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Abstract The Laplace-Beltrami operator (LBO) is the fundamental geometric ob-
ject associated with manifold surfaces and has been widely used in various tasks in
geometric processing. By understanding that the LBO can be computed by differ-
ential quantities, we propose an approach for discretizing the LBO on manifolds by
estimating differential quantities. For a point on the manifold, we first fit a quadrat-
ic surface to this point and its neighborhood by minimizing the least-square ener-
gy function. Then we compute the first- and second-order differential quantities by
the approximated quadratic surface. Finally the discrete LBO at this point is com-
puted from the estimated differential quantities and thus the Laplacian matrix over
the discrete manifold is constructed. Our approach has several advantages: it is sim-
ple and efficient and insensitive to noise and boundaries. Experimental results have
shown that our approach performs better than most of the current approaches. We
also propose a feature-aware scheme for modifying the Laplacian matrix. The mod-
ified Laplacian matrix can be used in other feature preserving geometric processing
applications.

Keywords Laplace—Beltrami Operator - Discretization - Differential Quantities

1 Introduction

The Laplace—Beltrami Operator (LBO), also called manifold Laplacian, is a fun-
damental geometric object associated with a Riemannian manifold. Discrete LBO,
which is also called Laplacian matrix, has been quite widely used in spectral analysis
on discrete surfaces [3, 14,36] and various tasks of geometric processing [7,9, 17,25,
26].

A number of discretizations of the Laplacian for discrete surfaces have been pro-
posed. Most existing discretization methods are based on the definition of LBO which
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Fig. 1 The Fiedler vectors of our method on four centaurs with different poses. Fiedler vector is the
eigenvector associated with the first non-zero eigenvalue.

is defined as the solution of an integral equation. Thus they have similar forms of
cotangent scheme [22] over meshes based on the Finite Element Method (FEM) with
different assumptions. The works of [5] and [18] define the Laplacian matrices over
point clouds by an integration process via an edge weighting matrix.

However, existing discretization methods suffer from a few problems. Graph-
based or FEM-based methods are based on the computation of finite differences of the
LBO and the convergence of these methods can be established for only special classes
of meshes. These methods may be sensitive to mesh density and noise and have poor
performance on the boundary of the non-closed meshes. Other methods adopt some
integral forms [5, 18], which rely on sampling rates to produce meaningful discrete
operator and are generally computationally expensive.

We have observed that in differential geometry [8] the LBO can be defined as
a more essential form (see Equation (1)) in which only the differential quantities
of no more than second order are involved. That means the LBO at a point can be
characterized by the first- and second-order differential quantities at that point. This
inspires us to believe that the LBO can be computed by estimating the differential
quantities which captures the essence of the manifold.

We propose an approach for discretizing the LBO on manifolds from the differ-
ential quantities. For a given point on the discrete manifold, we fit a quadratic surface
over the point and its neighborhood in a least-square sense. First- and second-order
differential quantities are computed by those of the approximated quadratic surface.
Then the discrete LBO at this point is computed from the estimated differential quan-
tities and thus the Laplacian matrix over the discrete manifold is constructed.

Our approach is easy to implement and is fast as it involves solving only 5 x 5
linear systems. It has almost all the desired properties on the Laplacian matrix. Due
to the local fitting process, our approach can handle either mesh surfaces or point
clouds and is insensitive to data noise. Furthermore, it handles boundaries and non-
uniform sampling well. Detailed analysis and comparisons to previous approaches
are found in Section 4 and 5. Figure 1 illustrates the Filder vectors of our method
on four Centaurs models. We also propose a feature-aware scheme for modifying the
Laplacian matrix which is quite useful for feature preserving geometric processing.

The contribution of our work is summarized as follows:

— An approach for discretizing the LBO from differential quantities is proposed.
— The proposed approach performs better than most existing methods.
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— A feature-aware scheme is proposed for modifying the Laplacian matrix which is
very useful for feature preserving geometric processing.

In this paper, we also comprehensively put forward a C® modification and com-
pare our method with previous ones comprehensively. The LBO obtained by our ap-
proach performs better than most existing methods. We believe that this fundamental
work would benefit various applications in geometric processing and would inspire
other works in this field.

