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In this paper we present a novel approach to register multiple scans from a static object.
We formulate the registration problem as an optimization of the maps from all other scans
to one reference scan where any map between two scans can be represented by the com-
position of these maps. In this way, all loop closures can be automatically guaranteed as the
maps among all scans are globally consistent. Furthermore, to avoid the incorrect corre-
spondences between the points in the scan, we employ a parametric bi-directional
approach that generates invertible transformations in pairwise overlapping regions. With
the parameter information in use and the consistency taken into consideration, we are able
to eliminate the drift that often occurred in multi-view registration process. Our approach
is fully automatic and has performed better than existing approaches by various experi-
mental results.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Creating 3D models of real world objects using scanning
techniques is an attractive task with a wide range of appli-
cations in computer graphics, geometry processing, and
reverse engineering. Typically, multiple data sets are cap-
tured from different viewpoints and these sets have to be
registered to obtain a complete acquired object. Hence sur-
face registration procedure is essential for the reconstruc-
tion task, especially in systems allowing scanner to move
freely to avoid the occlusions [1].

However, even registering two scanning sets from a sta-
tic object, called rigid registration, is a challenging problem
[1]. First, only subsets of the input scans overlap and their
correspondence errors may lead to significant degradation
in the result. Second, variations in the scans such as reso-
lutions of data can affect the algorithm.

Registering multi-view scans is a more difficult problem
[2]. Generally, sequential registration of two overlapping
views is performed at a time. Then an integration step is
adopted to ensure all views are combined. However, it
leads to the well-known loop closure problem [3,4], where
the registration errors accumulate and propagate, leading
to visible misalignment at the scanning borders. To over-
come this problem, global registration algorithms are pro-
posed from a global point of view [5–8]. These methods
address the problem of loop closure either by distributing
the transformation errors into the other scans or by
distributing the accumulated errors over the other scans
via distorting them which jeopardizes the rigidity of the
scanned object. There are two problems in these methods.
First, identifying loop closure is a nontrivial task and incor-
rect loop closure detections can significantly break the
consistency of the data [9]. Second, when a scan locates
on multiple loops, it is not easy to distribute the accumu-
lated errors in different loops over this scan.

In this paper, we propose a novel approach for global
rigid registration of multi-view scan datasets. The registra-
tion between two scans is considered as a rigid transfor-
mation from one to the other. Choosing one scan as a
reference scan, we regard all rigid transformations from
the other scans to the reference, called basic transforma-
tions, as variables. Thus the rigid transformation between
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arbitrary two scans can be represented by the composite of
these basic transformations. We formulate the registration
as a global optimization on minimizing all registration
errors among all overlapped scans. Thus all loop closures
are implicitly guaranteed because the composite of all
transformations from the sequential scans in any loop are
automatically equal to identity. Therefore, our approach
does not need to explicitly detect the loop closures.

Furthermore, the traditional point to point correspon-
dences between overlapped scans are not suitable in our
optimization. Instead, we consider the correspondences
from points in one scan to the other scan as parameter
variables. Thus our approach allows correspondences from
points in one scan to the optimal positions in the other
scan, which alleviates the drift problem caused by incon-
sistent variable settings and point to point correspon-
dences in the registration.

The contributions of our approach for globally consis-
tent rigid registration are summarized in the following:

� A global formulation is developed to resolve the glob-
ally consistent rigid registration problem.
� Our approach guarantees all loop closures implicitly in

a globally consistent manner.
� The alignments among the scans may be more precise

than previous methods as the points in one scan can
correspond to their optimal positions in other scans.

2. Related work

For the task of constructing complete 3D models, both
the pairwise and multiple view registration method is
needed, since the overlapping information has to be gath-
ered locally from successive scans while additional cares
has to be taken globally to avoid the drift problem. Bernar-
dini and Rushmeier [10] provides a comprehensive over-
view on the methods needed in this task, including
commonly used pairwise and multiple view methods.
Commonly used registration methods for range images
are discussed by Salvi et al. [11] and Curless [12]. Kaick
et al. [13] covers rigid registration from another viewing
angle. The most popular pairwise method ICP and many
of its variants are surveyed by Rusinkiewicz and Levoy
[14]. Castellani and Bartoli [15] also discusses the ICP
method and some of its extensions. An analysis on the con-
vergence of different ICP algorithms is presented by Pott-
mann et al. [16]. Though we only deal with the rigid
case, non-rigid alignment is sometimes also necessary in
model construction for the calibration error of scanner
parameters [17].

