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Abstract 
 
In general, the upright orientation of a model is beneficial for human to recognize this model and is widely used in geometry process-

ing and computer graphics. However, the orientation of the model obtained by existing technologies, such as 3D scanning systems or 
modeling, may be far away from the right orientation. In order to solve this problem, a robust and efficient upright method is needed. We 
observe that when the model is aligned with the three axes, the rank of the three-order tensor constructed by this model is the lowest usu-
ally. Inspired by this observation, we formulate the alignment of the 3D model with axes as a low-rank tensor optimization problem 
which is a global and unsupervised method and the genetic algorithm (GA) is used to solve this optimization problem. After the 3D 
model has been aligned with the three axes, some geometric properties can be used to pick out the best upright orientation from the six 
candidate supporting bases easily. The three-order tensor is constructed by voxelizing the bounding box of the 3D model, and then filling 
the voxel element with zero or one based on whether it contains the points of the model or not. The experimental results demonstrate that 
our method is robust, efficient and effective for all kinds of the models (manifold or non-manifold, man-made or non-artificial, or point 
cloud).   
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1. Introduction 

Usually, humans are willing to look at things from a good 
view, because more information can be captured from this 
view than others and can help them recognize things easily. 
Under the action of the gravity, almost all of the models have 
their unique supporting bases which defining the upright ori-
entations of the models. Obviously, the supporting base is the 
nature property of the model. However, models obtained by 
existing technologies, such as 3D scanning systems [1] or 
modeling [2, 3], are often deviation from the upright orienta-
tion.  

Despite of the views of the human, upright orientation of 
the model is widely used in geometry processing, such as 
shape matching [4], shape retrieval [5] and shape registration 
[6]. The upright orientation of the model is beneficial for these 
algorithms to find the best matching shapes and parts. The 
performances of these methods highly rely on the upright 
orientations of the input models. To make these methods ro-
bust and effective, a preprocessing algorithm is needed to 
align the models in the same coordinate system.  

There exist a lot of 3D geometry processing software, such 

as Maya, 3DS Max, Meshlab and deep exploration, which can 
be used to obtain the upright orientations of the models. The 
only operation can be used to get the upright orientation of the 
3D model is the rotation. Users have to continue to rotate the 
model by rotation operation of the software until the upright 
orientation is obtained. However, this procedure is time-
consuming and inaccurate which can affect the performance 
of the 3D geometry processing algorithms. Especially, if the 
direction of the model is too random, such as the direction in 
Fig. 1(a), it is scarcely possible to obtain the upright orienta-
tion accurately with the rotation operation of the existing 3D 
geometry processing software.  

As the upright orientation is important for some geometry 
processing, several researchers have proposed some methods 
to deal with it. The commonly used technology is to align the 
model with axes, and then some geometric properties of the 
3D model are applied to find the final upright orientation from 
the six candidate supporting bases. Fu et al. [7] use training set 
to deal with this problem which is a supervised method. Al-
though their method is great for almost all of the man-made 
models, the performance of their method relies on the quality 
of the training set seriously. The low-rank theory of the 2D 
matrix is used by Jin et al. [8] to align the 3D model with axes. 
Their method is an unsupervised method and can achieve a 
great result when the model has perfect symmetries. However, 
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if a model has some ambiguities or asymmetries, their method 
may fail (see Fig. 8), as their method needs to iteratively rec-
tify the rank of the three images independently which obtained 
by projecting the 3D model on the three coordinate planes and 
just uses the local information of the 3D model. Although 
their method can obtain the minimum of the 2D matrix rank, 
they cannot guarantee the minimum of the three-order tensor 
rank. The results in the middle row of Fig. 8 obtained by Jin et 
al. [8] show that their method can only obtain a local align-
ment in this situation. Furthermore, their method cannot deal 
with point cloud, composed models and incomplete models 
(see Fig. 6). 

