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h i g h l i g h t s

• We present a new shape recognition method by iterative slippage analysis.
• The exact normal is found to be one of the key points for slippage analysis.
• The appropriate region is found to be the other key points for slippage analysis.
• A knowledge guided region growing method is used to get the appropriate region.
• An iterative normal modification method is used to obtain the exact normal.
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a b s t r a c t

A new slippage analysis method for recognizing basic primitive surfaces of CAD models is presented
in this paper. Obtaining the exact normal and searching the appropriate local region of each point are
found to be the key steps for determining the local slippage motion type. First, the tensor voting-based
boundary point recognitionmethod is integrated to preprocess the original points. Then, the local slippage
analysis method is used to initialize the point type. Furthermore, the appropriate region of each point is
acquired by the region growing method. Meanwhile, the middle level information (the basic primitive
surface types and the representative parameters) is found, guiding themodification of the normal of each
point and the iterative detection of the surface types. Finally, the middle level information-based smooth
method is introduced to refine the boundary of each basic primitive surface. The empirical results show
that the proposed algorithm is efficient and robust for recognizing primitive shapes from CAD models of
mechanical parts.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

With the rapid development of 3D digital data acquisition
devices, we can obtain all the point cloud of 3D models easily and
rebuild the triangular meshes with high accuracy. This is recently
called reverse engineering, which provides a new way to create
massive complex 3D models. However, due to the loss of middle
level and high level model information (symmetry, parallelism,
perpendicularity, etc.), suchmeshes are too raw to be directly used
in the subsequent processes, such as CAD model reconstruction,
and convergent-type CAE.With the virtual explosion in the amount
of raw data available for designer, the critical problem shifts to
obtain the middle level and high level information through this
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data and adopt it to improve the efficiency for redesigning a new
product [1]. The key processes to detect the middle level and high
level model information from existing 3D point clouds are mesh
segmentation and shape recognition [2–6].

Recently, a lot of researches have been done on shape seg-
mentation and recognition. Most previous approaches are based
on the local model information like curvature or boundary detec-
tion. However, even with the segmented surface patches, it is also
difficult to get the middle level model information, let alone the
high level model information. Realizing that a lot of mechanical
parts consist of basic primitives, such as plane, sphere, cylinder,
cone, extrusion, revolution, helix, nowadays, many researchers
have attempted to segment the CAD models into basic primitives
[7–13]. The existing primitive shape fitting approaches likely con-
front the following problems: (1) hardly can recognize all the basic
primitives, such as plane, sphere, cylinder, cone, extrusion, revolu-
tion, and helix; (2) hardly can obtain the middle level information
of the basic primitives, such as the center and radius of a sphere,
the normal and position of a plane, etc; (3) sensitivity to numerical
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noise inherently embedded within the obtained 3D point clouds.
Therefore, we propose a new slippage analysis method to robust
recognize shape primitives of mechanical parts. We discover that
the key processes for slippage shape segmentation are the exact
normal and the appropriate region selection of each point. The ex-
istences of noise in point cloud obtained by 3D digital data acquisi-
tion devices and sharp edges inmechanical objectsmake it difficult
to find the exact normal of each point. Thus, we introduce the ten-
sor voting method to classify the point type into a plane, a sharp
edge and a corner. Meanwhile, the detected point type improves
the efficiency of the surface type segmenting and recognizing. Fur-
thermore, we use the knowledge-based region growing method to
get the exact region for each primitive patch, and then adopt the
extended RANSAC method to obtain the middle level information,
which iteratively guides the normal modification and the shape
recognition.