2.1. Pairwise registration

ICP is a typical pairwise method for aligning two point
clouds [18,5]. Distinguished by the alignment metric they
approximate, ICP approaches are mainly classified into
two categories: the point-to-point approach and the
point-to-plane approach [5]. Comparing with the slow con-
vergence of point-to-point strategy, the point-to-plane for-
mulation generates better performance due to a first-order
approximation of the target surface by the tangent plane
[2]. Note that higher order approximation can be achieved
with our parameter based algorithm.

Many variants of the ICP class methods modify the stan-
dard algorithm on the selection, matching, weighting and
rejecting of point pairs, and also the error metric and min-
imizing procedure used [14]. Non-linear optimization
methods are also proposed by Gruen and Akca [19] and
Fitzgibbon [20]. Practical experience illustrates that the
appropriate point pair identification is the most important
matter. Indeed, all the algorithms are going to perform well
if proper pairs of correspondences are given right in the
overlapping region. In the choosing of point pairs, rejecting
point pairs that are too far apart, on the boundary and fur-
ther than a given threshold are commonly used. Rejection
of distance larger than some multiples of standard devia-
tion of point distance [21] or inconsistency with neighbor-
ing pairs [22] is also practical for certain cases.

However, the case of different sample rates is usually
difficult to handle. Though point-to-plane ICP displays a
better performance, it’s still not a thorough solution since
the change of distance metric does not help with the esti-
mation of correspondences. Sample rate is an important
issue. With the progress of the scanning technique, many
new kind of devices are invented. The demand for registra-
tion of these naturally different data sources is increasing
due to various applications and cooperations. We will
show that the sample rate issue can be reasonably treated
by our parametric based algorithm.

Another class is known as the voting methods [23–25].
Transforms between triplet of points in the source and tar-
get shape are computed and recorded as votes. The optimal
alignment is chosen as the one got the most votes. Gelfand
et al. [26] also propose a descriptor based method to regis-
ter scans from arbitrary initial position.

2.2. Multi-view registration

The registration of multiple views is a more difficult
problem. Direct application of pairwise methods always
leads to the loop closure issue [2]. A global point of view
is thus required to solve this problem. Generally the accu-
mulated error is distributed over all scans in the loops [27–
30]. An incremental approach is proposed by Chen and
Medioni [5]. They register the first two views into a meta-
view, and remaining scans are incrementally merged into
this metaview. Pulli [2] presented another incremental
algorithm that minimizes the relative moving of neighbor-
ing scans under the assumption of a perfect pairwise ini-
tialization. An incrementally surface building method is
also presented by Jin et al. [7], in which new scans can
be registered to the surface model and reregister is allowed
for already registered scans. Huber and Hebert [31] intro-
duced a fully automatic method that allows for arbitrary
initial states of data sets. A surface matching engine is used
in the pairwise stage and a graph is constructed for the
multi-view phase, which counts for the filtering of incor-
rect matches as well. Torsello et al. [32] also used a graph
to diffuse transformations over adjacent views. Some
approaches formulate the problem as an optimization on
a manifold [33] or as an EM algorithm [34]. Other methods
consider it as an analogy of the mechanical system [35,36].



Fig. 1. Consistent setting for multi-view registration.
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2.3. Correspondence optimization

Correspondence is an important issue in both registra-
tion and shape analysis. Parameterizing the mapping and
optimizing the correspondences as variables, rather than a
direct searching, may lead to more reasonable results as in
Li et al. [37], where the parametric correspondences are
used in pairwise non-rigid alignment. Differently, we focus
on the loop closure problem on multiple view rigid registra-
tion. Parametrization of the mapping are also used by Kim
et al. [38] for the evaluation of fuzzy correspondences. In
shape correspondence problems, the optimization consid-
ering the entire population of shape instances are often
used in global methods [39,40], which can produce more
accurate results over pairwise methods. Similar strategy
also appears in image processing. A joint optimization of
functionals between images to ensure cycle-consistency is
proposed by Wang et al. [41] for image co-segmentation.
In our formulation, a global consistent optimization frame-
work is used while a bi-directional parameter based pair-
wise correspondence is applied to enhance the accuracy of
the registration result.