2 Basic Notation and Previous Methods

There have been a number of works on spectral analysis on discrete surfaces during
the last two decades [7,14,26,31, 35, 36]. First, we review some basic notions that
will be employed in this work:

2.1 Laplace—Beltrami operator

It is well known that differential geometry provides a convenient basis for describ-
ing the behavior of a shape. In differential geometry, the Laplace operator can be
generalized to operate on functions defined on surfaces in Euclidean space and more
generally on Riemannian manifolds. This general operator is Laplace—Beltrami oper-
ator. Like the Laplacian, the Laplace—Beltrami operator is defined as the divergence
of the gradient, and is a linear operator taking functions into functions.

Definition 1 Let S be a surface r(u,v) of parameters (u' = u,u’> = v) with metric

matrix gop =< 25, ;Trﬁ >, g =det(gqp), (8*P) = (g4p) " The Laplace-Beltrami

operator on a function f is defined as:
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2.2 Previous Methods

Geometric shapes are often represented as 2D curved surfaces, 2D surface meshes
(usually triangle meshes with geometric positions), 2D surface point clouds (sets of
points without connectivity) or 3D solid objects (e.g. using voxels or tetrahedra mesh-
es). Numerically, discretizing LBO operator represents constructing a Laplace matrix
L with Ag f, =~ Lf|, where f is the discrete sampling of the function f over the discrete
surface and p is one point on the discrete surface. Laplacian matrix is an analog of the
continuous Laplace operator, defined so that it has meaning on a graph or a discrete
grid. Several discretizations of the Laplace—Beltrami operator exist for the different
types of geometric representations as mentioned below.

Generally, the most common Laplacian matrix on 2D surface meshes is the weight-
ed graph Laplacian L = (a;;) defined by

;; >0, if (i, /) is an edge
aij=9q —Lj#i0ij, =] (3)
0, otherwise.

There are various graph Laplacians defined in the literature. These include normal-
ized graph Laplacian (GL), Kirchhoff Laplacian (KL), and Tutte Laplacian (7'L) [20,
24,28, 35]. KL simply uses the uniform weighting @;; = 1. GL has the entry as
GL;j =1/,/d;id; and TL has the entry as TL;; = 1/d;. Here d; stands for the degree
of ith vertex on the mesh. These methods are simple since they only use connectivity
information of the given mesh, thus they do not reveal the geometry of the mesh. And
they are quite sensitive to the density of the points on mesh.

The works of [3,6,7,19,23,27,30] apply edge or cotangent weighting Graph
Laplacian to various applications. [1] discusses the consistency of these methods
using Finite Element Methods (FEM) and Discrete Exterior Calculate (DEC). [32]
and [34] attemp to prove convergence of these methods under some assumptions.
Only [7] and [19] guarantee the convergence when their methods are applied to some
special classes of meshes such as meshes with all valence 6. [4] proposes an ap-
proximating algorithm with point-wise convergence guarantees. [33] gets the discrete
approximation of differential operators via local quadratic fitting. However, most of
these methods are sensitive to noise and can hardly handle the boundaries.

The graph-based methods cannot define the Laplacian on point cloud due to the
lack of connectivity information. The works of [5] and [18] study the generation of
the discrete Laplace—Beltrami operator over point clouds. They construct the connec-
tivity in the local neighborhood of each point by projecting the neighborhood onto
the tangent plane and use edge weighting matrix to stand for the Laplacian matrix.
These methods adopt an integral equivalent definition which might be sensitive to the
sampling rates of the data and the boundaries. Moreover, they are computationally
expensive [18].

It is worth noting that our work has much similarity with two very recent pa-
pers [16,33] on constructing the discrete Laplace-Beltrami operator. All three works
share the similar idea to construct differential operators by computing differential
quantities through local quadratic approximation and have almost same pipeline in
the discretizing process that consists of local parametrization, local approximation,
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and matrix construction. However, these three works are coincidentally developed
from different motivations and applications. [16] uses the discrete differential opera-
tors, which extends the discretization method in [15] by taking the discrete Laplace—
Beltrami operator as a tool to understand the geometry, to solve partial differential
equations on manifolds represented by meshless points. [33] adopts local quadratic
fitting to discretize differential operators on manifold and analyzes the convergence
of these operators. [16] focuses on applications and behavior in solving partial differ-
ential equations while [33] concentrates on mathematical properties of these discrete
differential operators.

Our work addresses some fundamental problems in computer graphics including
compression, smoothing, and spectral analysis. In our work, we further propose a
feature-aware modification of our Laplacian matrix which is applicable for well han-
dling the 3D meshes with sharp features in the applications of computer graphics.