In this paper, we propose a global and unsupervised method 
to find the upright orientation robustly, automatically, and 
effectively. The observation of our paper, which is inspired by 
the recent work of Ref. [9], is that the rank of the three-order 
tensor constructed by the 3D model is the lowest if the 3D 
model has been aligned with axes. Fig. 1 shows a model with 
two different orientations. The rank of the three-order tensor 
constructed by the model in Fig. 1(a) is 284, while the rank in 
Fig. 1(b) which has been aligned with axes by our method is 
147. As the boundary of the 3D model can reflect the symme-
try of the model fully [10], we use the surface points instead of 
the volume of the 3D model to construct three-order tensor in 
this paper. The rank of the three-order tensor constructed with 
the surface points is enough to reflect the global external 
symmetries of the model. Furthermore, the elements of the 
three-order tensor constructed in this way are sparser and the 
memories needed to store these elements are smaller than that 
constructed with the volume of the 3D model (see Fig. 5). 
Simultaneously, in order to deal with point cloud, composed 
models, non-manifold models and incomplete models (see Fig. 
6), it is necessary to construct the three-order tensor with sur-
face points of the 3D model, as these kinds of models cannot 
define their internal. An optimization model is proposed 
which is used to search an optimal rotation matrix by mini-
mizing the rank of the three-order tensor. The genetic algo-
rithm (GA) [11] is used in our paper to solve this optimization 
problem. After the optimization, the 3D model has been 
aligned with axes whose candidate supporting bases are re-
duced to be the six faces of the bounding box of the model. 
Then, the best upright orientation can be picked out from the 
six candidate supporting bases easily by analyzing the geo-
metric properties of the 3D model similar to Refs. [7, 8]. 

The main contributions of our proposed method are as fol-
lows: 

(1) The three-order tensor constructed in this paper is very 
sparse which is beneficial for calculation and storage and it 
can reflect the original symmetry of the 3D model. 

(2) As the rank of the three-order tensor can reflect the 
global external symmetry of the 3D model, so our proposed 
method is a global and unsupervised method which do not 
need training set. 

(3) Our algorithm is flexible for all kinds of data including 
manifold and non-manifold, man-made and non-artificial, or 

even point cloud, as the three-order tensor constructed just 
using the surface points of the model.  

 
2. Related work 

Orientation of image. A digitized or scanned photograph 
can differ from its correct orientation by 0o, 90o, 180o, or 270o. 
Therefore, the image orientation detection problem is repre-
sented as a four-class classification problem [12]. High di-
mensional feature vector in each possible orientation is ex-
tracted, and then the similarity score is obtained by a Support 
Vector Machine [13]. The higher the score, the better the ori-
entation. However, the high dimensional feature vectors need 
a very large training dataset of the 3D models. 

Upright orientation of the 3D models. In geometry proc-
essing and computer graphics, a lot of applications need to 
align the given models. The commonly used method is the 
principal component analysis (PCA) [14]. However, this 
method needs to compute the center of the mass and the prin-
cipal axes of the model which are not robust and inaccurate 
for many models, such as the noise models. 

In Ref. [7], geometric properties of the model are used to 
reduce the candidates of the upright orientation, and then the 
best upright orientation is obtained by a learning method. 
Their method is great for almost all of the man-made models. 
However, the robustness and effectiveness of their method 
extremely relies on the quality of input model and training set. 

Inspired by low-rank of 2D matrices theorem, Jin et al. [8] 
propose an unsupervised upright orientation algorithm. They 
project model at three axis-aligned orientations to obtain three 
projection matrices, and the rank of these matrices are opti-
mized for aligning the model with axes. The model is aligned 
with axes by iterative rectification of axis-aligned projections 
as low-rank matrices independently. However, their method 
just considers the local of the 3D model which is a local 
method.  

Viewpoint selection. As the right view may contain more 
information than any random orientation and can be very use-
ful, so automatically and effectively selecting viewpoint of the 
3D model is very important. A lot of methods have been pro-

      (a) Tensor rank = 284           (b) Tensor rank = 147 
 
Fig. 1. A model is posed at two different orientations: (a) random 
direction; (b) upright orientation obtained from the direction in (a) by 
our method.  
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posed to deal with the viewpoint selection problem. Some 
different metrics, including viewpoint entropy [15], view sali-
ency [16] and shape distinction [17], are applied to maximize 
the visibility of interesting content. Refs. [18, 19] minimize 
the visible redundant information of the symmetry and simi-
larity. Ref. [20] selects the best views automatically by con-
sidering the geometry and visual salient features simultane-
ously. There is no doubt that the viewpoint of the 3D model 
can be found easily after the model has been posed at its up-
right orientation. 