Our method solves the loop closure problem in an
implicit way without identifying any loop closures. Fur-
thermore, unlike previous methods which deform the
scans to compensate the accumulate error in the loops,
our method does not deform any scan in the registration
which can preserve the rigidity of all scans well.

3. Consistent multi-view registration

In constructing a complete 3D model, the global regis-
tration of multiple scans is mandatory. Pairwise methods
may fail to get satisfactory results due to the accumulation
of local deviations. However, it is inevitable to deal with
the problem since the global structure of the whole model
is eventually encoded in the pairwise overlapping regions.
Researchers aim to find reasonable methods that effec-
tively diffuse these local errors.

We observed that a serious inconsistent issue exists in
the registration of loops. By taking the consistency into
consideration, the accumulation of local deviations can
be avoided by a proper formulation. Optimization of this
formulation will automatically diffuse the errors and
finally result in globally consistent registration.

3.1. Consistency for loop closure

The pairwise registration problem can be well solved by
the ICP algorithm and its variants. However, problem arises
when more scan views are added into the registration
sequence. Consider the registration of nþ 1 surfaces
fStgn

t¼0 which forms a loop. Denote wt the rigid transforma-
tion from St to Stþ1, i.e.,

wt : St ! Stþ1; t ¼ 0;1; . . . ;n ð1Þ

with Snþ1 ¼ S0. Then intrinsically we ought to have the glo-
bal constraint of consistency

wn � wn�1 � � � �w1 � w0 ¼ I ð2Þ
which, however, cannot be satisfied through a simple
aggregation of local pairwise registration.

To fulfill this constraint of consistency, a global
approach is required to take all the scans into consider-
ation at once, which can be quite difficult to compute.
The difficulty comes from the redundancy and inconsis-
tency that lies in the variable setting of the problem. In
the registration of nþ 1 views mentioned above, we
observe that when one scan is fixed, say S0, only n rigid
transformations are indeed needed to accomplish the
whole procedure: /t that aligns St to S0; t ¼ 1;2; . . . ;n,
respectively (see Fig. 1).

Those methods that treat overlapping regions sepa-
rately cannot avoid the effect of seesaw action. The
approach of [42] satisfied the consistent constraint by con-
verting the global overlapping relationship into a star
shaped network and matching each scan with all its over-
laps. However, each scan Sr is processed separately in the
algorithm and the increment updating for the composite
transformation of scan Sr and its overlapping view St is
updated to scan Sr only, thus it may lead to biased results.

When aligning two surfaces together, it would be
desired that the resulting transformation is invertible,
which means that the inverse transformation is obtained
if the source and target surfaces are swapped. Usually
without a bi-directional procedure, invertible transforma-
tions are not likely to be obtained and this is known as
the direction issue. When sub ring is included in the con-
nection due to complicated scanning routine, the network
can be difficult to get well balanced. Lack of continuous
representations of scans, the sample rate will have an
impact too, since the error accumulates along the chain
of transformations. Thus simultaneously updating and
continuous approximations of all scans are needed to
meet all the requirements.
3.2. Consistent registration of multiple scans

Consider the global registration of a set of surfaces
fStgn

t¼0. We propose a consistent approach to set the vari-
able system in the multi-view registration. From the anal-
ysis above, we know that only n rigid transformations are
needed by fixing surface S0. Denote /t the rigid transforma-
tion that aligns St to S0. Obviously, n transformations are
the most compact variables (i.e., unable to describe the
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system by less variables). And the completeness of this
variable system can be illustrated as follows: any of the
pairwise registration can be uniquely expressed by
U ¼ f/tg

n
t¼1. For example, a rigid transformation /r;t from

Sr to St can be easily given as

/r;t ¼ /�1
t � /r : ð3Þ

With this variable system setting, the multi-view registra-
tion problem can be expressed by all the inner sequence
pairwise registration of surfaces that have an overlapping
region with each other. Let Lðr;tÞ be the overlapping region
of Sr and St . Then the consistent multi-view registration
can be formulated as

min
U

X
ðr;tÞj

Lðr;tÞ–;

X
pðr;tÞ

i
2Sr

dð/r;tðp
ðr;tÞ
i Þ; StÞ

p
ð4Þ

where pðr;tÞi is one of the source points in Lðr;tÞ, dðp; StÞ ¼
minq2Stkp� qk2, /r;t ¼ /�1

t � /r , and p > 0. In our current
implementation, we use p ¼ 2. For a specific intention,
e.g., excluding outliers in the robust registration, 0 < p 6
1 can be adopted and our optimization framework still
applies.