2. Related work

Mesh segmentation has been extensively studied in the past
years. The goal of segmentation is to cluster the mesh model into
meaningful parts. However, it is hard to propose a segmentation
approach that can segment all kinds of models into appropriate
parts, due to the application field difference [14,15]. In computer
graphics, the region growing method, the watershed method, the
K -means method, the mesh shift method, the shape diameter
function method, and the rand walk method have been well
studied [16–21]. But these approaches cannot be directly applied
to segment mechanical parts. Várady et al. [2] provide a detailed
survey in the reconstruction of mechanical parts and underline
that the surface type recognition and surface fitting are the specific
issues for reconstructing a B-rep model. Agathos et al. [22] present
an exhaustive overview of 3Dmesh segmentation both on surface-
based methods, which segment the part into basic primitives, and
on volume-based methods, which segment the part into different
volumes or features.We roughly group the relatedworks into three
categories: low level information-based surface segmentation,
middle level and high level information-based shape classification,
and robust shape recognition.
Low level information-based surface segmentation.Many traditional
segmentation methods use the local level information such as
the Gaussian curvature or the mean curvature to segment the
model. One of the most popular segmentation methods is region
growing. This method selects a set of seed points and merges the
neighbor points to a patch which has the same local properties,
such as principle curvatures. However, it is difficult to find the
exact seeds and therewill be over segmentation in the transition of
two patches [23,24]. Lavoué et al. [25,26] extend this algorithm by
using a robust curvature tensor to guide the region growing and
introduce a boundary score to rectify the patch boundaries. Kim
et al. [27] introduce the tensor voting-based mesh segmentation
method. The point type is recognized first by the robust tensor
voting theory. Then, the mesh data with additional attribute such
as color information is clustered into several patches by the
k-means algorithm. However, the local information-based region
growing method cannot segment all the basic primitives, and it is
much difficult to obtain themiddle level and high level information
of mechanical parts.
Middle level and high level information-based shape classification.
Recently, many researches have realized that shape features play
important roles in the segmentation of man-made objects. Cohen-
Steiner et al. [28] propose a segmentation algorithm, called varia-
tion shape approximation. This algorithm iteratively fit planes and
partition triangles to the regions until the convergence. Wu et al.
[29] extend this algorithm by using not only planes, but also cylin-
ders, spheres, and rolling ball surfaces for the fittings. Yan et al.
[11,12] propose an iterative method for mesh segmentation by fit-
ting quadric surfaces. However, these methods partition the en-
tire surface into parts approximated by shape proxies; thus the
complex surface will also be assigned primitives. Attene et al. [8,9]
introduce a hierarchical mesh segmentation method to detect
primitive geometries. The algorithm generates a binary tree of
clustering and iterativelymerges the local neighbor points into one
single primitive cluster based on the approximationmethod. These
fitting approaches require users to input the number of regions
first, but it is difficult to find the appropriate number of regions
before mesh segmentation. Protopsaltis et al. [30] introduce the
planar cross section to reconstructing CAD models from the point
clouds. However, the cross section should be along a principal axis,
and the feature intersections and cross section along a sweep tra-
jectory are ignored. Sellamani et al. [31] propose a robust method
to approximate sweep shape by using prominent cross section.
Goyal et al. [32] adopt the prominent cross section to extract high
level, volumetric information from mesh models. However, it is
difficult to reconstruct a mechanical part with multiple sweep
components and intersections between them. Furthermore, the
manufacture and function features of mechanical parts are com-
posed of basic geometry primitives; thus, the classified sweep
components need further process to be converted to semantic
manufacture features.
Robust primitive shape recognition. Most of traditional mesh seg-
mentationmethods aim to segment the surface into different parts,
and some try to classify the mesh by the surface type. However,
how to robust recognize the primitive shape from point clouds is
challenging. Benjamin et al. [33] propose a heat walk algorithm
to segment triangle meshes, which is robust to a variety of noise
factors. Fang et al. [34] adopt the heat mean signature to robust
segment the surface which satisfies the perceptually consistent
mesh segmentation conditions. However, the heat kernel-based
method cannot be used to segment themechanical parts into basic
primitives. Golovinskiy et al. [35] propose a system for recognizing
objects in 3D point clouds of urban environments. The graph-
cut algorithm is adopt to segment the point clouds into different
patches, and then a trained classifiermodel is used to recognize the
segmented patches. However, it is difficult to propose an appropri-
ate shape features that can recognize all the objects from the point
clouds. Lafarge et al. [36] proposed a multi-label Markov Random
Field formulation, which is based on the principle curvature, to
segment the surface into patches, and then use a primitive-fitting
method to classify the basic primitives. However, this method is
less competitive for recognizing shape from models, which are
strongly corrupted by noise. Décoret et al. [37] extend the stan-
dard Hough transform and employ it to identify planes for bill-
board clouds of triangle meshes. However, this method exhibits
poor run-time performance on recognizing basic primitive from
large or complex mechanical part because of the high computa-
tional demand of the Hough transform. Schnabel et al. [10] present
a shape detection method in point cloud based on the RANSAC
method. They demonstrate a robust algorithm that used random
samples and the middle level information to cluster basic primi-
tive shapes. However, the basic primitives adopted in this method
are not suitable for building all the mechanical models. Gelfand
et al. [13] propose a slippable motion-based hierarchical cluster-
ing method. They introduce a rigid motion to segment mechani-
cal objects into planes, spheres, cylinders, linear extrusion surfaces,
surfaces of revolution and helical surfaces. We certify that the ex-
act normal estimation and the choice of neighborhood point set
of each point are the key tips for the slippage-based segmenta-
tion method theoretically and practically, and employ the RANSAC
method to obtain the middle level parameters of each basic prim-
itive, guiding the modification of the normal of each point and the
iterative shape recognition of mechanical parts.
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Table 1
Methods for recognizing the basic primitive.

