI) proposed in [13] improves the EGI 
with complex-value spherical function, which not only 
gives the distribution of the surface normals, but also 
the associated normal distance of points on the surface. 
Shape function distribution [14] of the surface is used 
for the shape representation. The shape functions in-
clude the distance of a surface point to the shape cen-
tral (D1), the distance between two random points 
(D2), the area of the triangle defined by three random 
point (D3) and the volume of the tetrahedron define 
by four random surface points (D4). In [15], three dif-
ferent methods are developed for representing 3D 
models. They are Shells, Sectors and the combination 
of Shells and Sectors. Poisson function is used in [16] 
to generate a histogram for each model, which capture 
shape structure feature very well. The methods de-
scribed above are histogram based.  

Chen et al. in [17] propose a descriptor named 
Light Field Descriptor (LFD), which represents a 
model as a collection of images rendered from uni-
formly sampled positions on a view sphere. The dis-
tance between two descriptors is defined as the mini-
mum L1-difference, taken over all rotations and all 
pairings of vertices on two dodecahedra. Giorgi el 
al.[18] select a best view from a collection of views 
for the representation of 3D shape. They assume that 
the best view where the relevant shape features are 
maximally exposed can achieve a great performance. 
In [19],   eigenvalues or eigenvectors of an appro-
priately defined affinity matrix are applied to repre-
sent a model. These descriptors work well for articu-
lated 3D shapes. Funkhouse et al. [20] propose a 
web-based search engine which uses spherical har-
monics to compute similarities and supports 2D and 
3D sketches as queries. 

Spherical harmonics, moments and 3D Fourier 
Transform are used in [21]. Hough Transform is ap-
plied by Zaharia et al. in [22] to define a descriptor 
named Canonical 3D Hough Transform Descriptor 
(C3DHTD). Novotni et al. [23] present a method to 
compute 3D Zernike descriptors from voxelized mod-
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els as natural extensions of spherical harmonics based 
descriptors. Suzuki et al. [24] define an equivalence 
class for each voxelized model, and then a feature 
vector is constructed by the values in each equivalence 
class. The obtained descriptor is rotation invariant. As 
we can see that the descriptors mentioned above are 
consist of the coefficient of the transformation. 

2.2 Feature vector based local methods 

In [25], Gal et al. define their shape signature with 
the distribution of the local-diameter function (DF) 
which measures the diameter of the 3D shape in the 
neighborhood of each vertex and centricity function 
(CF) which measures the average geodesic distance 
from one vertex to all other vertices on the surface. 
Although two local shape descriptors are used, they 
are only combined into a 2D scalar-value array simply. 
Bronstein et al. [26-27] and Dey et al. [28] construct 
descriptors with heat kernel signatures [29], which 
depict the intrinsic property of the shape and are in-
variant under isometric deformations. These methods 
can handle scaled, partial or incomplete models. 

The performance of some local shape descriptors 
are comparative studied in [30]. These local descrip-
tors include the Distance to plane (DTP), Normal dis-
tribution (ND), Mean curvature (MC), Gaussian cur-
vature (GC), Shape index (SI) and Curvature index 
(CI). They do experiments with each of these descrip-
tors or the any combination of two of them. The re-
sults show that some combinations give the better re-
sults, while some of them give bad results. In [31], 
Funkhouser et al. estimate the retrieval performance of 
each local descriptor, and select most distinction shape 
descriptors for each query. This work is the most 
similar with our method. But it only uses the local de-
scriptors and the selected descriptors are combined 
directly which cannot take advantage of all the advan-
tages of descriptors, even some descriptors may play a 
negative impact. In this paper, some global and local 
descriptors existing will be used, and a sparse sub-
space clustering method will be applied to obtain a 
new feature vector for each model which integrates 
almost all the advantages of the descriptors selected. 

2.3 Subspace clustering 
Subspace clustering is used to represent high di-

mensional data set with several low dimensional data 
sets, and each of the low dimensional data set is a 
subspace of high dimensional data set (see Fig.2). For 
the detail of subspace clustering, we refer interested 
readers to the survey [10]. Our work is based on s 
sparse subspace clustering method, which selects a 
feature subspace in a given feature space. 