3 Laplacian Matrix from Differential Quantities

It is observed from (2) that the LBO operator can be computed utilizing differen-
tial quantities, of no more than a second-order computation of the geometry and the
derivatives of the function f. Thus being able to numerically compute the differential
quantities and the derivatives of f is essential to our method.

3.1 Local quadratic approximation

Let p = (x,,Yp,2)7 be a point on a surface S embedded in R?. The surface can be
described by a certain parametrization of two variables r(u«,v) which is smooth in
the vicinity of point p. A second-order asymptotic expansion of the surface in the
neighborhood of p then yields:

r(u,v) —p = r(u,v) —r(0,0)
=1,(0,0)u+1r,(0,0)v 4
+314,(0,0)u? +1,,(0,0)uv @)
+3T(0,0)0% + 0(u? +12).

Here we assume r(0,0) = p without loss of generality.

The main idea of our approach is to fit points in the vicinity of a reference p us-
ing a parabolic approximation (i.e., quadratic polynomial surface), and then compute
differential quantities of the underlying surface. The parabolic surface can be used
for approximating the derivatives of a certain function on the surface. And the ob-
tained differential quantities are used for discretizing the Laplace—Beltrami operator
according to equation (2). The approximation procedure is illustrated in Figure 2.

Suppose that the discrete surface M = {p;}Y | is a sampling from the underly-
ing surface S. The input data {p;}", can be a mesh or point cloud. Let % (p;) =
{x1,"++,X¢} be the k-nearest neighbors of a fixed p;. The k-nearest neighborhood can
be obtained via the Approximate Nearest Neighbor algorithm [2].
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Fig. 2 The procedure of local quadratic approximation: (a). the neighborhood construction; (b). the local
frame estimation; (c). the approximated underlying surface.

First, we apply a simple Principle Component Analysis(PCA) [11] scheme to
estimate a local frame of surface at p;, and then get a local parametrization (u,v) in
its neighborhood. Denote the positional matrix Cs« as

¢ =Xj—Pi,

where ¢; is the jth column of C. Let €1, €2, e3 be the three eigenvectors with their cor-
responding eigenvalues in descending order of the correlation matrix CCT. According
to the theory of PCA, e and e, can be considered as the direction of local parameters
while e3 can be considered as the rough normal. Here the rough normal means the
normal is not the exact normal of the surface. Actually {p;;u =e;,v=-e;,n = e3}
forms a local orthogonal coordinate system. The coordinates of x; under this local
system are given by
uj = (X; _XO)TU, vi=(Xx; —Xo)TV,hj = (x; —Xo)Tn.

Then, according to the asymptotic expansion (4), the underlying surface can be

second-order approximated by a paraboloid:

u
q(u,v) = v 5)
q(u,v)

where ¢ = (c1,¢2,¢3,¢4,¢5)7 and q(u,v) = (u,v, %uz,uv, %vz)c. The local quadratic

approximation model in least-square sense can now be set up:
. 2
minZ(q(uj,vj)—hj) . (6)
j=1

The optimal solution of (6) is easily obtained as

¢ =(0"0)"'Q"h, )
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where h = (hy,--- ;)T and
ui vqi %u% uivi %V%
e N E ®

1.2 1.2
Uup Vi iuk Up Vi jvk

Let f be a function defined on the surface S and {f(p;)}Y, is the discretization
of fon.# = {p;}'_,. Denote

—11---0
Eo=(1L)=| : . | erxksD,
and
a]
a
A=| a3 =(0"0) 0" E. ©)
a4
A5/ sx(kr1)

With these row vectors {a;,a;,a3,a4,a5}, we can use the discrete function values on
M to estimate its derivatives. As a result, we have

P 32 32 (10)
Tu}; ~ a3fi’ ¢9u3fv ~ a4fi’ Tv{ ~ ast;

{ ? ~ alfi % ~ an,'7
where xo = p; and f; = (f (%), f(x1),-+, (%))
Remark. The construction of local quadratic surface would fail if Matrix Q de-
fined in (8) becomes singular. In this case, one could use the Moore—Penrose inverse
(QTQ)* instead of (Q” Q)~! like [33]. Then a least-square solution with minimal /2
norm is found. But in our implementation we use a simpler but practical way to get
rid of singularity which is to expand the size of the current neighborhood. Actually
the default size of neighborhood is set as 18 and the singularity barely occurs.