Surface type Recognize method Geometry property How to recognize

Plane Gauss map Normal distribution One point
Slippage Number of slippage 3
Curvature kmax, kmin kmax = kmin = 0

Sphere Gauss map Normal distribution All the sphere
Slippage Number of slippage 3
Curvature kmax, kmin kmax = kmin = const

Cylinder Gauss map Normal distribution A great circle
Slippage Number of slippage 2
Curvature kmax, kmin kmax = const, kmin = 0

Cone Gauss map Normal distribution A small circle
Slippage Number of slippage 1
Curvature kmax, kmin kmax = const, kmin = 0

Helix Gauss map Normal distribution Uncertain
Slippage Number of slippage 1
Curvature kmax, kmin kmax ≠ 0, kmin ≠ 0

Revolution Gauss map Normal distribution Parallel great circle
Slippage Number of slippage 1
Curvature kmax, kmin kmax ≠ 0, kmin ≠ 0

Extrusion Gauss map Normal distribution A dense circle
Slippage Number of slippage 1
Curvature kmax, kmin kmax ≠ 0, kmin = 0
The remainder of this article is organized as follows. In Sec-
tion 3, the local slippage analysis-based shape segmentation
method is briefly reviewed, and the method for recognizing the
basic primitives of mechanical models is described; then the exact
normal and the appropriate local region of each point is proved to
be the key points for local slippage analysis. Then, Section 4 intro-
duces the iterative shape recognition method in detail, where the
middle level information is used to guide the shape recognition and
the normalmodification. And the experimental results of recogniz-
ing basic primitives from CAD and CAE models are demonstrated
in Section 5. Finally, the conclusion and future work are outlined
in Section 6.

3. Shape slippage analysis revisited

Most mechanical parts are composed of basic primitives, which
can be segmented by applying the local rigid motion type. Gelfand
et al. [13] demonstrate slippage signatures to cluster engineering
models into basic primitives. We extend the slippage analysis-
based method to recognize basic primitives and prove that the
exact normal and the appropriate local regions are the key issues
for slippage analysis.

3.1. Slippage analysis and shape recognition

3.1.1. Slippage analysis
LetM be a set of triangles {ti}mi=1that constitute a mesh surface.

We want to segment it into several middle level surface patches
denoted by S = {ti}ni=1, where

k
i=1 Si = M and Si


Sj = ∅ for

any i ≠ j. And each patch can be described as a basic primitive.
We also employ the representative parameters such as sphere
center, sphere radius, plane normal, cylinder axis, etc., for the basic
primitives.

Gelfand et al. [13] introduce a surface descriptor, which is based
on the surface behavior under different kinds of rigid motion.
And the rigid motion M(t) can be decomposed into two time-
vary motions: the rotation part R(t) and the translation part T (t).
Applying a differential to the rigid motion equation of each point,
the instantaneous velocity of point x can be expressed as follows:

v(x) = r × x + t (1)
where r = (rx, ry, rz) is a 3 × 1 vector of rotation around x, y, and
z axes and t = (tx, ty, tz) is a translation vector. Then the rigid
motion type is defined as follows:

• If r = 0, the motion M is a translation with constant velocity
along the direction t .

• If r · t = 0, the motion M is a rotation with constant angular
velocity.

• If r · t ≠ 0, the motionM is a uniform helical motion.

According to the approximation of the kinematic surface, a slip-
page signature of each patch is defined to segment the surface
mesh. And applying the rigid motion to a small patch, a minimiza-
tion equation of a set of points is defined to find the slippable mo-
tion type.

min
[r t]

n
i=1

((r × pi + t) · ni)
2. (2)

Eq. (2) is a least-squares problem, which can be solved as a
linear system Cx = 0, where C is a covariance matrix of second
partial derivatives of the objective function with respect to the
motion parameter. Then the mesh model can be segmented into
basic primitives based on the eigen value of matrix C .

3.1.2. Shape recognition
With the slippage motion analysis, the mechanical objects can

be segmented into different shape types. The plane and sphere are
3-slippage motion surfaces. The cylinder is the 2-slippage motion
surface. The cone, helix, revolution and extrusion are 1-slippage
motion surfaces. There may be a non-kinematic surface with
0-slippagemotion. However, only with the number of the slippage
motion, it is very difficult to recognize the basic primitives. By
analyzing the design and manufacture processes of mechanical
objects,we classify all the surfaces ofmechanical objects into seven
types: plane, sphere, cylinder, cone, extrusion, revolution, helix,
as shown in Table 1. There are also kinds of freeform surfaces in
mechanical objects, which are non-kinematic surfaces. We easily
classify those freeform surfaces into non-slippage type (or have not
been recognized surface).

In order to recognize all the basic primitives, we introduce
two more methods to assist the shape recognition: the Gauss
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Fig. 1. Relation of the noise points and the exact points in the local surface (pi is
a point on the ideal surface, and pi1 represents the scanned point. O defines the
original point of the Cartesian coordinate system. tu, tv, n symbolize the direction
of the max curvature, the min curvature and the normal respectively).

map method and the principle curvature. With the kmax and kmin
curvature, we can robustly recognize the plane, sphere, cylinder,
cone by the curvature difference. To consolidate the results of
surface type segmentation and classification, we also introduce
Gauss map method for the normal distribution of the basic
primitive is different, when mapping to the unit sphere. The shape
recognition method can be seen in Table 1.

