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Abstract This paper presents a new color-to-gray conver-
sion algorithm capturing the perceived appearance of color
images. Based on the Filter Theory, we formulate a novel
measurement of channel-level distinction, called Channel
Salience, to depict the filter level of three color stimuli. This
salience metric guides a contrast adjustment process to en-
hance the perceived grayscale in the final output with a two-
steps conversion. Experimental results show that our algo-
rithm produces pleasing results for a variety of color images
and we further extend the Channel Salience to edge detec-
tion.

Keywords Color-to-gray conversion · Filter theory ·
Channel salience · Perceived contrast

1 Introduction

There is a strong demand for color-to-gray conversion in
many aspects, e.g., it helps us economically print color im-
ages via monochrome version; it enables the application of
single channel algorithms on color images, like Canny oper-
ator [8] for edge detection; photographers take color images
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and then remove color information to draw viewers’ atten-
tion on outstanding contents. In a sale of important nine-
teenth and twentieth century photographs by New York’s
Swann Galleries in 2008, 364 out of 389 were monochrome
photographs [12], which shows the high popularity of black
and white photos. All these applications prompt researchers
to develop better color-to-gray conversion algorithms.

In the last decade, many approaches have been proposed,
mainly focusing on preserving the color distance and reduc-
ing the information loss [13, 14, 16, 29]. Methods proposed
in [13, 14, 16] consider global contrast in different chan-
nels. When the contrast in channels are not collaborative,
the final output would be muddy. For local detail preserving
method [29], details could be overenhanced and the results
hardly reflect global perceptual impact. We present a syn-
thetic color image (upper middle), with contradicting pat-
terns in difference color channels, to demonstrate that in-
cluding all the information does not always lead to a better
result. Most people would feel this color image smoothly
gets lighter and then darker from left to right, and it is
darker on the left side. Our result fits this trend better be-
cause we does not pick up every bit of all information, but
concentrates to the perceived contrast. Figure 1 (lower row)
presents the results of 4 state-of-the-art algorithms.

To better capture the perceived grayscale, we come up
with a new algorithm based on the Filter Theory proposed
by Broadbent [7]. Broadbent studied the filter property of
human perception and modeled it as selective processing.
Later experiments conducted by Treisman [31] showed that
human brain processes stimuli with bigger distinction faster
and nonattended information passes the processing bottle-
neck in an weakened fashion. In this paper, we consider each
channel as a stimulus and measure its level of suppression
by exploiting a new feature, called Channel Salience. Then
contrast adjustment is proposed to enhance contrast of the
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Fig. 1 Gray conversion results on a combined color image (upper
middle) with mixture weights (0.35, 0.65, 0.95). Comparison with 4
state-of-the-art algorithms Gooth et al. [13], Grundland et al. [14],
Smith et al. [29], and Kim et al. [16] (lower), our result could capture
perceived contrast in saturation channel

most salient channel in global manner, so that final gray re-
sults would be more similar to what people perceive. Our
result in Fig. 1 (upper right) better captures the perceived
grayscale, which reflects the saturation changes in the color
image.

2 Related work

Color-to-gray conversion Conventional gray conversion
algorithms proposed in the last decade mainly fell into two
categories, local adjustment and global adjustment. On one
hand, local adjustment approaches manipulated pixel in-
tensity according to local color difference. These methods
combined high-frequency chromatic information with lumi-
nance and preserved local chromatic edges but sacrificed
global consistence [6, 29]. Based on the experiments of the
Coloroid system, Neumann et al. [21] formed consistent gra-
dient and direct integration to get gray transformation. How-
ever, these algorithms tried to visualize all details, which
would bring artifacts.