3D shape matching, retrieval and registration. The aims 
of the 3D shape matching [4] and retrieval [5] are to find the 
best similarity models with queries. And the aim of the 3D 
shape registration [6] is to find the similarity part of two mod-
els. The main difficulty of these problems is how to find the 
way to measure the similarity between the two models or parts. 
Most of them propose feature descriptors firstly, and then 
similarities are measured by the distances of the descriptors. 
However, in order to make the descriptors meaningful and 
powerful, all of the models in the database and queries must 
be aligned to the same coordinate system, like the descriptors 
proposed in Ref. [21]. Commonly used alignment methods 
include PCA [14] and manual adjustment using 3D geometry 
processing software. However, these methods are not robust 
and time-consuming. Our proposed method can help to deal 
with these problems automatically and efficiently. 

Three-order tensor. The low-rank tensor theory has been 
widely used in computer vision and computer graphics. The 
details of the tensor decomposition and applications are intro-
duced by Kolda et al. [22]. Liu et al. [23] propose an algo-
rithm to estimate missing values in three-order tensors of vis-
ual data. Their algorithm can recover an image with 80% ele-
ments missing. Considering that medical image, e.g. CT or 
MRI, has the natural form of three-order tensor, Guo et al. 
[24] recognize the problem of medical hole-filling as the low-
rank of tensor. As the 3D model can be converted to the three-
order tensor easily and naturally, the low-rank tensor theory is 
used in this paper to deal with the upright orientation problem 
of the 3D model.  

 
3. Tensor and its rank 

3.1 Definition of tensor 

A tensor is a multidimensional array. More formally, an n-
order tensor is an element of the tensor product of n vector 
spaces, each of which has its own coordinate system [22]. We 
use bold upper case letters for matrices, e.g. X, and c  de-
notes tensor. An n-order tensor is defined as 1 2 ... nI I Ic ´ ´ÎÂ . Its 
elements are denoted as

1 21 2 , ,...,( , ,..., )
nn i i ii i i xc = , where 

0 ,1k ki I k n£ £ £ £ . For example, a vector is a 1-order tensor 
and a matrix is a 2-order tensor. It is sometimes convenient to 
unfold a tensor into a matrix [22]. The “unfold” operation 
along the k-th order on a tensor c is defined as 

1 1 1( ... ... )
( )( ) : X k k k nI I I I I

k kunfold c - +´= ÎÂ . The opposite opera-
tion “fold” is defined as: :kfold c= . Since the rank of the 

tensor is difficult to calculate, the trace norm of the tensor is 
used to approximately calculate the rank of the tensor, as the 
trace norm of the tensor is the tightest convex envelop for the 
rank of tensor [25] and is easy to calculate. 

 
3.2 Definition of tensor trace norm 

In this paper, the trace norm of the tensor is used to ap-
proximately calculate the rank of the tensor which is defined 
as follows [22]: 

 

* ( ) *
1

|| || : || X ||
n

i i
i

c a
=

=å                              (1) 

 
where ia 's are constants satisfying 0ia ³ and

1
1

n
ii

a
=

=å , 
and ( ) *|| X ||i is the trace norm of the 2D matrix X(i) which is 
defined as follows: 
 

( ) * ( )|| X || (X )i i i
i

s=å                              (2) 

 
where ( )(X )i is denotes the ith largest singular value of X(i). 

 
3.3 Three-order tensor construction 

In Ref. [8], they project 3D model on three axes planes to 
obtain three images which contain not only the boundary but 
also the internal of the projected model. It is very natural to 
generalize their method in 3D space to construct three-order 
tensor with volume of the 3D model. However, the tensor 
constructed in this way cannot deal with point cloud, incom-
plete models, non-manifold models and composed models 
(see Fig. 6), as these models cannot define the internal of the 
model, i.e. we cannot construct three-order tensor with the 
volume of these models. Furthermore, the elements of the 
three-order tensor constructed with the volume of the 3D 
model are very huge which will take up very large memory 
and affect the speed of calculating trace norm of the three-
order tensor. As the boundary of the 3D model is enough to 
reflect the symmetry of the model [10], we just need to use the 
surface points of the 3D model to construct three-order tensor 
whose elements are very sparse (see Fig. 5). 