3.2. Key issues for slippage analysis

3.2.1. Normal influence on slippage analysis
From Eq. (2), we can find that the point position and point

normal are the only two variations of the slippage-based shape
recognition. For the effect of noise, it is difficult to get the exact
point of the original shape, and it is even more difficult to obtain
the exact normal of each point. Lots of researchers have studied the
normal estimatemethod for point cloud in computer graphics. The
traditional normal estimation methods are based on plane fitting,
quadric surface fitting, triangle-based area weighted average and
triangle-based angleweighted average. Grimmet al. [38] propose a
point set analysis approach that uses a combination of local surface
models and one-rings to produce robust surface normal estimation
for non-uniformly sampled, noisy point data. But without the
middle level and high level information, it is also hard to get the
exact normal of points in a smooth surface, let alone in kinds
of sharp corners, sharp edges, which are only C0 continuous. In
order to get the exact point normal, we introduce iterative middle
level information-based normal modification method, which will
be described in detail in Section 4.2.4. Here we just illustrate the
normal effects on slippage shape segmentation.

In the local surface of a point pi, the noise can be decomposed
into a portion along the direction of the normal and the directions
of the principle curvatures (as shown in Fig. 1).

pi1 = pi + α · tu + β · tv + δ · n (3)

where pi is a point on the ideal surface, and pi1 represents the
scanned point. O defines the original point of the Cartesian coor-
dinate system. tu, tv, n symbolize the direction of the max curva-
ture, themin curvature and the normal respectively. If the scanned
points are dense enough, the component of the noise in the tangent
plane can be ignored for it has little influence on the slippage shape
segmentation. So, Eq. (3) can be expressed as follows:

pi1 ≈ pi + δ · n. (4)
Substitute this into Eq. (2), the result is shown as follows.

(r × pi1 + t) · ni = [r × (pi + δn) + t] · ni

= (r × pi + r × δn + t) · ni

= r × pi · ni + r × δn · ni + t · ni

= r × pi · ni + δr × n · ni + t · ni

= r × pi · ni + t · ni

= (r × pi + t) · ni. (5)

Eq. (5) shows that if we can get the exact normal of each point,
and the scanned data is dense enough, the noise will have little
effect on the shape recognition. Though the scanned data are with
much noise and are raw, we can also refine the shape recognizing
result by iteratively modifying the approximated normal of each
point. Fig. 2 shows the normal influence on the slippage shape
recognition of fandisk model. We use only 1-ring neighborhood of
the points to approximate the normal and to compute the slippage
motion type of each point. And for the sharp corner and sharp
edge points, we split them into several points according to the
number of the neighbor surface. Each point is added a Gaussian
noise (σ is the ratio of the distance between the point and the
original point to themaxmodel length) along the normal direction.
Fig. 2(b) and (c) show the original normal-based initial slippage
shape recognition result and the triangle area weighted normal-
based one respectively.

3.2.2. Neighborhood choice influence on slippage analysis
The slippage shape detectionmethod is based on finding a point

set that minimizes the motion along the normal for each point.
Getting the exact neighbor point set of each point is found to
be the other key process for slippage shape recognition. When
a small local neighbor is selected for each point, it would be
incorrectly recognized as high slippage shape type. If a large scale
neighbor point set is chosen, it would be incorrectly recognized
as low slippage shape type. Gelfand et al. [13] also find the
neighborhood influence on the slippage shape recognition. They
choose the nearest 30 vertices to initialize the slippagemotion type
of each point, and then define a similarity score to merge small
patches into large patches based on the number of the slippage
motion and the motion eigenvectors. If the chosen point set is not
suitable for segmenting the surface correctly, they choose a larger
neighborhood and try the segmentation method again.

To get the exact point region for slippage shape recognition, we
employ an adaptive region growing method guided by the mid-
dle level information, which would be elaborated in Section 4.2.3.
Here, we just illustrate the influence of neighbor point choosing in
detecting the basic primitive by region growing. Fig. 3(a) shows the
shape recognizing result of fandiskmodel by the proposedmethod
using a small neighbor (1-ring neighbor) for each point. It segments
most of the cylinder into 3-slippage shape. With the neighbor size
growing, more and more cylinder points are correctly recognized
as 2-slippage shape type. However, it cannot recognize all the slip-
page shape type by reason of the cylinder radius non-uniformity
and the cylinder surface incompletion. Keeping on increasing the
point’s neighbor size, it would recognize most cylinder points, but
incorrectly recognizes high slippage shape as low slippage shape,
which are obviously shown in Fig. 3(c) and (d).