3.2 Construction of the Laplace—Beltrami Matrix
At point p; the surface is locally approximated by

q(u,v) = (u,v,q(u,v))", (11)

where ¢(u,v) = ciu+cov+ %cwz + cquv + %csvz.



8 Ruimin Wang et al.

Theorem 1 [fthe surface has the form of (11), the differential quantities used in (2)
at (0,0) can be computed as:

(gaﬁ) |Pi = (

g =det(gop)lp, = 1+t +c3,

1—|—c% c1co
cicr 1+c§

(12)
G o
op _ | 1+G+G 143+
(g ) |pi - 7c11022 Hic% : ’
1+c3+c3 14+c3+c3
and
811 = 2cic3,
812u = §21u = C1C4 +C2C3,
82ou = 2¢2¢4,
811y = 2c1¢4,
812v = 821y = C1C5 +-C2C4,
822y = 2ca05;
1
8u = 2c1c3+2ca04, (13)
&v = 2cic4+ 2cp¢5;
gi; = (gl-gzzu —£2284)/8°, .
g =282 =—(g 8124 —81284)/8",
g;; = giz =—(g-g12v— g212gv)/827
g = (g-g1v—2g118v)/8"-
dg dg 98ap 98ap Ig*P 9g%P
Here we denote 8757975’ #’ aiﬁr §u ) §V by 8u>8v» gaﬁuag(xﬁw gllfﬁyg\()xﬁ; re-
spectively.
Proof Since the surface has the form of (11), the first-order derivatives are:
qu = (1,0,c1 +c3u+cqv)”, (14)
q,=(0,1,c0+ C4L£-|—C5V)T.
So, we have
g1 =<Qu,qu >=1+(ci +cau+cav)?,
812 =821 =< qu,qy >= (c1 +cau+cqav)(co+cau+csv), (15)

=< q,qy >= 1+ (c2 +cau+csv)?.
According to their definition, the metric matrix, its determinant and the inverse are
given as

).

822

1+ (c1 +c3u+cqv)?

( ) B (c1 4 c3u+cqv)(ca+ cau+csv)
Sap) = (c14c3u+cav)(ca+ cau+csv)

1+ (c3 + cau+csv)?

g =det(ggp) = 1+ (c1+c3u+cav)? + (c2 + cau+csv)?,

1+ (cp+cqutesy)? —(c1t+cauteav)(catequtcsy)
( gaﬁ ) _ I+g I+g 5 .
—(c1+esuteav)(eatequtcesv) I+(c1+cauteqv)
I+g 1+g

(16)
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Let (,v) = (0,0), it is obvious that (12) is established. Referring to the first equation
in (15), we have

8l = %(1 + (c1 + c3u+cqv)?) = 2¢3(ct + c3u+cqv),
gy = %(1 + (c1 4 c3u+cav)?) = 2¢4(c1 +c3u+cqv).

At (0,0), it is reduced to
g1 = 2c1¢3, g11v = 2c1¢4.
Similarly, the first six equations in (13) can be established. Meanwhile,

gu = 2c3(c1 + c3u+cqv) +2c4(cr + cau+csv),
gv="2c4(c1 +csu+cav)+2cs(cr + cau+csv).

This stands for g, = 2cic3 + 2ca¢4, 8 = 2¢1¢4 4 2¢2¢5 at (0,0). Since (g*F) =
(gap) "> 8" = g22/8. According to the chain rule, we obtain

g},l = (8- 82u— gzzgu)/gz,
83,2 = gﬁl =—(8"g12u *glzgu)/gza
& =& =—(g g1 —g128)/8"
& = (881 —818)/8"
So the rest of the theorem is proved.
O
So far we have computed all the differential quantities involved in (2) and are
ready to discretize the Laplace—Beltrami operator. With the help of these geometric
quantities and the derivatives in (10), it is straightforward for us to attain an estimator
of Agf/|p,; in closed form
Asflp = bifi,
where the row vector b; = [ (gug'! +gvg") + (g +&)a1 + [5; (8ug"> +8187%) +
(812 + g22)]ay + g''az + 2g12ay + g?2a5 € REH1,
Foreachie {1,---,N}, we bring in a selection matrix §; € R&1)*N which holds
0 or 1 as possible components and satisfies

(pi;xlv"' 7Xk) = (plapZa"' 7pN)SlT

It is apparent that f; = S;f with f = (f(p1),---, f(pn))? € RV. Let Lyy € RV*N be the
discrete Laplacian matrix. Then we have

(Luf); = Lif = bf;,

where obviously L; = b;S;. Eventually we get a discretization of Laplace—Beltrami
operator and the corresponding discrete Laplacian matrix
L
Ly=1] 1 |]. 17)
Ly
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4 Discussion

Since the Laplacian matrix constructed in Section 3 is a discretization of Laplace—
Beltrami Operator on 3D objects, we want the matrix to own some desired properties.
[31] discusses a few properties previous Laplacian matrices had/did not have. Here
we list and prove the properties our Laplacian matrix satisfies.