It is known to all that the bounding box of the 3D model 
parallels the coordinate planes and contains the whole model. 
Therefore, the bounding box of the 3D model is used to con-
struct our three-order tensor in this paper. The details of the 
three-order tensor construction are introduced in the following. 

First of all, we voxelize the bounding box with 
m n l´ ´ voxel elements (see the left of the Fig. 2), where m, n, 
and l indicate the number of voxel elements along the x, y and 
z-axes respectively which can be specified by users. Each 
voxel element can be considered as an element of the three-
order tensor and is filled with zero.  

Then, for each point v of the 3D model, the position of the 
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voxel element that contains this point can be calculated as 
follows: 

 
( ) /
( ) /

( ) /

x x x x

y y y y

z z z z

ind v min e
ind v min e

ind v min e

= -

= -

= -

                            (3) 

 
where (indx, indy, indz) corresponding to the row, column and 
height of the element in the three-order tensor, (vx, vy, vz) is the 
coordinate of the surface point v, and (minx, miny, minz) are 
minimum values of the x-coordinate, y-coordinate and z-
coordinate of the bounding box of the 3D model. ex, ey and ez 
are the length, width and height of the voxel element which 
can be calculated by ex = lx / m, ey = ly / n and ez = lz / l, where 
lx, ly and lz denote the length, width and height of the bounding 
box of the model respectively (see Fig. 2). 

At last, the position pointed by (indx, indy, indz) in the three-
order tensor is set to one, that is to say ( , , ) 1x y zind ind indc = . 
For example the voxel element bounded by the blue line in 
Fig. 2, this voxel element contains the points of the model, so 
it is filled with one. After all of the points of the 3D model are 
traversed, our three-order tensor has been constructed com-
pletely. 

 
4. Algorithm 

The input model of our algorithm can be a manifold or non-
manifold mesh, or even point cloud, denoted by M. The point 
of the model is denoted by v and the coordinates of the points 
of the M are denoted by V, which is a 3n´ matrix where n is 
the number of the points of the M. In our x-y-z coordinate 
system (green-blue-red in all figures in our paper), the upright 
orientation is defined by the positive z-axis direction in our 
paper. In order to facilitate the subsequent operations, we 
translate the barycenter of the input model to the origin of the 
coordinates of the coordinate system. At this time, we just 
need to find an optimal rotation matrix R so that the 3D model 
is posed at its upright orientation. It is known to all that any 
rotation matrix can be decomposed into R( )xq , R( )yq  and 
R( )zq , i.e. R R( )*R( ) * R( )x y zq q q= , which are the rotation 
matrix around x-axis, y-axis and z-axis respectively, where 

xq , yq and zq are the rotation angles around three axes. The 
definition of the R( )zq is given as follows: 

 
( ) ( ) 0

R( )= ( ) ( ) 0 .
0 0 1

z z

z z z

cos sin
sin cos

q q
q q q

æ ö
ç ÷-ç ÷
ç ÷
è ø

                    (4) 

 
R( )xq and R( )yq  can be defined similar to R( )zq . 

In Ref. [8], Jin et al. project the 3D model on three coordi-
nate planes to obtain three 2D projection images. And then, 
TILT method [9] is used to obtain an optimal rotation matrix 
so that the ranks of the three projected matrices are as small as 
possible. Their method using the rank of the projection matrix 

is a local method and not robust. In this paper, we use the rank 
of three-order tensor instead of the rank of 2D matrix which 
can capture the global information of the 3D models. Similar 
to Ref. [8], our proposed method is composed of two steps. In 
the first step, 3D model is aligned with the three axes by an 
optimization model proposed in the next section. And then, 
the upright orientation is picked out by analyzing the geomet-
ric properties of the 3D model in Sec. 4.3. 