4. Shape recognition of CAD models

In this section, we describe the implementation details of the
presented algorithm. Our algorithm aims to recognize the basic
primitives of mechanical parts by extending the slippage motion-
based shape detection method. The shape recognition algorithm
consists of three main steps: (1) preprocessing and initialization;
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(a) Slippage shape recognition result of fandisk model with 1-ring neighborhood of each
point to compute the slippage type.

(b) Slippage shape recognition result of fandisk with the original normal and with Gaussian noise along the normal.

(c) Slippage shape recognition result of fandisk with area weighted estimated normal and with Gaussian noise along the normal.

Fig. 2. Points normal influence of the slippage shape type (red is the 3-slippage motion surface, yellow is the 2-slippage motion surface, green is the one motion surface,
blue is the non-kinematic surface). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(a) 1-ring (b) 3-ring (c) 5-ring (d) 10-ring

Fig. 3. Points neighbor influence of the slippage shape recognition result of fandisk (red is the 3-slippage motion surface, yellow is the 2-slippage motion surface, green is
the 1-slippage motion surface, blue is the non-kinematic surface). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 4. Flowchart of the iterative slippage shape recognition framework.
(2) iterative shape recognition; and (3) the surface boundary
rectification. The flowchart of our algorithm is shown in Fig. 4.

4.1. Preprocessing and initialization

4.1.1. Sharp feature detection
As we have formulated in Section 3, the key processes for

slippage motion detecting are to get the exact normal and to find
the exact neighbor size of each point. However, it is difficult to find
the exact normal of each point in the sharp edge of mechanical
objects.We adopt the feature preservedmesh smoothmethod [39]
to smooth the originalmodel, which is strongly corrupted by noise,
and then employ a robust tensor voting-based feature detecting
method to classify all the points into a corner, a sharp edge, and
a plane. More detail about tensor voting-based feature detecting
method could refer to the related papers [40,41]. For the sharp
edge and corner points are C0 continuous, we set them to be non-
kinematic surface points. Then, we only need to detect the slippage
motion type of plane points.

4.1.2. Local slippage analysis
As shown in Fig. 3, the result of the slippage-based shape seg-

mentation method is sensitive to the chosen neighbor size of each
point. A small size will make the local point to get more slippage
motions, which can be decreased by growing the chosen neighbor
to an appropriate size. On the contrary, with a larger neighbor size,
the slippagemotionwould be reduced,which is dilemma to be cor-
rected to the right slippage motion type. So, we choose the 1-ring



B. Yi et al. / Computer-Aided Design 55 (2014) 13–25 19
Fig. 5. Middle level information of basic primitives (the point and the normal for the plane; the center point and the sphere radius for the sphere; the axis direction, the axis
position and the radius for the cylinder; the apex point, the axis direction and the cone-apex angle for the cone; the extrude direction, and the base curve for the extrusion;
the rotation axis, the axis position and the base curve for the revolution; the rotation direction and the axis position for the helix).
neighbor of each point and adopt the triangle-based area weighted
average-based normal estimation method to initialize the surface
type. The original shape recognized point type is also used to avoid
choosing the corner edge and sharp edge, which would mess the
slippage shape recognition.

4.2. Iterative shape recognition

As we have mentioned in Section 3.2, it is difficult to rec-
ognize basic primitives by the local neighbor and inaccurate
normal-based slippage analysis method; therefore, we employ the
iterative method to recognize basic primitives exactly and ro-
bustly. The pipeline of the proposed iterative shape recognition
method is: first, the surface recognition method is adopted to rec-
ognize the basic primitive for each patch. Then, the knowledge-
based region growing method is used to grow each recognized
patch step by step. Furthermore, the extended RANSAC method is
introduced to obtain the middle level information for each patch,
and then the middle level information is used to modify the nor-
mal of each point.We iteratively used thismethod to recognize the
basic primitives until the iterative number or the normal tolerant
is achieved.

4.2.1. Surface type recognition
We use the methods shown in Table 1 to recognize the shape

type of each patch. Compared with slippage shape detection,
curvature and the Gaussian image normal distribution are more
difficult and less robust when recognizing the surface types, so
we use the local slippage motion detecting method as the basic
method. The local curvature and the normal distribution difference
assist in recognizing the surface types. And the information of the
curvature also helps to guide knowledge-based region growing.

4.2.2. Knowledge guided region growing
We adopt the adaptive region growing method to get the

exact neighbor size for the shape type recognition. We grow each
recognized primitive shape patches by adding in the neighbor
points. First, the sharp edge and corner point in the neighbor points
are ignored. Then, we merge the growing neighbor points, which
have the same slippage type with the original point set. And we
eliminate the points whose principle curvature is greater than the
surface type threshold. Finally, we only retain the points which fit
the surface’s middle level information within the threshold (the
thresholds of normal and d parameter for the plane; the thresholds
of radius and normal for the cylinder; the thresholds of radius
and normal for the sphere; the thresholds of cone-apex angle and
normal for the cone; the threshold of the slippagemotion direction
for extrusion, revolution and helix).