On the other hand, global adjustment approaches tried
to minimize difference between distances defined on en-
tire color image and on gray image. Approaches captured
the color distance between all pairs of pixels [13] or all
pairs of colors [25], and they built a quadratic energy func-
tion to solve the gray images. With a similar energy func-
tion as in [13], Kim et al. [16] proposed a nonlinear global
mapping model, which could achieve the mapping consis-
tency. Grundland and Dodgson [14] proposed the Decol-
orize algorithm that globally convert the color to grayscale
with a continuous, image-dependent mapping. Using mass
spring model, another color-to-gray mapping [17] iteratively
added the chromatic difference to luminance. Kuk et al. [18]
formed a new energy term to balance the gradient among
pixels, or between pixels and some predetermined land-
marks. These landmarks were obtained by color quantiza-

tion. Zhao and Tamimi [34] performed color-to-gray con-
version in the spectral domain and generated results with an
inverse transformation. Cui et al. [9] introduced ISOMAP to
form a manifold reduction method between color space and
gray space. Lu et al. [20] reduced strict order constrain in
the previous method and maximally preserved the original
color contrast. However, most global algorithms paid atten-
tion to the preservation of color distance and do not consider
perceived contrast of color representation.

Moreover, some researchers considered the grayscale
problem, not only as final output, but also as preoperation
of other algorithms. Atcuti et al. built two salience catching
algorithms, one produces stable SIFT matching results [2]
in which the saliency is computed per entire image. Another
preserves color salience map consistent results [3] in which
saliency is computed for each (R, G, B) color channel. An-
other algorithm based on image fusion was described in [4].

As far as we know, all of these algorithms evenly treated
every channel of color image and combined the difference
together to preserve the whole information. Nevertheless,
color-to-gray conversion inevitably loses color information
and it is not possible to protect all channels equally.

Evaluation scheme Čadík [10] introduced a psychological
evaluation of 7 color-to-gray algorithms. There were two ex-
periments: accuracy and preference. Apparent grayscale [29]
ranked the best in accuracy experiment and Decolorize [14]
ranked the best in preference experiment. Neither of them
outperformed each other. Specifically, each of the 7 con-
version schemes was ranked the worst for at least one im-
age [10]. In this comprehensive evaluation, the absence
of universal satisfactory result showed lack of perceived
grayscale interpretation and drove development of new gray
conversion.

Color representation Pridmore et al. [22] suggested that
perceived brightness is linked to three digital color channels:
hue, luminance, and saturation. And these three channels
were concluded to be sufficient to describe any perceived
color [33]. One advantage of such experimental setting is
that these attributes are generally understood [27]. To make
our conversion tightly cooperate with phycological experi-
ments, we use luminance, saturation, and hue related color
space. Quite a few color spaces are available: HLS, HIS,
HSV, CIE LCHab, and Improved HLS (IHLS), while satu-
ration in IHLS color space [15] was normalized and proved
to be independent of the luminance. IHLS color space forms
a more independent subsystem which would give a more sta-
ble foundation for our perceived contrast analysis and it has
been widely used in many applications [5, 11, 23, 26]. We
adopt IHLS color space as color representation and follow
the original definition in [15]. Color images are transformed
into three channels, i.e., hue (H), luminance (L), and satura-
tion (S).

Author's personal copy



Grey conversion via perceived-contrast

Fig. 2 Color blind test image, color simulation of deuteranopia de-
ficiency and hue, luminance, and saturation channel in IHLS color
space. The perceived important information is encoded in hue channel

shown in blue dashed rectangle. Channel Salience defined in this paper
is H:0.604, L:0.070, and S:0.377, respectively

3 Channel salience

The Filter Theory proposed by Broadbent [7] suggests that
human perception is a selective processing and it has a fil-
ter to prevent the information processing system from over-
loading. Concluded by this theory, not full stimuli can be
perceived and only part of them is “accepted” while oth-
ers are suppressed. In [31], one of experiments gives a fur-
ther clue that information filtered or not highly depends on
the distinction of that stimulus. The color-to-gray conversion
could be considered as a selective process and the perceived
appearance is more related to the most distinctive stimulus.

Three conceptual stimuli: wavelength, purity, and lu-
minance are utilized in many psychological experiments.
Noted by Pridmore [22], these three stimuli link to three
color channels: hue, saturation, and luminance, which could
affect the perceived appearance. In Fig. 2, we present an ex-
ample of color blindness test. For people with deuteranopia
(green and purplish-red blindness) deficiency, only a deer
in the saturation channel can be recognized, while people
without deficiency would see the clear cow encoded in hue
channel and hardly recognize the ambiguous deer in satura-
tion channel. Based on this observation, we adopt the IHLS
color space and assume each independent channel as one
stimulus when considering the Filter Theory in color-to-gray
conversion.