 
4.1 Objective function 

Our observation is that most of the 3D models have symme-
try, if the model is aligned with three axes, the model must be 
in a symmetric form and the rank of the three-order tensor 
constructed with this model must be the lowest. Inspired by 
this observation, the alignment of the 3D model with axes is 
formulated as a low-rank tensor optimization problem to find 
an optimal rotation matrix R* so that the rank of the three-
order tensor constructed with the model is the lowest. The 
optimization model proposed as follows: 

 

RR ( ( (V R))),* argmin Rank c= o                    (5) 

 
where V Ro indicates the coordinates of the new mesh M' that 
obtained by rotating M with R, and (V R)c o  is a three-order 
tensor generated with M'. Rank (.) denotes the rank of the 
three-order tensor. 

The optimization problem Eq. (5) is non-convex, as the 
function Rank (.) is non-convex. In order to solve Eq. (5) effi-
ciently, one common approach is to use the trace norm *|| . || , 
which is defined in Eq. (1), to approximate the rank of three-
order tensor [23]. Therefore, the Eq. (5) can be converted into 
the following optimization model: 

 

R *R (|| (V R) || ).* argmin c= o                       (6) 
 

4.2 Optimization 

The Eq. (6) is highly nonlinear as the unknown is the rota-
tion transformation R which is difficult to be converted into a 
linear problem. Furthermore, the three-order tensor and its 
trace norm must be calculated in each step of the optimization 

 
Fig. 2. Voxelization of the bounding box and some notations used in 
constructing the three-order tensor. The local zooming of the blue cube 
is shown in the right. The red points are the surface points of the 
model. 
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which is very hard to be handled in any optimization method. 
Therefore, there are no appropriate optimization methods to 
solve it effectively. In order to solve this problem, the genetic 
algorithms [11] is used in this paper. The rotation angles xq , 

yq and zq are encoded to generate our initial population, and 
fitness function is the trace norm of the three-order tensor. Our 
algorithm stops when the trace norm of the three-order tensor 
dose not decreases any more. As the rank of the three-order 
tensor constructed by the 3D model has minimum value, the 
genetic algorithms can convergence to a local minimum. At 
this time, the model has been aligned with axes and the candi-
date supporting bases have been reduced to be the six faces of 
the bounding box of the model by our optimization algorithm 
(see the second column of the Fig. 4). The upright orientation 
of the model can be picked out easily by analyzing the geo-
metric properties of the model in Sec. 4.3 (see the last column 
of the Fig. 4). 

 
4.3 Picking out upright orientation 

After Eq. (6) is solved, the optimal rotation matrix can be 
obtained. Now, we can rotate the input model with this rota-
tion matrix to get an axes-aligned model whose supporting 
base can be any of the six faces of the bounding box. Then, 
the best upright orientation should be picked out from the six 
supporting bases. 

Similar to Refs. [7, 8], geometric properties of the 3D 
model are used to calculate some scores for each candidate 
supporting base of the model, and the best upright orientation 
is selected based on these scores. 

As not all of the points of the supporting base are the sup-
porting points of the model, so we should compute the actual 
supporting points of the model which is defined as follows: 

 
( ) : { (v) : (v, ) ,v }S SP M P d S Me= < Î                (7) 

 
where PS(v) denotes the projection of point v on the support-
ing base S, d(.) denotes Euclidean distance, and e is a constant. 

The geometric properties that used in this paper are as fol-
lows (see Fig. 3): 

(1) Convex hull of the actual supporting points H(PS) (green 
polygon) and its barycenter C(H(PS)) (green point). 

(2) Projection of the model center mass on the current sup-

porting base C(M) (yellow point). 
(3) Convex hull of the model projection on the current sup-

porting base H(MS) (red polygon) and its barycenter 
C(H(MS)) (red point). 

(4) The current supporting base (blue polygon) and its cen-
ter C(P) (blue point). 

 
Geometric score. Using the geometric properties defined 
above, we compute stability score staS , symmetry score 

visS and visibility score symS for each candidate supporting 
base, like Refs. [7, 8]. As none of the single score can be used 
to find the best upright orientations for all of the models, so 
these scores should be combined to calculate a geometric 
score for the model which is defined as follows: 

 
:S sta vis symG S S Sa b g= + +                          (8) 

 
wherea , b and g are combination coefficients. 