4.2.3. Middle level information detection of basic primitives
With the slippage motion type, the normal distribution, and

point’s curvature, we can segment the surface into basic primitives
theoretically. Because of the noise of the scanned data, the surface
will be segmented into lots of small patches. So we introduce
the middle level information detecting method to find the basic
parameters of each surface and use this information to guide the
normal modification.

We extend the RANSAC-based shape detection method to
get the middle level information of the basic primitives [10].
We compute the middle level information of the plane, sphere,
cylinder, and cone surface similar to the method proposed by [10],
and add the detection method for extrusion, revolution and helix,
which is shown in Fig. 5. The details of shape parameters detection
method for extrusion, revolution and helix are shown as follows:

• Extrusion: extrusion is a complex surface, which can be defined
by the extrude direction l, and the base curve b (as shown in
Fig. 5(e)). And the slippage motion-based mesh segmentation
methodwould detect the translation or rotation direction easily
for 1-slippage surfaces. So, the extrusion direction can be
extracted by the slippage motion detect matrix, and the eigen
vector of the small eigen value defines the slippage motion
direction. For the extrusion is a translation slippage surface,
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Fig. 6. Middle level information-based normalmodification: (a) axonometric drawing of a plane; (b) axonometric drawing of a sphere; (c) axonometric drawing of a cylinder;
(d) axonometric drawing of a cone; (e) front view of a plane; (f) front view of a sphere; (g) front view of a cylinder; (h) front view of a cone (the blue arrow is the exact
local normal; the black arrow is the estimated normal; the pink arrow is the modified normal for every iteration). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
the second three parts of the eigen vector define the extrusion
direction. Then the surface is projected onto the plane whose
normal is parallel with the translation direction. Finally, the
extrusion base is obtained by fitting the curve in the plane.

• Revolution: the rotation axis, the axis position and the base
curve b fully define a revolution surface (as shown in Fig. 5(f)).
We acquire the rotation direction as mentioned above. For it is
a rotation slippage surface, the axis direction is the first three
parts of the eigen vector. Then we project all the points to
the plane whose normal is parallel with the rotation axis. By
computing the center of the point in the projection plane, we
get the position of the axis. And with a plane through the axis,
the intersection points compose the base curve.

• Helix: as for the helix surface, the most important middle level
information is the translation and rotation direction. For the
translation direction is perpendicular to the rotation direction,
we easily compute the rotation direction and the axis position
as mentioned above.

4.2.4. Middle level information-based normal modification
Because of the influence of noise, it is difficult to get the exact

normal for each point in the scanned point cloud. So, we employ
the iterative normal modification method, which is guided by the
surface type and the middle level information. Most mechanical
parts are composed of plane, sphere, cylinder and cone, which
are high slippage motion shapes and are more sensitive to the
point normal. A fewobjects contain extrusion, revolution andhelix,
which are 1-slippage shape, and can be classified by the kinematic
motion type and the motion direction easily. Then, our method
iteratively modifies the estimated normal of the basic shape type
such as the plane, sphere, cylinder, cone (as shown in Fig. 6). The
details of the normal modification are shown as follows:

• Plane: in the middle level information detecting method which
is discussed above, we get the local normal of the point set, as
it is shown in Fig. 6(a)(e) with a blue arrow. Then we iteratively
modify the normal: nnew = nold + λ(np − nold), where np is
the detected plane normal of the local point set, and λ is the
parameter of the normal modification. We only need to set the
number of iteration and the modification parameter.

• Sphere: as for the sphere, we detect the sphere center by the
local neighbor point set. Then the normal of each point can be
expressed as: nc =

pi−c
∥pi−c∥ . So we adjust the point normal as the

plane. Fig. 6(b)(f) show the normalmodification. The blue arrow
is the exact local normal; the black arrow is the estimated nor-
mal; the pink arrow is the modified normal for every iteration.
And c is the sphere center.

• Cylinder: for each point in the cylinder, the normal is perpen-
dicular to the axis. Together with the middle level information
such as the axis direction and position for the local point set,
we get the exact normal by projecting the point and the axis
position into the plane which pasts the point and parallels to
the axis (as shown in Fig. 6(g)). The exact normal is in the same
direction as the vector from the center c to this point. Then we
adjust the normal as mentioned above.

• Cone: to get the exact normal of each point in the cone, we use
the cone-apex position and the cone axis. Projecting the points
into the plane defined by the cone axis and the point, and lin-
ing the point and the cone-apex, the normal is in the direction
perpendicular to the line (as shown in Fig. 6(h)). Thenwe adjust
the normal as mentioned above.