The next step is to define Channel Salience, the dis-
tinction score of each stimulus, which measures perceived
strength of each channel. There are few experiments dis-
cussed perceived importance of channel stimuli before. One
heuristic idea of distinction measurement is borrowed from
black-and-white photograph. Photographers capture color
pictures and convert them into black-and-white profession-
ally. Photo subjects are usually emphasized by presenting
high contrasts between two polarities between black and
white [12]. They pay much attention on highlights and shad-
ows; see Fig. 3. The luminance contrast between bright face
and dark shadow, or the hue contrast between yellow and
green field, composes main contrast which is well elabo-
rated in gray images created by experts. Note that most

Fig. 3 Left: the original color images; Middle: the black-and-white
images converted by experts; Right: our gray conversion results

regions in the two images are highly contrast and the ar-
eas of two extremes are having similar areas. Thus, channel
salience could be defined as the contrast between two polari-
ties in this channel, and salient channel with high distinction
should have two well-separated groups of entries with simi-
lar sizes.

We define Channel Salience with two criteria to measure
salience of each channel:

– The channel with higher salience should have a clear cut
of two separating groups of entries.

– The number of entries in two groups should be relatively
comparable.

We formulate salience model which fits these requirements
with two functional terms:

CS(ch) = CSD(ch) ∗ CSB(ch) (1)

where ch is one of the three channels in IHLS color space.
The first term CSD is the distinction term, measurement of
distinction of two entries; and the second term CSB is the
balance term, measurement of quantitative balance of two
entries.
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Fig. 4 Channel Salience computation of hue (upper right), luminance
(lower left) and saturation (lower right) channel of the color image
(upper left). Both distinct and balanced channel (hue) has the highest
salience value

Distinction term In order to analyze polarities of each
channel, a general Gaussian Mixture Model [28] with two
centers is applied to generate a probability model of pixels’
distribution. We get two posterior probability density func-
tions Pch(x|c1), Pch(x|c2), where Pch(c1), Pch(c2) are prior
probabilities and μch(c1), μch(c2) are mean. More technical
details would be discussed later.

We assume that salient information composes of two sep-
arated entries, thus pixels can be efficiently classified into
two clusters. A histogram-based method is adopted to mea-
sure the classification efficiency. Hu et al. [24] defined the
classification efficiency by dividing the classified possibil-
ity into three parts: two consistent regions R1, R2 and an
inconsistent region R3 (see Fig. 4 Ambiguous Case). Two
probability density functions are close to each other in R3,
thus data in R3 has ambiguous classification, which violates
our first requirement of the data distinction. Hence, in order
to punish data points lying in ambiguous region, we define
distinction term as the following:

CSD(ch) =
(

1 − 1

N

∑
i

Ai ∗ ni

)
∗ (1 − C)

where Ai = exp(−(Pch(xi, c1) − Pch(xi, c2))
2/2σ 2

post) mea-
sures ambiguity of ith bin with xi as its index, Pch(xi, ck) =
Pch(ck)Pch(xi |ck) (k = 1,2) is the joint probability of ith
bin belonging to cluster k, σpost adjusts the tolerance of
ambiguity and we set σpost = 0.5 in our experiment, ni is
the number of pixels fallen into ith bin, and N is the total
number of pixels. C = exp(−(μch(c1) − μch(c2))

2/2σ 2
ch)

adopts the distance between two mean values to compute
the contrast of two clusters. The setting of parameter σch

will be discussed later in this section.

An ambiguous histogram is shown in Fig. 4 (lower left)
(bins with high ambiguity is colored in orange and the trans-
parency reflects the magnitude of ambiguity). The ambi-
guity is high if two probability density functions are close
(R3), on the contrary, it is low if they are far from each
other (R1 and R2). From the color image, we can see that
the average distributed luminance channel is not perceived
most strongly. As a result, the luminance channel scores a
lower channel salience. Instead, large amount of red and
blue pixels in hue channel constitute a promising big con-
trast. A highly distinctive case (Fig. 4, upper right) shows
two non-overlapping clusters, which promises a dominating
contrast in hue channel.