The candidate supporting base with largest geometric score 
is selected as the best supporting base. Since the number of 
candidate supporting bases is six which are the six faces of the 
bounding box of the 3D model, the optimal supporting base 
can be found out effectively by our method. We can see from 
the Fig. 3 that the stability score and the visibility score of the 
Figs. 3(a) and (b) are lower than that in Fig. 3(c), so the orien-
tation defined by the supporting base in Fig. 3(c) is selected as 
our final upright orientation. The model is posed at its upright 
orientation in Fig. 3(d). 

 
5. Experimental results 

5.1 Implementation 

All of our experiments are tested on a PC with Intel(R) 

     (a)             (b)            (c)            (d) 
 
Fig. 3. Some geometric properties of the 3D model used in this paper 
and the final selected upright orientation by our method: (a)-(c) projec-
tion of the model on the three axes planes; (d) upright orientation and 
the model has been posed at its upright orientation. 

 
 

 
 
Fig. 4. Three results of our method. Left column shows the input mod-
els with random orientations middle column shows the models aligned 
with axes, and right column shows the final results. All models have 
been posed at their upright orientations by our method. 
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Core(Tm) i3-2120 CPU @ 3.30 GHz and 8 GB memory. On 
average, each model takes about 1-2 minutes in our experi-
ments. 

In our paper,a , b , g and e are set to 0.30, 0.30, 0.40, and 
0.10 respectively. The dimensions of the three-order tensor 
constructed are set to 100, 100 and 100 respectively. The coef-
ficients of trace norm of the three-order tensor are ia = 0.33, 

1,2,3i = . 

 
5.2 Our results 

We test about 1814 models of the Princeton database [26] 
which contains furniture, vehicle, humans, buildings, animals 
and so on, and our method can achieve about 70% prediction 
accuracy, while Jin et al. [8] just achieve about 55% prediction 
accuracy. Most of the failed models have big parts whose 
symmetries are inconsistent with the whole models and the 
rank of the big parts play the leading roles in the low-rank 
optimization, so the big parts of the models can be posed at 
the upright orientation, not the whole models by our method 
(see Fig. 9). 

Some of the test results by our method are shown in Figs. 4-
7. The results of the ant, bed and street light are shown in Fig. 
4. The first column shows the input models with random di-
rections. From the second column we can clearly see that our 
method can align the 3D models with axes based on the ob-
servation that the rank of the three-order tensor is the lowest if 
the 3D model is aligned with axes. Our proposed optimization 
model can align 3D models with axes automatically and effi-

ciently. After the model has been aligned with axes, the up-
right orientation can be picked out easily by analyzing the 
geometric properties of the 3D model. All of these models are 
posed at their upright orientations by our method in the third 
column. Since the stability score of the supporting base of the 
ant in the third column is the largest among the six candidate 
supporting bases, the orientation defined by this supporting 
base is selected as the final upright orientation. The visibility 
score of the supporting base of the street light in the third col-
umn is the largest among the six candidate supporting bases, 
so our method selects the direction defined by this supporting 
base as the final upright orientation. 

Results obtained by the three-order tensor constructed with 
two different ways are shown in Fig. 5. Input model with ran-
dom orientation is shown in Fig. 5(a). The results obtained by 
the three-order tensor constructed with volume and surface 
points of the model are shown in Figs. 5(b) and (c), respec-
tively. These two results are almost the same, but the number 
of the elements of these two three-order tensors is 87177 and 
392. That is to say, the results obtained with these two ways 
are the same, but the elements of the three-order tensor con-
structed with the surface points of the model are sparser and 
the memories needed to store these elements are smaller than 
that constructed with volume of the model. 

Fig. 6 shows that our method is robust and effective for 
non-manifold models, point cloud, incomplete models and 
composed models, as we just use the points of the 3D model 
to construct our tensor. However, the method proposed in Ref. 
[8] cannot deal with these kind of models, as the projection 
images of these models may be incomplete or self-occlusion 
which cannot reflect the symmetric information of the models 
and can affect the performance of their algorithm seriously. 

