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Abstract In this paper we present a new representation of curve, named parametric curve with an implicit

domain (PCID), which is a curve that exists in parametric form defined on an implicit domain. PCID provides a

bridge between parametric curve and implicit curve because the conversion of parametric form or implicit form to

PCID is very convenient and efficient. We propose a framework model for mapping given points to the implicit

curve in a homeomorphic manner. The resulting map is continuous and does not overlap. This framework

can be used for many applications such as compatible triangulation, image deformation and fisheye views. We

also present some examples and experimental results to demonstrate the effectiveness of the framework of our

proposed model.
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1 Introduction

Curves and surfaces are the fundamental research objects in computer-aided geometric design (CAGD),

and two methods are usually used to describe them: the parametric method and the implicit method.

For the parametric method, early description of it is in [3]. Parametric curves and surfaces have become

the main popular geometric representation in computer graphics (CG) and computer-aided design (CAD)

to date. With the parametric method, each of the coordinates is expressed in terms of the geometric

dimension of an object. For example, a one-dimensional curve is embedded in a 3D space and the

coordinates are x = x(t), y = y(t), and z = z(t); and, for a two-dimensional surface, x = x(u, v),

y = y(u, v), and z = z(u, v). These mappings relate a space of parameters to the curve or surface

such that there is a correlation between points in these two spaces. Its advantage is easy to render

and is helpful for some geometric operations, such as the computation of curvature or bounds and the

control of position or tangency. There are many disadvantages and limitations to the parametric method.

One problem is the difficulty in determining relationships between a fixed point and curves or surfaces.

Another limitation is the difficulty in the representation of curves or surfaces with complex topology.

Due to the geometric and topological complexity of the curves and surfaces in industry, the modeling

technology of implicit algebraic curves and surfaces is increasingly useful in more applications. Early

implicit methods include scan-line rendering of algebraic surfaces [16]. More applications in computer

graphics and geometric modeling have become available to use the implicit modeling techniques [1,8,14,
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20]. Implicit equations, f(x, y) = 0 and f(x, y, z) = 0, are used to describe implicit curve and surface,

which define the relation of points in an ambient space in relation to the curve and the surface. One

of its advantages is its flexibility and ease of expression. Additionally, point location is done with ease,

according to the sign of the implicit function. The implicit method also carries some disadvantages in that

it is prone to have more branches. The implicit method is also not convenient for computer programming,

not easy to control and adjust the object’s shape.

Both methods have their inherent advantages, and they are complementary to some extent. In practical

application, sometimes we need convert from one form to another in order to make use of their advantages.

This motivates the researchers to explore means of converting from one method to another [9, 10, 15,

18]. The process of converting a parametric representation to an implicit representation is known as

implicitization. The reverse of implicitization is parameterization, which is more difficult. It is well

known that any parametric representation can be converted into an implicit representation. But, not

every implicit representation admits a parameterization, even if it is algebraic. Thus, a combination of

these two representations is needed.

In this paper, a new method for planar curve representation will be introduced, parametric curve

with an implicit domain. This is defined on the implicit curve and the mapping form is the parametric

format. It is helpful to express the curve in two aspects. Firstly, a more complex curve could be derived

through the use of the new method because the domain of definition is an implicit curve. For example,

the curve shown as the domain in Figure 1, is difficult to be represented in a parametric or an implicit

form. However, it can be efficiently expressed in the following form:

r(u, v) = (2vu− 3v, 4u+ 2uv + v2 + 0.6v3u)

s.t. (u2 + v2 − 4)((u− 6)2 + v2 − 1)((u+ 3)2 + (v + 1)2 − 1) = 0,

where the domain of definition is an implicit curve shown as the [u, v] domain in Figure 1. Secondly, the

mapping takes a parametric form, which provides sufficient flexibility and convenience for a few geometric

operations: the computation of curvature, tangency, and the control of position.