4.1 Properties of the Laplacian matrix

Property I (NULL): Ly,f = 0 whenever f is a constant function on the surface.

Note that (Lyf); = b;f; automatically implies that Ly, satisfies (NULL) since f; is a
constant vector and Eif; = 0. a

Property 2 (LIN). Linear precision: Lyf = 0 whenever M is part of the Euclidean
plane, and f is a linear function on the plane.

The characteristic of least-square method guarantees that the obtained local surface
is part of a plane if the sampling points all lie on one certain Euclidean plane. Mean-
while the estimated coordinates {c;} and row vectors {a;} are also all precise since
least square can reconstruct linear signals accurately. So Ly/f equals O at any sampling
point since the real LBO of a plane equals 0. a

Property 3 (LOC). Locality: Altering the function value of a distant point will not
affect the action of the Laplacian locally.

The desired property is that for any pair p # q, A f(p) is independent of f(q). But it
is unable to be obtained numerically. So often as not, locality means the Laplacian at
one point is associated with a small number of points. This is easy to explain while
noting that the number of non-zero elements in one row of Ly is k. a

There is another important property of a desired discrete Laplacian matrix:
(Symmetrization). Consider a smooth surface S, possibly with a boundary, equipped
with a Riemannian metric. Denote the intrinsic L> inner product of functions ¢ and
yonSby <@,y >= [(¢ydo. The Laplace—Beltrami operator Ag is self-adjoint,
ie, < Agd,¥ > =< ¢,Asy >;>» whenever ¢ and y are sufficiently smooth and
vanish along the boundary of S.

When discretizing the surface S into M, the inner product in L?(S) does not corre-
spond to the Euclidean inner product in RY. So the self-adjoint property of Laplace—
Beltrami operator cannot launch in the symmetry of the discrete Laplacian matrix.
Therefore, the requirement for the symmetrical Laplacian matrix Ly is unreasonable.
Largely, the desire for symmetry is based on the following motivation: Real symmet-
ric matrices exhibit real eigenvalues and orthogonal eigenvectors. One alternative is
to construct a symmetrizable Laplacian matrix, i.e., the matrix can be symmetrized
under similarity transformation.

Of course, our method does not provide the symmetric Laplacian matrix. General-
ly, it is difficult to prove that the Laplacian matrix is symmetrizable. In the numerical
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Fig. 3 Left figure demonstrates the relationship between approximation and size of neighborhood. Right
figure demonstrates the influence of deflected normals on approximation quality. Approximation error vs
size of neighborhood.

experiment, we find that most eigenvalues and eigenvectors of our Laplacian matrix
are real. This might indicate that our Laplacian matrix is probably symmetrizable, but
we cannot prove it yet.

Remark. [33] proposes a comprehensive proof of point-wise convergence of various
discrete differential operators. And the convergence of our operator can be consid-
ered as a special case whose results can be summarized in the following manner:
If the matrix Q defined in formula (8) is nonsingular meaning that the parametric
neighbor is well-posed for quadratic fitting, the value of discrete LBO at x¢ has linear
convergence. Additionally we would like to refer the interested reader to Xu’s work
for further discussion about the convergence.

4.2 Parameter settings

Size of neighborhood k is a parameter related to our algorithm which determines
the number of points used in the approximation process. It is necessary to discuss
how much k would influence the final result. Consider the surface z = x> +y? and
its discretization around point p = (—1,—1,2)7. Denote the n-nearest neighbors of p
by {x;}_; where n = 40. Let {qgk) "_1 be the points corresponding to {x;} on the
quadratic surface approximated by k-nearest neighbors (12 < k < 40). The quality

of approximation is measured by error ,/%ZHpi —qi||? in the sense of ||.||>. It is
obvious that the result is already good enough with small k, and quality improvement
of fitting is limited, as shown in Figure 3 (right side). So we choose 18 as default in
our algorithm.