4.3. Surface boundary rectification

Our shape recognition method extracts basic primitives and
gives good qualitative results in terms of nature and disposition
of the segmented regions. Nevertheless, our method, like most of
the existing methods, does not extract perfect boundaries, due to
the disturbance of the noise. But we have got the middle level
information of all the primitive patches, so we propose a middle
level information-based boundary rectification method.

For there may exist fragment segments and non-smoothing
boundary in the original segmented patches, we compute the total
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Fig. 7. Fandisk surfaces type recognition: (a) shape diameter function-basedmesh segmentation; (b) Gelfand’s slippage shape segmentation; (c) back viewof ourmethod; (d)
right viewof randomwalkmesh segmentation of fandiskmodelwith automatic selecting seeds; (e) right viewof hierarchical fitting primitives segmentation of fandiskmodel
with 22 clustering; (f) right view of our method; (g) front view of randomwalk-based mesh segmentation; (h) front view of hierarchical fitting primitives segmentation; (i)
front view of our method.
normal deviation with the middle level information of all the
patches in the neighbor of each fragment segment, which contains
less than a small value triangle. Then we merge the fragment
segments into the neighbor patch which has the minima normal
deviation. Also, we extract the entire boundary for each patch, and
obtain the 1-ring neighbor. Then we set the point, which is the
minimization of the total normal deviation of each point in the
boundary, to be the refined boundary point. For the noise influence,
there maybe also jag boundary in the segment result. We grow
the minimization boundary points by the nearest points detecting
method.

5. Experimental results

The shape recognition algorithm proposed in this paper has
been implemented in Visual C++ 2008 environment. And all exam-
ples run on a PC with 2.93 GHz CPU (IntelCoreDuo) and 2G RAM,
underWindows XP 32-bit system. Results show that our algorithm
not only works well for the scanned mesh model of mechanical
parts, but also performs well in recognizing the surface type of the
finite element analysis (FEA) result of mechanical objects. We set
Table 2
Computing time of shape recognition.

Mesh Number of vertices Number of triangles Time (s)

Fandisk 6475 12946 18.047
Block 34172 68352 211.406
Shaft 22821 47942 205.531
Roll 191109 382242 1046.268
Carter 192729 385482 1125.684
Crack 200334 400645 1257.286
Top gearbox 26778 53620 82.906
Bottom gearbox 35437 70966 107.016
Cutter head 32010 64152 41.063
Bunny 72027 144046 705.482
Armadillo 172974 345944 948.406
Bust 255358 510712 1429.056

the plane normal deviation threshold εpn = 0.02, the cylinder nor-
mal deviation εcn, the sphere normal deviation threshold εsn, and
the cone normal deviation threshold εcon = 0.05. The normalmod-
ification parameter λ = 0.1. Figs. 7–14 show the results of basic
primitive recognition, and Table 2 shows the computational cost
of our method.
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Fig. 8. Block surfaces type recognition: (a) random walk mesh segmentation with automatic selecting seeds; (b) k-means segmentation method with 16 clustering; (c)
hierarchical fitting primitives segmentation method with 16 clustering; (d) our model surface type recognition method.
Fig. 9. Shaft of compressor surfaces type recognition: (a) front view of hierarchical fitting primitives segmentation method with 20 clustering; (b) front view of k-means
segmentationmethod with 20 clustering; (c) front view of our model surface type recognitionmethod; (d) back view of hierarchical fitting primitives method; (e) back view
of k-means method; (f) back view of our method.
Fig. 10. Primitive shape recognition of complex models. (Left: rolling stage, middle: carter, right: crack).
Fig. 11. Cutter head of shield machine’s finite elements analysis result surface type recognition. (Left: the mesh model for the finite elements analysis, middle: the stress
analysis result, right: the surface type recognition result of our method).
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Fig. 12. Top gearbox of gear reducer’s finite elements analysis result surface type recognition. (Left: the mesh model for the finite elements analysis, middle: the stress
analysis result, right: the surface type recognition result of our method).
Fig. 13. Bottom gearbox of gear reducer’s finite elements analysis result surface type recognition. (Left: the mesh model for the finite elements analysis, middle: the stress
analysis result, right: the surface type recognition result of our method).
Fig. 14. Shape recognition of artificial models. (Left: bunny, middle: armadillo, right: bust).
5.1. Shape recognition of CAD models