Based on parametric curve with an implicit domain, the conversion between a parametric curve and

an implicit curve can be carried out conveniently. In this process, the key step is the conversion from the

implicit curve to the parametric curve with an implicit domain. In this regard, we propose a framework

model for mapping points obtained from the implicit domain to the given implicit curve homeomorphi-

cally. In the model, the Sampson distance and Taylor expansion of an implicit curve are used in the

goodness of fitting. Difference penalties on the control net are used for simplifying the problem. In the

end, we formulate the issue as a standard quadratic programming problem subject to position constraints

and regularity constraints. The resulting mapping generated by our algorithm is guaranteed to be smooth

and does not overlap, and places the sample points to the implicit curve. We have applied our model on

a variety of different problems, extended the model to general scenarios, and successfully verified it in

image deformation, compatible triangulation and fisheye views.

Our contributions are summarized as follows.

[u, v] domain [x, y] domain

Figure 1 An example of parametric curve with an implicit domain
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•We propose a new approach for representing curves, which combines the advantages of the parametric

and implicit methods.

• Based on parametric curve with an implicit domain, an effective method to convert between para-

metric curve and implicit curve is now introduced.

• Verification of the method was achieved by utilizing various applications such as compatible trian-

gulation, image deformation and the fisheye view, with results showing that the method was effective in

all the aforementioned scenarios.

2 Definition

In this section, we give some basic notation on parametric curve with an implicit domain, and the mutual

conversions between parametric curve with an implicit domain and other representations of a curve.

2.1 Notation

Definition 2.1. Let ψ : D −→ R
2 be a continuous map, where D ⊂ R

2. If

(u, v) ∈ V (g) = {(u, v) ∈ D | g(u, v) = 0},

the image of ψ(u, v) is called a parametric curve with an implicit domain (PCID), and is denoted as

ψ|V (g). More precisely, PCID ψ|V (g) is the restriction of ψ to V (g) such that

ψ(u, v) = (x(u, v), y(u, v)) s.t. g(u, v) = 0.

Definition 2.2. A parametric curve with an implicit domain, ψ|V (g), is regular if it satisfies the

following conditions:

• Both x(u, v) and y(u, v) are differentiable;

• g(u, v) = 0 is regular;

• (| ∂(x,g)∂(u,v) |, |
∂(y,g)
∂(u,v) |) 6= 0 for all (u, v) ∈ V (g).

Remark 2.3. Differential properties have been studied in [23].

As shown in Definition 2.1, curves can now be expressed in the parametric form, implicit form or PCID

form generally. The following is an example of an ellipse.

Example 2.4. The three representations of an ellipse.

• Implicit:

e(x, y) =
x2

9
+
y2

4
− 1 = 0.

• Parametric:

r(θ) = (3 cos θ, 2 sin θ), θ ∈ [0, 2π).

• PCID:

ψ(u, v) = (3u, 2v) s.t. g(u, v) = u2 + v2 − 1 = 0.

Obviously, the implicit form is more compact while the parametric form is most convenient for gener-

ating points along a curve. The PCID ψ|V (g) maps points from [u, v] ⊂ D domain to [x, y] ⊂ R
2 domain.

Usually the implicit domain V (g) is set to be a curve which is as simple as possible and homeomorphic

to the target shape. In this example, it is a unit circle. Also, the location of PCID is obtained by sweep-

ing (u, v) through its implicit domain and substituting parameters (u, v) into the map ψ(u, v). So it is

beneficial to generate curve points for the purpose of display and also easy to determine whether a point

lies on, inside or outside the PCID. Specially, if mapping ψ(u, v) is represented with the tensor-product

B-spline, for example as shown in Figure 2(a), the shape of the curve can easily be changed by moving

the control points of B-spline as shown in Figure 2(b). The natural combination of the implicit form and

the parametric form will be popular for some applications.
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(a) (b)

Figure 2 Changing the curve with the control points. (a) Original control net and curve; (b) Control net and the

resultant curve

2.2 Conversion

With PCID, we now have three forms for a given curve: parametric, implicit, and PCID.We can obtain the

conversion between PCID and any of the other two representations via precise or approximate calculations

as shown in Figure 3.