 
Fig. 2. A set of 3D points (blue) and two subspaces L and P2 
(black). 

3. Sparse subspace clustering based shape 
descriptor 

In this section, we will introduce the detail of our 
algorithm. Similar to Hu et al. [6], several selected lo-
cal and global feature descriptors are used to construct 
an affinity matrix with sparse subspace clustering 
method, which selecting some descriptors that play an 
important role in identification of query model and the 
model in the dataset automatically. Then, our descrip-
tor can be obtained by spectral clustering. 

3.1 Preprocessing 

3D models can be acquired from different ways, so 
they may have arbitrary scale, pose, and position in 
the 3D space. Because some of the descriptors are not 
invariant under scale, translation, or rotation, the nor-
malization procedures may be necessary. The center 
of mass plays the crucial role on normalization pro-
cedure, which is defined as the barycenter of the 
model. 

We scale the distance between the point on the 
model and the center of mass to a constant and trans-
late the center of mass to the origin which normalize 
the scaling and translation. 

The principal component analysis (PCA) method [7] 
is used to normalize the rotation in this paper. It aligns 
the principal axes to the x-, y-, and z-axes of a ca-
nonical coordinate system by an affine transformation 
based on the set of vertices of a 3D model. However, a 
variety of poses of the model which belong to the 
same class may cause the three principle axes very 
different. Therefore, we must normalize the pose of 
each model. 

In order to normalize the pose of the model, multi-
dimensional scaling (MDS) [8-9] is applied, which is 
known as an isometric embedding method and widely 
used in the general of isometry-invariant shape recog-
nition and real-time texture mapping on complicated 
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3D objects. By implementing MDS for each model, 
the models within the same class will have the similar 
pose (see Fig.1).  

Note that, all models can be aligned in a canonical 
coordinate system, which is befit for the computation 
of the feature vector in the following step. 

Since our method uses several descriptors, we must 
select some descriptors existing which construct the 
feature space of our method. For sparse subspace 
clustering method requests the feature vectors must be 
the linear (affine) combination of the others, so the 
descriptors selected in this paper are histogram based. 
To our knowledge, histogram based descriptor has this 
characteristic. Although it restricts our choice of de-
scriptors, the test results shown in the section 4 illus-
trate that histogram based descriptors can achieve ap-
pealing results. 

3.2 Sparse subspace clustering 

Before constructing our new descriptor, we will 
briefly introduce the method of sparse subspace clus-
tering (SSC) [10]. 

SSC is based on the idea of representing a data 
point as a linear combination of any other points in the 
data set. In general, this causes an ill-posed problem 
with many possible solutions. To solve this problem, 
sparsity theory is introduced. Specifically, each point 
is represented as a sparse linear combination of all 
other points by minimizing the number of nonzero co-
efficients cjk 

subject to j jk k
k j

c
≠

=∑x x . For N points, 
the optimization problem can be written as: 

{ } 1

min | |, 
jk

N

jkc j k j

c
= ≠
∑∑  s.t. j jk k

k j
c

≠

=∑x x
 

 
and 1jk

k j
c

≠

=∑ ,  j = 1,…, N       (1) 

Eq.1 can be rewritten in matrix form as: 

1min || ||
C

C   s.t.  X = XC， diag(C) = 0   (2) 

where, diag(C) represents the Diagonal of C. 
In general, X = XC is considered as a soft con-

straint and thus the sparse coefficients can be obtained 
by solving the following optimization problem: 

2
1min || || || ||FC

λ− +XC C C  s.t. 0≥C , diag(C)=0 

                    (3) 
where, || . ||F denotes the Frobenius of matrix. The 

term 1|| ||C  is used to guarantee the sparsity of the 
optimal solution C*. 

To solve Eq.3 efficiently, the optimization problem 
(3) is treated as a quadratic programming problem in 
[32]. They illustrate that their method can achieve the 

competitive accuracy as the results obtained by Eq.3. 
The quadratic programming formulation is: 

2
1min ( ) || || || ||T

FC
f λ= +C XC - C C C          (4) 

s.t.  0≥C , diag(C) = 0 
Note that 1|| ||TC C is equivalent to T Te C Ce , 

where e is an all-one vector. The optimization (4) can 
be solved simply and efficiently with Spectral Project 
Gradient method (SPG) [33]. After obtaining the 
sparse representation coefficients for each point, the 
affinity matrix is defined as: 

| | | |T= +A C C                            (5) 

Then any spectral clustering method can be used to 
obtain the final clustering results. 