   (a) Input model      (b) Elements = 87177    (c) Elements = 392 
 
Fig. 5. Results obtained by the three-order tensor constructed with the 
different ways: (a) input model; (b)-(c) results obtained by the tensor 
constructed with the volume and surface points of the model. 

 

 
      (a)              (b)            (c)            (d)  
 
Fig. 6. Different types of models handled by our method: (a) non-
manifold model; (b) composed model; (c) incomplete model; (d) point 
cloud.  

 
 

 
Fig. 7. More models posed at their upright orientations with our 
method. From the figure we can see that our method can not only deal 
with man-made models, but also non-artificial models as long as they 
have some kinds of symmetries. 
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More results obtained by our method are shown in Fig. 7. 
From this figure we can see that, our method is very flexible 
and it is robust and effective for all kind of models which in-
cluding manifold or non-manifold models, man-made or non- 
artificial models, and point cloud, as long as the model have 
some kinds of external symmetries. 

 
5.3 Comparisons 

Since the method proposed in Ref. [7] using training set to 
find the upright orientation of the model, their method can 
handle the model as long as it has no ambiguity. However, 
their method is a supervised method and the performance of 
their method relies on the quality of the training set seriously 
and it is hard to implement and use. 

Jin et al. [8] project the 3D model on three axes planes and 
then the low-rank theory of the 2D matrix is used to align the 
model with axes. Although their proposed method is similar 
with ours, their method is a local method. They need to itera-
tively rectify the rank of the three projected images independ-
ently which cannot guarantee the global minimum of the rank 
of the three-order tensor. While, we use the rank of the three-
order tensor which can capture the global external symmetry 
of the 3D model, so our proposed method can find the better 
solution than using 2D matrix rank. Fig. 8 shows the compari-
son results. The first row shows the input models with random 
directions. The models shown in second row of the Fig. 8 
indicate that the method proposed in Ref. [8] can only align 
the local of the models with axes when asymmetries or ambi-
guities occur. Maybe the rank of each projection image is 
almost the lowest, but the rank of the tensor constructed with 
this model is not the lowest, i.e. the whole model is not posed 
at its upright orientation. However, using the rank of the ten-
sor, we can find the global solutions which are shown in third 
row of the Fig. 8. 

 

6. Conclusions 

In this paper, low-rank tensor theory is used to align the 
model with axes and then some geometric properties of the 3D 
model are applied to find the upright orientation from the six 
candidate supporting bases. We have achieved some impres-
sive results. The experimental results demonstrate that our 
method is efficient and robust for manifold or non-manifold 
models, man-made or non-artificial models and point cloud. 

Since the rank of the three-order tensor can capture the 
global external symmetries of the 3D models, our method is a 
global and unsupervised method. The proposed method is 
easy to implement, so it can be used as initial step of some 
geometry processing algorithms conveniently, such as 3D 
shape retrieval, 3D shape matching and 3D shape registration. 

However, our method still has some limitations. First of all, 
when a model has a big part whose symmetry is inconsistent 
with the whole model and the rank of the big part plays the 
leading role in the low-rank optimization, the big part of the 
model can be posed at the upright orientation, not the whole 
model by our method (see the first three columns of the Fig. 9). 
Secondly, if a model (man-made or non-artificial) has not any 
external symmetry, our method may fail (see the last column 
of the Fig. 9). In these situations, the results obtained by the 
method proposed in Ref. [8] are the same as ours, i.e. their 
method has the same limitations. 

As using the low-rank tensor theory cannot deal with the 
model with big parts, we should try other ways to handle this 
problem in the future. Finding upright orientation of the mod-
els without any external symmetry will be a challenge, we will 
try our best to deal with this problem in our subsequent work. 
In this paper, genetic algorithm (GA) is used to solve our op-
timization problem which is not very effective sometimes. 
Exploring a more effective optimization method for this non-
linear optimization problem is the goal of our future research. 

 
 

 
 
Fig. 8. Comparison results with Jin et al. [8]. The first row shows the 
input models with random directions, models in middle row are the 
results obtained by Jin et al. [8], and our method is shown in the last 
row. 

 

 
Fig. 9. Failures of our method. The first row shows the models with 
random orientations, the second row shows the results obtained by our 
method, and the last row shows the correct orientations we wanted. 
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