Here we also show the evidence and claim that very rough normal vectors can be
used to parameterize the points in local quadratic approximation. For three surfaces:
z=x"+y%, x> +y*+ (z—1)*> = 1, z = sin(x) sin(y), with an exact normal vector
(0,0,1)7 at the point p = (0,0,0)”, we observe the approximation error with noisy
normals (no more than 45 degrees random rotational deviation in the origin normal
direction). Even when the normal deviation climbs up to 45 degrees, the error is still
small, as shown in the right figure in Figure 3 (right side).
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5 Applications and Comparison

To date, discrete spectral analysis is a popular tool in digital geometric processing.
Here we briefly introduce some common applications taking advantage of the Lapla-
cian matrix.

5.1 Applications

The Laplacian matrix could be regarded as a filter of signals on a surface and has been
used to smooth and optimize the meshes [7, 10, 20, 26]. They also have been used
in mesh editing [24] and mesh parameterization [6, 13]. The fundamental Laplace
smoothing model for these methods can be represented as:

n}(in||LX||2+/'L||X—Y||2. (18)

Here L denotes the Laplacian matrix, X denotes the optimized coordinate matrix of
surface and Y donates the input coordinate matrix. A is called a tuning parameter
since its value determines whether the optimized surface is to be smooth or be close
to the input surface. Figure 6 shows the result of Laplace smoothing using different
kinds of Laplacian matrices.

The eigendecomposition of the Laplacian matrix provides a set of eigenpairs
which are widely used in many fields. The eigenpairs are obtained via the solving
traditional eigenproblem:

(L_uil)ei:()aizla"'aN' (19)

Here, I is identity matrix, y; is the eigenvalue and e; is the corresponding eigenvec-
tor. The eigenvectors {e;} can be considered as a set of bases onto which functions
on manifolds are projected. The spectral transform coefficients could be further ana-
lyzed or manipulated. In [12], they project the manifold itself onto the spectral space
spanned by a small number of eigenvectors corresponding to the eigenvalues with s-
mallest magnitudes. The coefficients associated with larger eigenvalues are removed
to reduce the storage space required for mesh geometry. Figure 5 shows how this
method is used to compress a mesh surface by 150 eigenvectors with different Lapla-
cian matrices.

Spectral shape analysis that relies on the spectrum (eigenvalues and eigenfunc-
tions) is one technique in geometric processing since the spectrum is invariant under
isometries. [29] shows a recent survey about spectral clustering and [3] provides a
classic method. [17] performs mesh segmentation through spectral clustering. [21]
introduces a way to improve the result of shape correspondence through eigenvectors
of Laplacian matrix.

5.2 Comparison with Previous Methods

We compare our approach with four representative previous methods in this sec-
tion, i.e., the KL Laplacian [35], the Cotan Laplacian [22], the FEM Laplacian [19],
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Model information and running time (in millisecond)
Moldel # Vertices | Ours | KL Graph | Cot Graph | FEM | PB-MHB
Half-Sphere 5,102 219 116 130 145 | 168,000
(Figure 6)
Centaur 15,768 687 206 280 311 | 831,000
(Figure 1)
Un-uniform 28,643 | 1,098 546 590 671 | 1,121,000
Bear (Figure 5)
Un-uniform 28,562 | 1,023 512 574 611 | 1,134,000
Ant (Figure 5)

Table 1 In this table, we indicate the number of points and timing for constructing different kinds of
Laplacian matrix.

and the PB-MHB Laplacian [18]. The programming code of the PB-MHB method
was provided by the cited authors. We supplemented this information with our own
method and the other methods. Since [33] and our method both discretize Laplacian
operator via local quadratic fitting, the performance of these methods are quite sim-
ilar. Additionally, [33] is a simultaneous work, here we do not compare our method
with his.

5.2.1 Timing

Graph-based methods, KL. Graph, Cot Graph and FEM methods are very fast since
the graph has already been determined and traversal over vertices and edges is easy
to achieve. Our method has more specific details since we need to construct the k-
nearest neighborhood, approximate quadratic surface in the sense of least square and
compute differential quantities. Fortunately, this procedure is not time consuming.
Table 1 shows the time cost of all five methods. The time cost of our method is
acceptable comparing to graph-based methods and much lesser than PB-MHB. PB-
MHB costs too much time in their Voronoi Cell Estimation step.