Balance term The number of data points in two clusters
has to be comparable. Otherwise, the smaller cluster would
not be able to support a highly perceived distinction. Thus,
we give the definition of balance term as follows:

CSB(ch) = exp
(−(

Pch(c1) − Pch(c2)
)2

/2σ 2
prior

)
where σprior adjusts the tolerance of difference in cluster size
(usually set as 0.5 in our experiments).

An unbalanced case is shown in Fig. 4 (lower right). Two
components may have a high classification efficiency but
may differ a lot in size. If two prior probabilities (the ar-
eas of R1 and R2) are different, the tiny part would not
attract enough attention, which gives a low salience. From
the color image (upper left), we can see that only a small
part is highly saturated and more regions are dull, hence the
contrast in saturation channel is not strongly perceived. Bal-
anced case in Fig. 4 (upper right) shows that the distribu-
tion of hue forms two clusters with comparable size which
promises a eye-catching distinction in hue channel.

Technical details In IHLS color space, we model distribu-
tions of pixel values, without spatial considerations, of three
channels separately using Gaussian mixture (GMM) with
two Gaussians, which measures the possibility and distinc-
tion of two clusters in each channel. However, if channels
are scattered of a distribution with three or more clusters, in
this case, we group those data close to each other into one
cluster and compute the channel salience with two grouped
clusters. With the benefit of GMM, we can minimize the
grouping errors and get reasonable clusters; please see lumi-
nance histogram in Fig. 4 and hue histogram of in Fig. 6. We
adopt the modeling methodology and maximum likelihood
solver in [28] to assign every pixel likelihoods of belonging
to each component. If solver could not converge, we simply
set the channel salience as zero. And in the hue channel, we
only include pixels with luminance and saturation between
0.2 and 0.8.

After GMM is found, we discuss the parameter setting
for contrast weight C. In the three channel histograms of
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Fig. 5 Results of different perceived contrasts. Contrasts are computed by three channels respectively and combination of all channels via Eq. (3).
The salient channel promises a result more close to perceived appearance

Fig. 6 The bipolarity situation in hue channel. After getting the op-
timized angle θo , we could assign the hue order as counterclockwise
(our experiment setting) or clockwise

Fig. 6, ambiguity measurements Ai are both very small in
hue and saturation channel and balance term is similar, also.
However, in color perception experiment [35], hue channel
gives us larger perceived contrast than saturation channel.
The contrast weight C endeavors to adjust this difference.
Suggested by the experiment result [35], we set σH = 0.2
and σL,S = 0.4.

It should be noticed that the hue channel is cyclic, rais-
ing a toric topology problem. An optimization is performed
to maximize the distinction term by cutting the hue circle
into a linear axis among some pre-defined angles π

6 i, i =
0,1, . . . ,11. The optimized angle not only solves the toric
topology problem, but also captures the maximal perceived
hue contrast. Considering polarity, we set yellow and red
colors brighter than blue and green colors (similar experi-
ment setting as Wyszecki [32]). An example is given to illus-
trate a bipolarity situation (Fig. 6). The default setting gives
a brighter flower, on the contrary, the reversed setting gives
a darkened flower, both of these two results are reasonable
and allowed.

4 Color-to-gray conversion

We now describe main framework of color-to-gray conver-
sion cooperating with Channel Salience defined in previous
section. The conversion is modeled as a global contrast ad-
justment on luminance channel L. The perceived brightness
is mainly determined by luminance and could also be af-
fected by saturation and hue, which has been adopted by
previous works [3, 14, 16, 17, 29]. We build a contrast map
M to adjust L and obtain the final conversion result G:

G = L + αM (2)

where α constrains the outlying pixels (G ≤ 0 and G ≥ 1)
less than 5 %. The contrast map M , which stores the salient
color contrast, can be reconstructed from the perceived con-
trast ΔM .