Though this may seem complicated, we note that it is
essential to take all overlaps into consideration together
to reasonably diffuse the local errors. To illustrate the con-
sistency of resulting transformations, we suppose that
there is a loop in the scans consisting of St1 ; St2 ; . . . ; Stm .
Then the composite transformation walking through the
whole loop is

ð/�1
t1
� /tm

Þ � ð/�1
tm
� /tm�1

Þ � � � � � ð/�1
t2
� /t1

Þ ¼ I ð5Þ

which means that the consistency constraint is automati-
cally met. Since all the transformations are invertible, the
consistency holds from any direction of the loop. Indeed
the consistency holds for any loop in the scans, and of
course we do not have to explicitly identify them before-
hand. The formulation itself ensures the consistency for
all loops already. The pairwise registration can be regarded
as a special case of (4).

Usually a spanning tree can be constructed to find S0. In
our experiment, the results are insensitive to the choice of
S0. After a proper initialization is given, we optimize the
transformations as variables rather than recalculate them
by compositing relative transformations between adjacent
patches. And all of the overlaps are taken into consider-
ation. The choice of S0 may has more influence on the
rough align stage where pairwise registration methods
are used. In practice, we choose the patch which has the
most overlapping patches as S0.

3.3. Optimization

In the registration of nþ 1 scans, the optimization prob-
lem (4) contains 6n variables of rigid transformations and
two sets of correspondences for each overlapping region.
It is intuitive to optimize the correspondences together
with the transformations by using an L-BFGS solver where
the rotations are represented with Euler angles. However,
in order to rejecting infeasible point-pairs per iteration,
we still apply the classic two-stage approach that
estimates the correspondences and then updates the trans-
formations. This alternating strategy slows down the opti-
mization procedure, but also brings in conveniences like
the flexibility of rejecting point pairs and the close form
solution for the updating of transformations. In the stage
of correspondence optimization, we adopt an L-BFGS opti-
mizer provided in [43].

It is apparently a huge task for optimizing all the rigid
transformations U ¼ f/tg

n
t¼1 simultaneously. To reduce

the complexity of this process and make full use of the
close form solution in the pairwise registration, we first
perform a splitting technique that updates one of the
transformations each time to generate an initialization
for the simultaneous updating. Suppose that scan Sr is
overlapping with several other scans fSt jLðr;tÞ – ;g. Since a
rigid transformation preserves the geometric distance,
the problem reduces to

min
/r

X
tj

Lðr;tÞ–;

X
pðr;tÞ

i
2Sr

dð/rðp
ðr;tÞ
i Þ;/tðStÞÞ

2
þ
X

pðt;rÞ
j
2St

dð/tðp
ðt;rÞ
j Þ;/rðSrÞÞ

2
� �

ð6Þ

when updating /r with the others fixed. Each transforma-
tion is immediately applied to the data after its calculation,
thus the convergence problem as pointed out in [2] can be
avoided. This splitting formula (6) is actually the bi-direc-
tional registration of a scan to its overlapping surfaces,
which will be fully discussed and analyzed in Section 4.

A possible effect of this sequential behavior is a devi-
ated updating of the transformations. That is, when updat-
ing one of the transformations and fixing all the others, the
updating meant to the two composed transformation of
one overlapping region is applied to only one of them.
However, this is not a problem in our formulation since
we fix one of the scans and apply all the transformations
as soon as they are calculated. Thus no seesaw-action will
occur. And due to the consistent variable settings with no
redundant transformations, this will not lead to an incon-
sistent result. Different from [2] where a totally incremen-
tal procedure is applied, a simultaneous updating of all the
transformations will further refine the resulting trans-
forms after a certain steps of splitting updating in our
approach. The splitting updating avoids the local minima
[2], and the simultaneous updating ensures the loop
closure.

Another concern is the weighting between the scans. As
we can see from (6), if one scan is overlapping with many
other scans, all these terms related to this scan will be
added to the objective function, which amounts to a larger
weight associated with it than others. We consider this to
be reasonable since the more overlaps a scan has, the more
important it is to keep the steadiness of this scan, and a lar-
ger weight is just proper to fulfill this task.