I) PCID form to parametric form. For a given parametric curve with an implicit domain

ψ(u, v) = (x(u, v), y(u, v)) s.t. g(u, v) = 0, the standard shape g(u, v) = 0 is generally a simple shape

such as a circle, whose parametric form can be obtained easily. By substituting the parametric form of

g(u, v) = 0 into ψ(u, v), we can convert the PCID form to a parametric form. If the standard shape

contains complicated topology, then we need to subdivide it into a union of simple shapes, each of which

can be converted into its parametric form with the former approach.

II) PCID form to implicit form. For PCID ψ(u, v) = (x(u, v), y(u, v)) s.t. g(u, v) = 0, if x(u, v)

and y(u, v) are rational functions, then the implicit form can be obtained by eliminating u and v from

{x− x(u, v), y − y(u, v), g(u, v)} via the Gröbner base method [4].

III) Parametric form to PCID form. For a parametric curve x = x(t), y = y(t) with t ∈ [a, b], it

can be considered as a special PCID by taking ψ(u, v) = (x(u), y(u)) and g(u, v) = v with (u, v) ∈ D =

[a, b]× [0, 0].

IV) Implicit form to PCID form. An implicit curve f(x, y) = 0 can be considered as a PCID

by taking ψ(u, v) = (u, v) and g(u, v) = f(u, v). If we want to obtain a normal standard shape, we can

specify it according to the topology of f(x, y) = 0. Then we should construct a map from one region

containing the standard shape to the other region containing the implicit curve. This map will then

project points of the standard shape onto the implicit curve. This results in some good properties such

as smoothness and low distortion. See Section 3 for more details.

As can be seen, an approximate process is needed from implicit representation to PCID, which can

map given sample points from a standard shape to an implicit curve. As mentioned above, the mapping

process should maintain good properties such as smoothness and low distortion to as high a degree as

PCID form

Parametric form Implicit form

I

III IV

II

Figure 3 Conversions via different methods
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possible. This process seems very simple and straightforward, but the implementation can be a bit tricky.

In what follows, we focus on the conversion itself and will provide a model of it in Section 3.

3 Construction of mapping from points to an implicit curve

In this section, a model which to be used to construct a mapping from given sample points to an implicit

curve, will be introduced.

Input: Given points {(xk, yk), k = 1, . . . , N} derived from implicit or parametric curves, and an

implicit curve f(u, v) = 0.

Output: A continuous and bijective map.

In other words, a map Φ(x, y) from [x, y] ∈ R
2 to [u, v] ∈ R

2 as shown in Figure 4. Here, suppose the

map has the form of a tensor-product B-spline. The formula should be expressed as

Φ(x, y) =

n∑

i=1

m∑

j=1

(P 1
i,j , P

2
i,j)Ni(x)Nj(y),

where Ni(x) and Nj(y) are B-spline basis functions,

(P 1
i,j , P

2
i,j), i = 1, . . . , n, j = 1, . . . ,m,

is the control net. Note that the number and positions of control points, and therefore the number of

knots of the spline curve, are changed during the process.

3.1 Objective function

The objective function consists of two terms. Its general form is

E = Ef + Ep,

where Ef is the goodness of fitting and Ep is a penalty term to obtain a fair mapping.

3.1.1 Goodness of fitting

The specification of constraints is an interesting part of the model. These constraints ensure that every

given point (xk, yk) on the parametric or implicit curves can be mapped onto the implicit curve f(u, v) = 0.

It means that points

(uk, vk) =

n∑

i=1

m∑

j=1

(P 1
i,j , P

2
i,j)Ni(xk)Nj(yk)

[u, v] domain[x, y] domain

f (u, v)=0

Φ (x, y)=0

Figure 4 Mapping points to an implicit domain
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should satisfy the equation f(uk, vk) = 0. Supposing the current value of control net is

{(P̃ 1
i,j , P̃

2
i,j), i = 1, . . . , n, j = 1, . . . ,m},

the current position in the [u, v] domain is

(ũk, ṽk) =

n∑

i=1

m∑

j=1

(P̃ 1
i,j , P̃

2
i,j)Ni(xk)Nj(yk)

for point (xk, yk).