4.1 Perceived contrast

With Channel Salience, one straightforward way to model
the perceived contrast is to define it as a weighted sum of
three channels’ contrast:

ΔM = ωH ΔH + ωLΔL + ωSΔS (3)

where ωch (ch = H,L,S) is the normalized salience of each
channel computed via Eq. (1),

∑
ωch = 1. And ΔH , ΔL,

ΔS are the difference of three normalized channels. But a
weighted sum does not always give a good result. When the
channels are not cooperative, the result would be muddy. Re-
sults obtained from the preliminary experiments also show
that the weight sum would offset the information from dif-
ferent channels, making the results muddier and lost the
salient contrast. One example is shown in Fig. 5. We can see
that the result with weighted contrast (right most) is muddy
and gives low impact.

Instead, we select one single channel with the highest
Channel Salience, i.e., salient channel chs. This channel
forms more important contrast we perceived in the original
color image (see Fig. 2). It is also because if any other chan-
nels are having a similar contrast, there is no need to include
them into the perceived contrast. On the contrary, if they are
contradictive, adding contradictive channels together would
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make the results muddy (Figs. 1 and 5). Figure 5 shows re-
sults with different channels as the salient channel. From
the color sequences of different channels, we can see that
the salient channel (hue) discriminates sunflowers (yellow)
and lawn (green) clearly, which reflects salient contrast that
should be maintained in gray images. Hence, our perceived
contrast is defined as follows:

ΔM = Δchs (4)

where Δchs
ij = chs

i −chs
j is the difference between two pix-

els i and j in the normalized salience channel, ch should be
the salient channel among H , L, or S.

4.2 Adjustment

Similar to other algorithms [6, 16, 17, 21, 29], we add the
perceived contrast onto the luminance channel. We construct
the final gray image from the sum of the luminance and per-
ceived contrast, then minimize the following energy func-
tion:

min
g

∑
i∈Ω

∑
j∈Ω

(
gi − gj − (ΔLij + ΔMij )

)2 (5)

where Ω is the set of all pixels. Here, we could achieve a
quicker solution using the method in [30]. Tanaka et al. [30]
proved that if using a conjugate gradient solver and giving
luminance channel as initialization, solution of Eq. (5) at ith
pixel would be gi = Li + 1

N

∑N
j=1 ΔMij and N is the total

number of pixels. and we can build the contrast map M in
Eq. (2):

Mi = 1

N

∑
j∈Ω

ΔMij , ∀i ∈ Ω (6)

Optimization of Eq. (5) would be vulnerable to large
quantity of noise. And from Eq. (6), the adjustments on
these pixels are highly related to values in salient channel,
i.e., gray values are changed equally if values of these pixels
in salient channel are same. This would cause artifacts; see
Fig. 7 for an example. The reason is that the type of adjust-
ment only considers the difference between pixel values but
the spatial information of pixels is neglected, the grayscale
is not smooth. Especially when the salient channel is a hue
channel, pixel values are nearly piecewise constant (upper
right) which would bring unwanted sharp edges in the final
gray image (lower right). In order to reduce these artifacts,
we separate the conversion process into following two steps:
tone elaboration and propagation.

Tone elaboration We first perform a nonuniform sampling
to select the same number of representative points from each
cluster of GMM according to the Gaussian distribution of
the salient channel chs built in Sect. 3. Only 1 � of the

Fig. 7 Color-to-gray conversion. The result with tone elaboration
(lower left) first enhance the perceived contrast more smooth than di-
rectly constructing from all pixel pairs (lower right)

total number of pixels is selected. Figure 7 shows the sam-
pling possibility (middle right) and the sampled representa-
tive points of a color image (middle left). Points with two
different colors belong to two clusters. We change set of all
pixels Ω in Eq. (6) to set of representative pixels ΩR ,

Ek = 1

N

∑
j∈ΩR

ΔMkj , ∀k ∈ ΩR (7)

Elaborated tone E enforces contrast map of sampling
points to match the salient contrast and enlarges distance of
sampling pixels between different clusters.