Fig. 7 shows the surface type recognition result of fandisk by
ourmethod. The result is comparedwith shape diameter function-
based mesh partition method, random walk-based mesh segmen-
tation method, slippage shape segmentation method, and fitting
primitives-based hierarchical segmentation method. Here we set
the iterations of normalmodification to be 10, for there are scanned
data meshes, which have noise. And we set the max region grow-
ing neighbor size to be 6, for that the sampled points of the fandisk
model are not too much. Fig. 7(a)–(c) show the result of shape di-
ameter function-basedmesh segmentationmethod, Gelfand’s slip-
page shape segmentationmethod, andour surface type recognition
method respectively.We successfully recognize the surface type in
the sharp edge. We also recognize the plane in the left part of the
model, and recognize the plane and cone from the right patches.
Fig. 7(d),(g),(e),(h),(f),(i) show the result of random walk-based
mesh segmentation, fitting primitives-based hierarchical segmen-
tation method and our method respectively. We set the cluster
number of the fitting primitives-based hierarchical segmentation
method to be 22, whose segmentation result is mostly similar to
ours, and automatically select 22 seeds for random walk-based
mesh segmentation. Fig. 7(d)–(f) show that our method can ex-
actly recognize the cylinder in the middle of the model, and also
can recognize the plane in the bottom between two cylinder parts.
Fig. 7(g)–(i) show our method can recognize small part of cylinder
surface type, but the fitting primitives-based hierarchical segmen-
tationmethodwill segment it into two parts. The recognized result
in the right part of themodel shows that ourmethod can recognize
the cone and plane exactly, where the fitting primitives-based hi-
erarchical segmentation method segment the three patches into
one patch.

Figs. 8 and 9 give more comparisons of recognition result on
block mesh and shaft mesh of compressor by the random walk-
basedmesh segmentationmethod, the fitting primitives-based hi-
erarchical segmentation method, the k-means method and our
method. Fig. 8 shows that the k-means method just segments
model into distance-based nearby patches, and never considers
the surface type. The random walk-based segmentation method
improperly segments the models into parts without interactive
selecting of seeds. The fitting primitives-based hierarchical seg-
mentation method and our method will segment model surface
into basic primitives. And our method can even recognize all the
basic primitives and will automatically recognize all the surfaces
without inputting the number of clustering. Fig. 9 shows a seg-
mentation result of the complex shaft of a compressor. Our ap-
proach can recognize all the basic primitive surface types though
the nearby surfaces are smooth transition. Our method would rec-
ognize the freeform surfaces into non-slippage shape types.

Fig. 10 shows the shape recognition results of complex me-
chanical models. Ourmethod successfully recognizes the cylinders
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and planes for roll models. The cones, planes, and cylinders of the
carte model are also recognized by our method. Our method is
also adopted to recognize the cylinders, planes, and cones for crack
models. The results show that our method is appropriate for au-
tomatically recognizing basic primitives for complex mechanical
parts.

5.2. Shape recognition of CAE models

Figs. 11–13 show more surface type recognition results of FEA
mesh model using our method. We set the normal modification
iterations to be 5, for there are mesh data with little noise. And
we set the max neighbor size of region growing to be 8, for mesh
points are sparse in low curvature but dense in high curvature.
Figs. 11(a), 12(a), 13(a) show the original mesh of cutter head of
shield machine, top and bottom gearbox of gear reducer, respec-
tively. Fig. 11(b) gives the stress analysis result of the cutter head of
the shield machine with Abaqus software. Figs. 12(b), 13(b) show
the stress analysis results of the top and bottom gearbox of gear re-
ducer with Ansys software. Figs. 11(c), 12(c), 13(c) give the recog-
nition result of ourmethod,whichproves that ourmethod is robust
and exact in recognizing the basic primitives. The obtained surface
type and the middle level information will progress the analysis
result model merging and a couple model building with different
physical fields.

5.3. Shape recognition of artificial models

Fig. 14 shows the shape recognition results of artificial models
using our method. The bunny and armadillo models are inappro-
priately fitted into parts, for that the artificialmodels are composed
of complex shape parts, not the basic primitives. The shape recog-
nition result of bust model shows that our method recognizes the
rotation surface on the bottom part models exactly, and also inap-
propriate fits the upper parts model into primitives.

6. Conclusion and future work

We present a new shape recognition approach for the CAD
model based on slippage analysis. By analyzing the slippage
motion-based segmentationmethod, we prove that the normal es-
timating and the neighbor point set choosing of each point are
the principle steps for slippage motion detection theoretically and
practically. For the normal of each point in point cloud is difficult to
estimate exactly, we define the sharp points of mechanical parts to
be non-slippage points, avoiding the disturbing of mesh segmen-
tation. Then, with the middle level parameter of basic primitives,
we iteratively adjust the point normal and obtain the appropriate
regions of each point by region growing. Finally, we detect all the
basic primitives exactly. The empirical results show that the pro-
posed algorithm is efficient and robust for shape recognition of the
CAD models and CAE meshes of mechanical parts.

With the output of the shape recognition method, there maybe
provides an available way to convert mesh surfaces to B-rep
even CSG models for CAD/CAM/CAE modeling. With the middle
level information and recognized basic surface types, it will be
convenient to capture the global structures of mechanical parts,
such as symmetries, parallelism, perpendicularity, coplanarity,
coaxial, etc. However, there are also freeform surfaces in complex
mechanical parts; we simply recognize them as non-slippage
surfaces. To recognize and classify the freeform surface is also
worthy to study in the future.
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