5.2.2 Precision of Laplacian matrix

To discuss the convergence of each method, we test several functions on two different
domains with known analytical solutions of LBO on it. Scale-independent methods,
such as KL Graph and Cot Graph, are not able to reflect LBO values on functions. So
here we only compare our method with FEM and PB-MHB. The first domain consists
of random sampling points from a bounded plane. Test functions are f =x+y, f =
x%>+y? and f = " + ¢ with ground truth under LBO, ie., Lsf =0, Lsf =4, Lsf =
e* 4 ¢”. Error is computed in both the entire and interior region. Here entire region
means we also compute the error on the boundary of the domain. Next, we select a
regular unit sphere as our second domain. Two spherical harmonic functions f = z
and f = 37> — 1 are tested. These functions under LBO are Lo f = —2zand Lo f =
—18z% + 6 since they are eigenfunctions with eigenvalue —2 and —6, respectively.
Error is then measured in the sense of both || Lyf — (Asf) |2 and || Laf — (Asf)ar]|os
where (Agf)y is the discretization of function Agf on M. Table 2 shows the result.
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Precision Comparison

‘ . Ours FEM PB-MHB
Domain Test Function Entire Interior Entire Interior Entire Interior
N T2 | 1.6(=7) | 1.4(=7) | 48(1) | 7.2(—=4) | 2.1(3) | 1.6(2)
Ty T 1 28(=6) | 2.6(=6) | 35(3) | 65(—2) | 8.0(d) | 12(4)
22 [ [T3(=8) [TO(=8) | 17(3) [ 86(-1) | 24(3) | 21(2)
Y e | 40(=7) | 33(=7) | 1.3(5) | 2.9(1) 1.05) | 1.6(4)
vt LI [78(4) [57(=4) [ T4(3) [62(-1) [ L1(3) [ 36(2)
¢ e | T4(=2) | 80(=3) | 9.8(4) | 17(1) | 74@) | 124

12 | 8.0(=5) - 1.5(=3) - 9.2(—5) :

z e | 1T4(=3) - 51(=2) - 23(=3) -

32 1 2 [ 93(=5) - 2.4(—3) - 1.2(—4) -

e | 2.5(=3) - 8.8(—1) - 3.5(=3) -

Table 2 The error between functions under real Laplace—Beltrami Operator and discrete Laplacian matrix.
The error is measured under both /; and /.. norm. Three Laplacian matrix, two domains and five functions
are involved. The element a(b) in the table stands for a x 10°.

Irregular
Eight

Ours

KL
Graph

Cot
Graph

FEM

PB-MHB

Co
Co
Co
Co
Co

HEHRY
5588
85584
§§894
5585

Fig. 4 Eigenvectors associated with first 6 non-zero eigenvectors of all five kinds of Laplacian matrix.
From top to bottom, it is the result of our method, KL graph, cot graph, FEM, PB-MHB.

Our method has the best precision; the FEM method is quite sensitive to the boundary;
PB-MHB saw the worst result on plane and a much better result on sphere. This is
probably why they have claimed in their paper that it would be best if the given
surface is close.

5.2.3 Robust to density

Ideally, the Laplacian matrix should not be sensitive to the sampling of the given
discrete surface. But unfortunately, KL Graph and Cot Graph are quite sensitive to
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Input Mesh Ours KL graph Cot graph FEM PB-MHB

~ * ~ » » . ~ 4

Fig. 5 Compression results for irregular mesh with 150 eigenvectors. From left to right: our method, KL
graph, Cot graph, FEM and PB-MHB.

density since they do not contain the information about local stiffness. Figure 4 shows
the six leading eigenvectors (corresponding to the six smallest eigenvalues) of a non-
uniform Model Eight of different methods. Our method, FEM and PB-MHB are able
to stay good; KL Graph and Cot Graph get rather bad and unreliable results. Figure 5
shows the result of a compression algorithm we introduced above with 150 eigen-
vectors on a non-uniform mesh. Our method and FEM preserves the shape of both
irregular Bear and Ant; PB-MHB produces bad results with the ant because there are
some ridges on it; KL Graph and Cot Graph fail in both situations.