Propagation With the elaborated tone E, we propagate
them to all pixels via the method applied in [1] which con-
siders both color and spatial information. The propagation
energy function is defined as follows:

min
M

∑
i∈Ω

∑
k∈ΩR

zik(Mi − Ek)
2 + λ

∑
i∈Ω

∑
j∈Ω

zij (Mi − Mj)
2

where weight zij = exp(−ΔDij
2/σd) exp(−ΔMij

2/σm),
ΔDij and ΔMij are the spatial distance and value distance
of salient channel between pixel i and j , σd and σm are set
as 100 and 0.1, furthermore the parameter λ = 0.5 controls
the smoothness of the propagation result. After getting the
entire contrast map M , we add luminance channel and ob-
tain our final gray conversion results using Eq. (2).

Figure 7 (lower left) shows one example of propagation
result, we can see that propagation result could catches the
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Fig. 8 Comparison with state-of-the-art algorithms: Gooch et al. [13], Grundland and Dodgson [14], Rasche et al. [25], Smith et al. [29], Bala
and Eschbach [6], Neumann et al. [21], Kim et al. [16], Ancuti et al. [3], Lu et al. [20], and our results

contrast of salient channel precisely and ensures a pleasing
result while direct reconstruction from all pixel pairs using
Eq. (6) fails (lower right).

5 Results and discussion

Our framework comprises two major parts, the computation
of GMM and gray conversion by propagation. For an image
of 1024 × 768, the GMM takes 2.9 seconds in average and
the gray conversion takes 3.4 seconds in average in MAT-
LAB of 32-bit PC with dual core 2.93 GHz CPU and 4 GB
ram. Results are shown in Figs. 8, 11.

Saliency-guided decolorization [3] and ours both con-
sider perceived salience. Ancuti et al. developed decoloriza-
tion which put emphasis on maintain salience map before
and after the conversion. Their algorithm computed saliency
maps for each (R, G, B) color channel. However, our method
does not adopt the salience map but builds channel salience,
which is original for contrast comparison with three chan-
nels (hue, luminance, saturation) and it could help to pre-
serve the most salient information in perceived grayscale.

And another novel algorithm [20] reduced strict order
constrain in the previous method and maximally preserved
the original color contrast. As well as other methods, it
treated all contrast equally and did not consider salient per-
ceived contrast. Our method not only considers the per-
ceived contrast, but also kindly picks color order from the
salient channel; see Figs. 4, 6. We compute color contrast

Table 1 Color contrast preserving ratio (CCPR) comparison with
Smith et al. [29], Gooch et al. [13], Kim et al. [16], and Lu et al. [20]

τ [28] [12] [15] [19] Ours

1 0.70 0.69 0.72 0.76 0.70

5 0.61 0.63 0.64 0.72 0.67

10 0.55 0.55 0.56 0.66 0.62

15 0.51 0.5 0.5 0.61 0.60

preserving ratio (CCPR) in [20] for comparison in Table 1.
It should be noticed that this paper enhances main contrast
in the salient channel, not all contrast contained in color im-
ages.

5.1 User study

To compare with previous methods, we have conducted a
user study. There were totally 25 various color images, of
which 5 were the same as those used in [10] and others were
images of varying characteristics, including city, landscape
or portrait selected from Flickr. Please refer to the supple-
mentary material for the complete set of results.

We invited 45 participants (15 males) at the age of 18
to 45. Among them, 10 were professional photographers.
All the participants have normal or corrected-to-normal eye-
sight, no color deficiency were reported and none of them
have done any computer graphics or related work. The im-
ages were displayed on a calibrated 27′′ monitor with IPS
panel and experimental venue was well illuminated with
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Fig. 9 Results of user study with 4 state-of-the-art algorithms

white fluorescent lamp (4100 K), then we asked them to take
two experiments.

Preference experiment Each time, two gray images were
displayed on the screen, one of which was ours while the
other was randomly chosen from Gooch et al. [13], Grund-
land et al. [14], Smith et al. [29], and Kim et al. [16]. Par-
ticipants were instructed to select the image they preferred.
Note that the preference experiment was carried first and the
participants had never looked at the color version of these
images before. Each participant was subjected to 10 ques-
tions in this experiment.