3.3 Construction of descriptor 

In section 3.1, some existing descriptors which are 
represented as histogram have been calculated. With 
N selected descriptors, we use Xi denotes a m×n fea-
ture matrix of the i-th descriptor, where m indicates 
the dimension of the i-th descriptor and n indicates the 
number of the models. That is to say, each column of 
the Xi indicates a feature vector of the corresponding 
model. We assume that if a model’s feature vector is a 
linear combination of some other models’, then these 
models are in the same class. Note that, since a 
model’s feature vector can be combined with a small 
number of other models’, the combination coefficients 
are sparse. So, our problem can be effectively solved 
by sparse subspace clustering theory. Eq.3 must be 
resolved for each descriptor. So they can be combined 
into a single optimization equation as follows: 

1
1{ ,..., } 1

min ( ) ( ,..., )
N

N

i N
i

f g
=

+∑C C
C C C                (6) 

s.t.  0i ≥C , diag(Ci) = 0, i = 1, 2, … , N 
where 2

1( ) || || || ||T
i i i i F i if λ= − +C X C C C C is the object 

function for the i-th descriptor, 
1 2,1 1( ,..., ) || || || ||Ng α β= +C C C C              (7) 

is the penalty function about C1,…, CN. C is a N×n2
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2
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and 2,1|| . || is the l2,1 norm defined as 
2

2,1 2
1

|| || || (:,  ) ||
n

i
i

=

=∑C C , C(:, i) denotes the i-th 

column vector of C, 2|| . ||  is the Euclidean norm, and 
the α≥0 and β≥0 are two parameters which are used to 
balance the effect of the two penalty terms. 
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The penalty function g(C1,…, CN) is very important 
for our Algorithm. The first term penalizes the column 
sums of the C, so that the column sums of C as sparse 
as possible. That is to say, the combination coeffi-
cients are big if these models are in the same class; 
otherwise the coefficients are small or close to zero. 
Then from the affinity matrix defined in Eq.5, we can 
see that the similarity value will be big if the model 
and the query belong to the same class, or the similar-
ity value will be small. The second term penalizes the 
overall sparsity of the C, which leads to the selection 
of the descriptors automatically. In other words, the 
feature vectors corresponding to the nonzero element 
of each column of the C constitute the subspace of the 
feature space, which play a key crucial role in identi-
fying the query and the model in the dataset. For each 
model, the coefficients corresponding to the selected 
descriptors are big, and the other coefficients are small 
or close zero. Therefore, these two penalty terms take 
the full consideration of the similarity of the model 
and help us select the important descriptors to measure 
the similar of the query and the model in the dataset. 
In this way, our new descriptor can integrate the ad-
vantages of all descriptors. 

In the previous stage, an affinity matrix A has been 
obtained by Eq.5. Next, any spectral clustering 
method can be applied to A, which not only returns 
the results of clustering but also returns the results 
embedded in the spectrum space. In our experiment, 
NCut method [34] is used to obtain the results em-
bedded in the spectrum space, which forms our new 
descriptor. Then, any dissimilarity measure is used to 
measure the similarity of the query and the model in 
the dataset. We use Euclidean distance as our measure 
metric and use V1 and V2 denote feature vectors of 
two models in our paper. Then the similarity between 
these two models is defined as: 

1 2 1 2
1

( , ) ( ( ) ( ))
k

i

D i i
=

= −∑V V V V              (9) 

where, Vj(i) is the i-th element of the Vj, j = 1, 2, k is 
the dimension of the feature vector. 

4. Results 

4.1 Experimental setup 

Dataset. In our experiments, we use Princeton 
Shape Benchmark database [2]. In order to facilitate 
experiments, our dataset consisted of 320 models 
which are obtained from 18 model classes. Some 
models are incomplete. On average a model contains 
2000 vertices and 3996 triangles. The pose of the 
models are very different. The query set consists of 34 
shapes taken from different classes of the dataset. 