In the algorithm, we expect the iteration of every point along the gradient direction of the implicit

curve ∇f(u, v) = (fu, fv) as shown in Figure 5, where the algebraic distance of point (ũk, ṽk) is f(ũk, ṽk),

and f(ũk,ṽk)
‖∇f(ũk,ṽk)‖

is the Sampson distance [13] which is an approximation of geometric distance. Then we

should minimize the following equation

N∑

k=1

(
f(uk, vk)

‖∇f(uk, vk)‖

)2

.

With the Taylor expansion of f(u, v) at point(ũk, ṽk), here f(uk, vk) can be replaced by

f(ũk, ṽk) +∇f(ũk, ṽk)((uk, vk)− (ũk, ṽk))
T

for the simplification of the calculation.

Hence, we will take the following constraint for the goodness of fitting in the objective function,

Ef =

N∑

k=1

(▽f(ũk, ṽk)((uk, vk)− (ũk, ṽk))
T

‖∇f(ũk, ṽk)‖
+

f(ũk, ṽk)

‖∇f(ũk, ṽk)‖

)2

. (3.1)

3.1.2 Penalty term

The fairness of tensor-product B-spline functions should be taken into consideration. So one penalty

function reflecting the hardness and the smoothness to a certain extent should be provided in the model.

A common smoothness penalty [12] is the integral of the square of the second derivative of B-spline

function. But it is complex to compute and not easy to be used in a higher dimensional space for tensor-

product B-spline functions. Here, appropriate difference penalties on the rows and columns of the control

net are used. To shorten the scope of the penalties we assume the following:

E1
.,j =

n−1∑

i=2

(P 1
i−1,j − 2P 1

i,j + P 1
i+1,j)

2, E1
i,. =

m−1∑

j=2

(P 1
i,j−1 − 2P 1

i,j + P 1
i,j+1)

2,

f (~uk, 
~vk)

(~uk, 
~vk)

(uk, vk) z = f (u, v)

Figure 5 Sampson distance and iteration procedure
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E2
.,j =

n−1∑

i=2

(P 2
i−1,j − 2P 2

i,j + P 2
i+1,j)

2, E2
i,. =

m−1∑

j=2

(P 2
i,j−1 − 2P 2

i,j + P 2
i,j+1)

2,

where Et
i,. and E

t
.,j (t = 1, 2) depend on the row and column of the control net respectively. The penalty

term is then the sum of all the sets {E1
i,., E

2
i,., i = 1, . . . , n} and {E1

.,j, E
2
.,j , j = 1, . . . ,m}:

Ep =

n∑

i=1

(E1
i,. + E2

i,.) +

m∑

j=1

(E1
.,j + E2

.,j). (3.2)

The difference penalty on the coefficients is a good discrete approximation to the integrated square of

the 2nd-order derivatives of the tensor-product B-splines. It can be implemented easily, and can make

the systems of equations have a lower bandwidth. Also it is easy to construct an automatic procedure

for incorporating the penalty in the whole model.

3.2 Constraints

Two types of constraints will be introduced: position constraints which are used when the mapping result

for given points is needed to pass fixed positions, and regularity constraints to ensure that the mapping

does not overlap.

3.2.1 Position constraint

These constraints ensure that some given points {(xi, yi), i = 1, . . . , I} on the [x, y]-domain are mapped to

the corresponding given points {(ui, vi), i = 1, . . . , I} of the [u, v]-domain. It means that the coordinates

of points should be satisfied with the following constraints:

uk =
n∑

i=1

m∑

j=1

P 1
i,jNi(xk)Nj(yk), (3.3)

vk =

n∑

i=1

m∑

j=1

P 2
i,jNi(xk)Nj(yk), (3.4)

where k = 1, . . . , I.