4. Parameter-based bi-directional registration

The bi-directional registration of a scanning view to its
overlapping surfaces is the key step in the optimization
procedure of our consistent multi-view registration. We
have observed that the bi-directional registration can
achieve higher accuracy through establishing the paramet-
ric correspondences rather than the variants of closest



Fig. 2. Explanation of the bi-directional registration.

Fig. 3. Synthesized data with sampling dislocation. Direction issue occurs
under the ICP framework. Bi-directional registration formulation based
on parametric correspondence generates coherent and better result.
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point correspondences. In this section, we formulate the
bi-directional registration based on parametric
correspondences.

4.1. Parametric correspondence

In registration models (4) and (6), the problem occurs
that there is no close form for the distance measure
dð/ðpÞ; StÞ. Such case is usually handled by an iterative pro-
cedure which successively approximates the formulation
using a transformation /ðk�1Þ from the last step. Thus the
classic registration methods, like ICP and its variants, sep-
arate the optimization into two main steps: estimating the
correspondence and minimizing the distance measure. The
estimation by ICP and its variants is a straightforward
search on a discretization of the target surface, generating
an approximation of distance measure from the sampled
points. This approach is intuitive and practical in many
cases. However, an existing flaw is that a discrete approx-
imation will be greatly affected by causes, such as sample
rate and occlusion which are not the intrinsic properties of
surface. These negative factors are inevitable in practical
applications, especially in the multi-view registration
where the local deviations can accumulate to significant
gaps.

Instead of the closest point correspondence, we propose
a parametric based approach to improve the estimation of
correspondence. The parametric correspondence ðp; qðuÞÞ
between source and target is established by the following
model

dð/ðpÞ; StÞ ¼min
u
fk/ðpÞ � qðuÞk2jqðuÞ 2 Stg ð7Þ

where St is now considered as a continuous target surface
and has u 2 R2 as its underlying parametrization.

For range scan data, additional information is the pixel
domain which can serve as a natural parametrization of
the scanning surface. With this continuous parameter
domain in use, each point q on the surface can be
expressed by its parameter u as qðuÞ. Furthermore, differ-
ential quantities of the surface at qðuÞ, e.g., tangent and
normal, can be well estimated by the discrete sample
points qi ¼ qðuiÞ in a preassigned neighborhood. Given
qðuiÞ and the Taylor expansion of qðuÞ at u, a least square
system can be directly deduced. A local quadratic approx-
imation can also give equivalent result. Thus we are able to
optimize the correspondences by setting fug as variables.

4.2. Bi-directional registration optimization

Applying the parametric correspondence to the split-
ting formula in (6), we get an optimization model of the
bi-directional registration as follows

min
/r ;fug

X
tj

Lðr;tÞ–;

X
pðr;tÞ

i
2Sr

k/r pðr;tÞi

� �
�/t q uðr;tÞi

� �� �
k2þ

X
pðt;rÞ

j
2St

k/t pðt;rÞj

� �
�/r q uðt;rÞj

� �� �
k2

0
B@

1
CA

ð8Þ

where qðr;tÞi ¼ qðuðr;tÞi Þ 2 St is the correspondence of pðr;tÞi and

qðt;rÞj ¼ qðuðt;rÞj Þ 2 Sr is the correspondence of pðt;rÞj (see in
Fig. 2). A search of closest point is needed for the
initialization of fuðr;tÞi ;uðt;rÞj g, and the subsequent updating
is automatically performed as variables in our
optimization.

Although the correspondences are regarded as vari-
ables, the formulation still works under the ICP framework
and many of the classic promotion strategies can be
applied directly. Note that the bi-directional registration
result under ICP is still directly affected by the discrete
samples. Whereas in the parametric formulation, with
the accurate correspondences found on source and target
surfaces (see in Fig. 3), both directions perform as a more
accurate registration. Thus, the accuracy and stability are
greatly promoted.
4.3. Properties

By expressing the correspondences with continuous
approximation parameters, we gain several good proper-
ties in the bi-directional registration, such as correspon-
dence accuracy and distance orthogonality.
4.3.1. Correspondence accuracy
The resulting transformation obtained from our param-

eter-based bi-directional registration is nearly accurate. By
accuracy, the solution of the bi-directional registration (8)
well approximates the true transformation while it is
insensitive to the sample rate of source and target surfaces.
We owe this accuracy to the parametric expression which
allows a continuous correspondence representation on the
target surface. In other word, we are free to look for corre-
spondences in an infinite space rather than constrained to
its finite sampling.