Descriptors. In this paper, we use some existing 
global and local descriptors which are suitable for the 
subspace clustering method as our inputs. In the fol-
lowing, alldescriptors that are used in our experiments 
are listed as follows: 

Curvature Index (CI) [5]: defined as:  
2 2
1 2

2
κ κ+

 

where 1κ and 2κ are the principal curvature at a point 
on the model. 

Gaussian Curvature (GC) [5]: 1 2κ κ , where 1κ  
and 2κ are the principal curvature at a point on the 
model. 

Centricity Function (CF or AGD) [25]: measures 
the average geodesic distance from one vertex to all 
other vertices on the model. 

Extended Gaussian Image (EGI) [12]: a spherical 
function giving the distribution of surface normals. 

D1 Shape Distribution (D1) [14]: a histogram of 
distances between the center of the mass of the model 
and the arbitrary vertex on the model. 

Shape Histogram (SECSHEL) [15]: SECSHEL is 
the combination of the sector model and shell model, 
which measures the distribution of the vertices of the 
model. In this paper, we use 4 shell bins and 8 sector 
bins. 

All descriptors depicted above are histogram-based 
descriptors which not only describe the global proper-
ties of the models but also the local properties. In our 
experiments, we use 100 bins for CI, Gauss, AGD and 
D1, 16 bins for EGI and 32 bins for SECSHEL.  

Parameters. There are three parameters in our op-
timization function, which balance the effect of each 
penalty item. We set λ=1000, α=0.01, β=0.1 in all our 
experiments, which is not sensitive to different query 
models and always generates satisfactory results. 

4.2 Evaluation 

Precision-recall Curve[2]: For each query model 
in class S and any k top matches, “recall” (the hori-
zontal axis) represents the ratio of models in class S 
returned within the top k matches, while “precision” 
(the vertical axis) denotes the ratio of the top k 
matches that are members of class S. Recall and Pre-
cision measures the effectiveness of a retrieval method. 
The final result is an average over all the models in 
the query set. A perfect retrieval result produces a 
horizontal line across the top of the plot (at precision 
= 1.0), indicating that the k models returned and the 
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query are belong to the same class. Otherwise, curves 
down. 

Nearest Neighbor [2]: For each model in dataset, 
check whether the first match belongs to the same 
class as the query. The final result is an average over 
all the models in the query set. It is clearly that an 
ideal score is 100%, and higher scores indicate better 
results. 

First/Second Tier [2]: The percentage of models in 
the query`s class that appear within the top k matches, 
where k depend on the size of the query`s class. For 
example, if the query`s class has n models, then k = n 
-1 for the first tier and k = 2×(n - 1) for the second tier. 
The final result is the average over all the models in 
the query set. It is clearly that an ideal score is 100%, 
and higher scores indicate better results. 

4.3 Our results 

Some results of our algorithm will be shown in this 
section. For example, the retrieval results shown in 
Fig.3. The leftmost of the Fig.3(a) and Fig.3(c) are the 
query models (ant and monster) and the right five 
models are the first five matches which belong to 
same classes as the queries. These figures illustrate 
that our algorithm is robust to non-rigid transforma-
tion. Although the query of the Fig.3(c) is an incom-
plete model, the results are not affected. In other word, 
our method also can handle incomplete models. 
Fig.3(b) and Fig.3(d) are the similarity distance maps. 
The distances are scaled to between 0 and 1. They in-
tuitively show the similarity distances between queries 
and the model in the dataset. The smaller the distance, 
the more similar of the two models. From these fig-
ures we can see that the similarity distances between 
the queries and the model in the queries’ classes are 
smaller than the other models. These results fully 
show the robustness and effectiveness of our ap-
proach. 

Fig.4 shows the top 10 matches for some queries. 
The images in the leftmost column show the query 3D 
models, while the columns on the right show the clos-
est matches among the 3D models in the dataset. Ob-
viously, for each query, all top 10 models returned and 
the query are belong to same class. 

4.4 Comparison with other methods 

In this section, we compare our method to some 
state-of-the-art methods for 3D shape retrieval. To 
evaluate the proposed method, each 3D model of the 
query set is used as a query object to retrieval the rest 
models of the dataset and a rank list is produced for 
each query. The final results are obtained by averag-
ing over all the models in the query set. 