5.2.4 Robust to Boundary

Graph-based methods are all very sensitive to the boundary because of the loss of
graph information at the boundary. So usually one has to modify the Laplacian ma-
trix before using it if the given mesh contains boundaries. On the contrary, our method
which is based on an approximation scheme stays stable to the boundary. Table 2 al-
ready shows that FEM and PB-MHB get singularity at the boundary numerically. To
illustrate what this would bring, we apply classic Laplace global smoothing intro-
duced above on a noisy half-sphere. As shown in Figure 6, only our method achieves
a good result. Other graph-based methods all degenerate at the boundary. PB-MHB
even gets a singular result in (f).

5.2.5 Conclusion

‘We have compared our method with four representative methods. Table 3 gives a brief
conclusion. First, we compare the properties mentioned in [31]. Notice that we get
different conclusions about (LIN), because we believe that FEM and PB-MHB just
own (LIN) in the interior region. Other conclusions are the same as [31]. The reason
we say that PB-MHB does not have the property of (LOC), is that the number of
non-zero elements of their matrix is too big. In conclusion, our method owns most of
the properties such as with higher precision, robust to boundary which is the problem
of all the graph-based methods, and robust to density. What’s more, our method does
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[=
(a). Noisy Mesh (b).Ours (c). KL Graph

(d). Cot Graph (e). FEM (f). PB-MHB

Fig. 6 Global Laplace smoothing on a noisy half-sphere. (a) Given noisy mesh; (b)-(f) the smoothing
results of Our method, KL Graph, Cot Graph, FEM and PB-MHB.

Comparison Results
Property Ours | KL | Cot | FEM | PB-MHB
(NULLL.) SR aras v
(LIN.) vV [ XX ] X X
(LOC.) VIV X
(SYM.) X |1vi]iv]X X
‘Work for / >< X X ‘/
Point Cloud
Fast to
Compute 4 v v 4 X
Robustlo /| X | X | v v
ensity
Robust to
Boundary 4 X X X X
Scale
Dependent v X X 4 v
Bayto |y X
Implement

Table 3 Final comparison of previous methods. It is marked with checkmark or X-mark for having or not
having the property. Our method performs the best.
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(b) Feature-aware Modified Laplace Matrix

Fig. 7 Four eigenvectors of our Laplacian matrix without (a) and (b) with modify.

“\-’“ ‘)wf
o L,(:
AR
¢ , ?t?
&=

f

AR
(
\

-]
J
807 M P o s '
(a) Noisy Fandisk (b) Oridinary (c) Modified

Fig. 8 The result of global smoothing on a noisy Fandisk (a), with ordinary (b), and modified (c¢) Laplacian

matrix.

not care about the form of input, is almost as fast as graph-based methods and quite

easy to implement.

6 Feature-aware Laplacian Matrix

Generally, LBO is defined on C? surface. Directly using our method on surface with
sharp features is unable to reflect €Y information, as illustrated in Figure 7(a). So here
we present a strategy to modify the ordinary Laplacian matrix with prior of feature
location.

Suppose there are two types of sharp features: crease curve, which brings the dis-
continuities of first derivatives across itself; corner point, at which the tangent of any
passing curve is discontinuous. Corners can also be described as the intersections of
several creases. If point p is identified as a corner, we remove the Laplacian penalty
by setting the corresponding row of L , to be zero. If p is on a crease, the corre-
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sponding row of Laplacian matrix is replaced by the second-order central difference
of p (using its adjacent neighbors) along the crease.

The eigenvectors of modified Laplacian matrix are illustrated in Figure 7(b).
These eigenvectors embody the feature information much better than ordinary ones
in Figure 7(a). As a handy application, we use both ordinary and modified Laplacian
matrix on a noisy Fandisk applying the global smoothing algorithm. The result is
illustrated in Figure 8. The same smooth parameter A is set for both cases. The mod-
ified (feature-aware) Laplacian matrix preserves the sharp features that the ordinary
Laplacian matrix cannot achieve.

7 Conclusion

There are plenty of methods to construct the Laplace—Beltrami operator on a discrete
surface. In this paper, we discretize the operator from essential differential quanti-
ties. Then we compare our method with four representative previous ones. Numerical
experiments show that our Laplacian matrix has much better precision than other
methods in most cases. Our Laplacian matrix is robust to boundary which all graph-
based ones cannot achieve. At last, we present a strategy to modify the Laplacian
matrix into a more feature-aware matrix. This process helps the C? operator better
understand C° information on the surface.

There are also some limitations with our approach, which motivates our future
research. Our method still performs a little slower than graph-based methods. We are
currently considering the implementation of our method on a GPU to accelerate this
process and release a spectral analysis tool for researchers.
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