Fig. 4 demonstrates the accuracy property via the regis-
tration of synthesized data. We generate two samples of a



Fig. 4. The accuracy of parametric correspondence. (a) The ground truth and sampled data in different rates. (b) The initial state for registration. (c) The
registration result by the point to point ICP. (d) The registration result by the point to plane ICP. (e) The result obtained by our parametric bi-directional
registration.

Fig. 6. Statistics for absolute cosine of angle between the normal at
correspondence and the direction from source point to its correspon-
dence. Left: by ICP. Right: by parametric correspondence.
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smooth surface at different sample rates and positions and
then apply a small amplitude rigid transformation to one
of them. A correct transformation is recovered through
our parametric bi-directional registration. While classic
searching strategies achieve bias results due to the corre-
spondences are constrained to discrete samples.

4.3.2. Distance orthogonality
Another feature is that, with the parametric correspon-

dence, the orthogonal distance is implicitly held. From the
parametric correspondence formulation (7), we can sense
that the correspondence of a source point is indeed the
foot-point on the target surface, but not necessarily the
closest point in discrete samples. Thus the direction from
the source point to its correspondence is highly coherent
with the normal at the correspondence, as shown in Fig. 5.

In Fig. 6, we give the statistics for absolute cosine of
angle between the normal at correspondence and the
direction from source point to its correspondence, which
is calculated from an intermediate iteration of the para-
metric bi-directional registration for the example shown
in Fig. 4. Most of the absolute cosine values in our paramet-
ric correspondence are greater than 0.99 while only a small
part of correspondence pairs in classic ICP reaching this
threshold.

Thus, though our formulation takes the form of a point-
to-point distance, the point-to-plane metric kni � ðpi � qiÞk
is already held for the coherence of the directions. This
does not mean that the distance orthogonality is equiva-
lent to the point-to-plane distance. In fact, the orthogonal
distance provides a more accurate approximation of the
geometry distance from a point to a surface. Both the
discrete point-to-point and point-to-plane distance give a
good approximation of the orthogonal distance only when
the point is very close to the surface and a fairly dense
Fig. 5. With the parametric correspondence, the direction from p to q is
highly coherent with the normal n at q.
sampling is provided. And with this point-to-point form,
the method is less sensitive to initial state than the
point-to-plane ICP algorithm.

In summary, accurate correspondence is the most
important feature of our parameter-based bi-directional
registration, which provides the way leading to a globally
consistent registration of multiple views without drift
problem.
5. Results and discussion

Our experiments are performed on Windows 7 OS with
2.80 GHz � 4 CPU (Intel i5-2300) and 8G RAM. All the data
in our experiments are real scanning data, except the one
used in the evaluation where a resampling is needed. We
have tested our algorithm on various models. In each
model, usually 5–10% correspondences in the overlapping
regions are used for registration. The computing time var-
ious from several minutes to a dozen minutes for input
data sets with dozen thousands to hundred thousands of
vertices.

5.1. Real scanning data

Our method applies directly to range data with a natu-
ral pixel domain. Given the calibrated parameters of the
range scanner, the mapping from the pixel domain to 3D



Fig. 7. Registration of real scanning range data. First column: initial states. Second column: scanning paths. Last two columns: two views of the registration
results. Rows from top to bottom: Happy Buddha (15 patches), Buste (16 patches), Armadillo (36 patches), Chinese Dragon (45 patches), Neptune (40
patches). The scanning path of Neptune is complicated and not displayed.

Table 1
Performance of our method on examples in Fig. 7.