 
(a) 

 
(b) 

 
(c) 

 
 (d) 

Fig. 3. Retrieval results of our approach. The leftmost of 
Figure (a) and (c) are the query models and the right five 
models are the first five matches. Figure (b) and (d) are the 
distance maps of the queries corresponding to Figure (a) 
and (c) respectively. Horizontal axis represents the model 
number and the vertical axis represents the similarity dis-
tance (green points) between the query model (red) and the 
model in the dataset. The top line of the figures mark with 
the class names (blue) of the models. 

 
Fig. 4. Top 10 matches for each query of our method. 

At first, we compare the performance of our 
method with the descriptors used in our algorithm 
which are depicted in subsection 4.1. Fig.5 is the Pre-
cision-Recall (PR) curves of the results which show 
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that our method obtains the best result (The top line of 
Fig.5). That is to say, any single descriptor cannot 
achieve our performance. The PR curve of our method 
almost close to level at precision equals to 1. Each 
descriptor has its own advantages and disadvantages. 
Our method integrates almost all the advantages of 
these descriptors. 

 
Fig. 5. Precision vs. recall curves for our method and the 
descriptors used in our approach. 

Fig.6 shows the comparison of the retrieval per-
formance of our approach with those of the others. 
They are Light Field Descriptor (LFD) [17], LFD used 
in spectral embedded space (new_LFD) [19], D2 
shape distribution (D2) [14], Eigenvalues Descriptor 
(EVD) [19] and Poisson Histogram (PH) [16]. Each 
curve plots the graph of “precision and recall” aver-
aged over all 320 classified models in the test dataset. 
From Fig.6 we can see that our curve is located above 
all of the curves which mean that our approach per-
forms well than the others. Table 1 shows the nearest 
neighbor, and First/Second tier of these methods and 
our approach. The values measure the performance 
and accuracy of the methods. 

We can see from the results of the comparison that 
our method is robust and efficient. It can not only deal 
with the incomplete models and nor-rigid models, but 
also obtain high retrieval accuracy. 

4.5 Large dataset 

Our method can handle large dataset. Given a query 
model and a large dataset, we divide the dataset into N 
subsets randomly so that each of the subsets contains 
only hundreds of models. The sparse subspace method 
is used on each subsets and query. Within each subset, 
the similarity distances between query model and the 
model in this subset are calculated and sorted in as-
cending order. The top k matches of each subset form 
a new dataset. Then the sparse subspace clustering 
method is used on this dataset again to obtain our final 
results. 

 
Fig. 6. Comparing the performance of our method with 
some other approaches. 

Table 1. Nearest Neighbor and First/Second Tier of these 
methods and our method. 

- Nearest 
Neighbor First Tier Second Tier 

Ours 100% 98.56% 49.75% 

LFD 95.42% 51.67% 33.73% 

New_LFD 81.82% 58.37% 35.89% 

EVD 72.73% 28.71% 20.33% 

PH 54.55% 45.93% 29.90% 

D2 72.73% 30.62% 24.16% 

5. Conclusions 

In this paper, we proposed a new mechanism to use 
several existing descriptors. It automatically selects 
some descriptors which play a key role in measuring 
the similarity between the query and the model in the 
dataset by sparse subspace clustering theory. It pro-
duces a new descriptor which integrates almost all the 
advantages of these descriptors. Experimental results 
show that our algorithm is a pose-oblivious method 
which is very efficient and robust under complete and 
incomplete models. 

However, our approach still has some shortcomings. 
Firstly, the descriptors selected must be histogram 
based. Because the histogram based descriptors have 
the characteristic of sparse representation and can be 
applied to the sparse subspace clustering theory. Sec-
ondly, our algorithm cannot handle the models of dif-
ferent scale, so all of the models must be scaled to the 
same scale in the preprocessing step. 

In the future works, we plan to develop a new op-
timization function such that some of the descriptors 
that are not histogram based can be used. To deal with 
scale issues, we will utilize some descriptors that scale 
invariant, for example the descriptor proposed by 
Bronstein et al. in [26]. The models used in our paper 
are from Princeton database provided by Shilane et 
al.[2]. 
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