Accuracy experiment Each time, the original color image
and 6 gray images (our result, luminance channel and 4 other
methods Gooch et al. [13], Grundland et al. [14], Smith et
al. [29], and Kim et al. [16]) were presented to the partici-
pants in a random order. Participants were asked to select the
one that best represents the color version. Each participant
was subjected to 15 questions in this experiment.

The results of user study are shown in Fig. 9. For pref-
erence experiments (left), we present the proportion of par-
ticipants who preferred our results over those results gen-
erated by the other 4 algorithms. The participants generally
give a higher preference to the results from our algorithm.
For accuracy experiments (right), we present the distribution
of choice for each algorithms which are selected by partici-
pants as the best representing. We can see that our approach
also achieved better performance compared to other algo-
rithms, which reflects that our algorithm is more close to
human perception.

The algorithm of Smith et al. [29] gets comparable score
to us in preference experiments, while sometimes it pro-
duces local artifacts since the detail enhancement would in-
crease unwanted edges. However, our propagation would
constrain similarity of neighborhood and this prevents lo-
cal artifacts. In algorithms [13, 14, 16], they do not consider
the salient stimulus and would provide flat results for many
images (see Fig. 11). In this paper, we compute Channel

Fig. 10 Application: edge detection with Channel Salience. Our re-
sults (right) better capture the salient edges

Salience to find the salient channel, thus the results better
capture the perceived contrast in a global manner.

5.2 Application: edge detection

Here we propose an application based on Channel Salience
defined in Sect. 3. Edge detection in color image is a funda-
mental problem in image processing and computer vision.
Edges are usually found by computing the local gradient.
For color images, Lee and Cok [19] used one local vector
gradient to extend the Canny’s edge detector [8] to locate
the boundaries. However, perceived edges are perceptual re-
sults following the Filter Theory. Hence, local contrast of
one channel should be highlighted if it is salient and sup-
pressed if it is not. In this way, Channel Salience in this
paper could contribute to a perceived gradient. With edge
detector [19], we calculate the vector gradient in IHLS color
space weighted by their normalized Channel Salience, and
then carry out the extended Canny detector to identify the
edges. This simple modification would increase the contri-
bution of channels with high contrast and reduce the disturb
of evenly distributed channels. Figure 10 shows two results
of the edge detector used in [19] with and without our Chan-
nel Salience related weight.
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Fig. 11 Comparison with state-of-the-art algorithms: Gooch et al. [13], Grundland and Dodgson [14], Rasche et al. [25], Smith et al. [29], Bala
and Eschbach [6], Neumann et al. [21], Kim et al. [16], Ancuti et al. [3], and our results. The last column marks the salient channel of each image
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6 Conclusion and future work

Color-to-gray conversion is a complex phycological prob-
lem, thus the perceived contrast should be considered. In this
paper, we present a perceived color-to-gray conversion algo-
rithm, which comprehensively reproduces the perceived ap-
pearance of a color image in grayscale version. Based on the
Filter Theory, we introduce the concept of Channel Salience
to measure the contrast level of different channels. Instead of
combining information from all channels, we pick the chan-
nel with highest salience and enhance its contrast in the con-
version process. To make the final gray image more smooth
and maintain the contrast in a more efficient and emphatic
way, we separate the conversion into two steps: tone elabo-
ration and propagation.

Experimental results show that our algorithm produces
pleasing results for a variety of color images. Extending im-
age decolorization to video is presented in many papers.
To achieve temporal coherence, correspondence between
frames has to be found. We can include coherent information
as constraints in the edit-propagation process and extend our
framework to video. In some extreme cases, the computa-
tion of GMM is not stable. Under this situation, we should
carefully pick the initial parameters. Furthermore, when two
channels, even three, are almost equally strong, it is difficult
to tell how information is processed by human brain and
hard to decide which channel takes over others. It happens
when color images contain too much information. In this
dilemma situation, we should consider more measurements,
like fitness of GMM components.
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