Model name Data size (Million Points) Number of overlapping regions Percent of points used (%) Number of point pairs Time used (min)

Budda 1.09 15 5 122,128 11.9
Buste 0.32 18 5 41,681 7.9
Armadillo 0.91 42 5 119,638 22.7
Dragon 1.23 51 5 154,261 25.0
Neptune 4.71 98 5 1,221,761 106.0
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points is known. However, these parameters are not
always available. As a matter of fact, the framework can
be applied to any data with a parametric representation.
Projecting the input scanning data onto a proper plane is
adequate to serve as the parametrization. To suit the gen-
eral case, all the results given in this paper use this projec-
tion as a simple parametrization instead of the calibrated
mappings.
5.2. Registration results

As a post-processing method, we are supposed to start
from the result of some pairwise methods like ICP. How-
ever, to inspect the insensitiveness to the initial state of
our method, the results presented here all start from a
quite coarse initialization. The first row of Fig. 7 illustrates
the registration of a part of the Happy Buddha model,
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Fig. 8. Energy curves of the examples in Fig. 7.

Fig. 9. Registration of real scanning data. First row: initial state. Second
row: our registration result with color turned on. Third row: our
registration result with color turned off to illustrate geometry details of
the model. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 10. Loop comparison. First row: initialization by ICP. An obvious gap
exists between the first and last scan. Second row: result of ELCH. The
loop is closed with error diffused to previous scans. Third row: result of
our method. Globally consistent result is obtained. Gap is eliminated and
previous scans are still well aligned.
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where 15 scans are captured by a scanning path containing
one loop. The result in the last column shows that all the
patches are well aligned and no drift exists. Different colors
indicate different patches in the result figures.

5.2.1. Complicated sub-loops
During the scanning process, complicated scanning

paths are commonly used to get complete 3D models, for
example the in-hand devices allow the user to acquire
scans freely. Intersection of scanning loops can easily lead
to complicated sub-loops, making the detection of the
entire structure a difficult task and the global constraints
hard to be totally consistent. Without the need of explicit
constraint restriction, our approach deals with nested
loops naturally.

The second row of Fig. 7 shows the experiment per-
formed on 2 intersecting scanning loops. With the 2 inter-
sections in the front and back of the path, 4 more sub loops
arise. The drifts in all sub loops are eliminated. In the next
two rows, the scanning paths consist of 3 intersecting cir-
cle loops. The last row shows the registration of a part of
the model Neptune, which is scanned with complicated
paths. Many sub loops exist in these scanning paths. The
performances of our method on these examples are listed



Fig. 11. Evaluation with three different sample strategies: all vertices sampled (Left Column), random sample with the same rate (Middle Column), and
random sample with different rate (Right Column). First row shows the sample result of the first 2 scans. Second row displays the ICP initialization. Last
three rows give the results of ELCH, Pulli’s method and our method, respectively.

Table 2
Comparison of the registration error.

ICP Init ELCH Pulli’s method Our method

l2 l1 l2 l1 l2 l1 l2 l1

1 1.66e�5 2.02e�2 6.92e�5 1.00e�2 2.62e�6 7.44e�3 2.70e�6 3.11e�3
2 7.45e�5 4.93e�2 2.00e�5 1.39e�2 6.68e�6 8.63e�3 4.27e�6 3.81e�3
3 6.14e�5 5.69e�2 2.08e�5 1.97e�2 9.93e�6 1.95e�2 4.82e�6 4.27e�3
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in Table 1, together with some details of the models.
Consistent results are obtained in all the experiments.
Fig. 8 displays the trend of objective values. We normal-
ize the scans to put the values in one figure, for their original



Fig. 12. Pointwise color-encoded registration errors. First row: sample all the visible points. Second row: random sample the points with the same rate.
Third row: random sample the points with different rate. Columns from left to right: the results of ELCH, Pull’s method and our method respectively. Points
with a registration error larger than 0.005 are colored red. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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coordinates are in different order of magnitudes. Some
jumps exist in the earlier stage because of the deletion of
point pairs. After a certain steps of iteration when no point
pairs need to be rejected, the optimization process becomes
stable and is able to converge.

Apart from the well-known examples from The Stan-
ford 3D Scanning Repository above, other data sets are also
tested. Fig. 9 shows another example consists of 8 scans
captured from a circled scanning path by the laser scanner
Range 7. A naive parameter domain is obtained by project-
ing the data onto the x–y plane in their local frame. Starting
from a coarse alignment, our method generates quite satis-
factory results, which shows that the approach is applica-
tive to different data types.

5.3. Evaluation

The accuracy of our approach is evaluated in this sec-
tion. A simple comparison of the registration results is
shown in Fig. 10, where the input is 12 scans simulated
on a circular path. Simply chaining pairwise ICP leads to
obvious drift at the end of the loop (left). The ELCH ([3],
middle) and our approach (right) close the loop. And our
method generates more visually satisfying result.

To evaluate the accuracy, we sample the model Stanford
Bunny from a fixed viewpoint and rotate the model 45
degrees each time to get 8 scans. After each rotation, the
visible vertices are recorded. Thus each point of the scans
has a corresponding ground truth. To inspect the function-
ality of parameter correspondence, three different sample
strategies are used: (1) sample all the visible points from
the viewpoint; (2) random sample visible points with the
same rate; (3) random sample visible points with different
rates. We use the results of a pairwise ICP registration as
the initialization to make a fair comparison. The scans
are registered by ELCH, Pulli’s method [2] which was
implemented in the software Scanalyze [44] and our
method. Both the l1 and average l2 errors with respect to
the original model are calculated. The results are shown
in Fig. 11.

The registration results are visually comparative. While
error values in Table 2 show interesting tendency (each
row corresponds to one sampling strategy respectively as
stated above). First, our method results in smaller error
in most cases. And from the last column we can see that
the sample rate generates minor influence on our results.
This is reasonable since the parameter helps to find the
correct correspondences though they are not captured by
the scanner.

There is an increase in the l2 error of the ELCH in the
first strategy. This is possible since the diffusion process
distributes the accumulated error to previous scans. If
the previous scans are already perfectly aligned, this distri-
bution may cause a rise in the l2 error. And in the first sam-
ple strategy where all vertices are sampled, ICP is
competent to provide such a good initial state. Our
approach generates comparative results with Pulli’s
method [2]. However, when the sample rate is lower and
different sample rates are used for the scans, both the l1
and l2 errors of Pulli’s method exhibits a more obvious
increasing trend. Though the loop is very simple, the
results show the advantage of parametric correspondence
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and insensitivity to sample rate of our method. A pointwise
color-encoding of the registration errors is shown in
Fig. 12.

The time cost of both ELCH and Pulli’s method is smaller
than ours. Given proper initialization, Pulli’s method can
be an order of magnitude faster than our method for it
applies incremental updating and directly searches for cor-
respondences. ELCH is even faster because it simply dis-
tributes transforms to adjacent patches. We optimize all
the transforms and correspondences together to obtain
higher accuracy.

This experiment illustrates the accuracy of our method
in a simple scanning path containing one single loop. Nev-
ertheless, as previously stated, the strength of our method
lies in complicated cases where numerous loops exists.
5.4. A clean framework

The consistent multi-view registration formulation pro-
vides a non-redundant variable system to gather local pair-
wise overlapping information and lead to a consistent
result. As long as a pairwise approach provide an invertible
transformation between the overlapping patches, it can be
employed by this framework and generate consistent
results.
6. Conclusion and future work

We present a parametric based consistent framework
that deals with the loop closure problem in multi-view
registration. By gathering local overlapping information
through a bi-directional parametric registration in each
overlapping region that produces invertible transforma-
tions, drift-free results are finally obtained. Only pairwise
overlapping information is needed and the consistency is
ensured automatically by the consistent formulation.

A coarse registration step that provides an initial state is
needed for our method, since we need the pairwise over-
lapping information. Both rough manual alignment and
coarse registration methods are feasible as long as the right
overlapping information is provided. In our experiments,
the alignment method presented by Aiger et al. [45] gener-
ates quite preferable initial states in most cases.

A more efficient optimization of the framework is one of
our future works. With all the correspondences as vari-
ables, the optimization procedure is slower than methods
use direct searching strategy. GPU acceleration is to be
considered in the optimization procedure.

Dealing with noisy data is also an important topic in
registration. The ability to restrain outliers can be
enhanced by sparse optimization theory. Bouaziz et al.
[46] present an extension of the classic ICP with p-norm
which can treat wild outliers effectively. In our framework,
the p-norm ð0 < p 6 1Þ can be applied directly by defining
different distance measures. Thus a robustness enhance-
ment is possible.

Another future direction is the non-rigid registration.
Since our method works well on rigid registration, general-
ization to piecewise rigid registration of articulated object
is straightforward. With the parameter information in use,
we believe the extension to non-rigid case can also bring in
much benefit.
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