3.2.2 Regularity constraint

For continuous mapping Φ(x, y), when the Jacobian JΦ > 0 [2, 6, 11], it is injective. Since the condition

is nonlinear for control points, it is not convenient to use. In [21], a simple linear condition is provided

based on boundaries of the convex cones. If two different linear equations l1 and l2 are given which can

be considered as the boundaries of two special cones τ1(C) and τ2(C), where the cones τ1(C) and τ2(C)

are defined by l1(τ1(C)) > 0, l2(τ1(C)) > 0, and l1(τ2(C)) > 0, l2(τ2(C)) < 0, respectively. Based on the

two special transverse cones τ1(C) and τ2(C), more constraints for control net can be used to prevent

overlap for our framework using the following forms:

l1(Pi,j+1 − Pi,j) > 0, l2(Pi,j+1 − Pi,j) > 0, i = 1, . . . , n, j = 1, . . . ,m− 1,

l1(Pi+1,j − Pi,j) > 0, l2(Pi+1,j − Pi,j) 6 0, i = 1, . . . , n− 1, j = 1, . . . ,m.
(3.5)

3.3 The framework model for PCID

First, we rewrite the term of the goodness of fitting in Subsection 3.1. For expedience, we stack the

variables P k
i,j into a vector

X = (. . . , P 1
i,j , . . . , P

2
i,j , . . .)

T.
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Then the goodness of fitting Ef can be rewritten as

Ef =

N∑

k=1

(▽f(ũk, ṽk)(uk, vk)T
‖∇f(ũk, ṽk)‖

+
f(ũk, ṽk)−▽f(ũk, ṽk)(ũk, ṽk)T

‖∇f(ũk, ṽk)‖

)2

,

where
▽f(ũk, ṽk)(uk, vk)T

‖∇f(ũk, ṽk)‖
= GkX,

Gk is a sparse row vector with 2nm elements, and

f(ũk, ṽk)−▽f(ũk, ṽk)(ũk, ṽk)T
‖∇f(ũk, ṽk)‖

= qk,

qk ∈ R. Then, putting all the row vectors Gk, k = 1, . . . , N and qk, k = 1, . . . , N on top of each other

respectively, a matrix G and a vector q are obtained. The goodness of fitting can be rewritten as

‖GX − q‖22, where G is a matrix of dimensions N × 2mn. In the penalty term, each term Ek
i,j can be

written as

Ek
i,j = (b1i,jX)2 + (b2i,jX)2,

where bsi,j , s = 1, 2 are sparse (only three non-zero entries) row vectors having the same length as the

column vector X. Let us then stack all of the row vectors {bsi,j} on top of each other, to get a matrix

L. Then the penalty can be simply written as Ep = ‖LX‖22. Note that L is a matrix of dimensions

(2m(n− 1) + (m− 1)n)× 2mn.

Now, turn to the constraints. For any point each coordinate is expressed via a linear equation as

uk =

n∑

i=1

m∑

j=1

P 1
i,jNi(xk)Nj(yk),

where k is 1, . . . , I. These then compose the linear equality constraints AX = b. The constraints to

prevent overlap are of the form l1(Pi,j+1 − Pi,j) 6 0 for all i and j, similar to other constraints, where l1
and l2 are all line equations. Thus, the constraints are all linear inequality constraints CX 6 0. Based

on the above analysis, the model for creating mapping from given sample points to an implicit domain

can be described as follows,

min (‖GX − q‖22 + λ‖LX‖22)
s.t. AX = b, CX 6 0,

(3.6)

where A is matrix of dimensions 2I × 2nm, C is matrix of dimensions 2(n(m− 1) +m(n− 1))× 2mn, λ

is a parameter for continuous control over smoothness of the result and is determined by the generalized

cross-validation (GCV) method [19] in our model. The constraint optimization problem is a standard

quadratic programming and can be solved by the Matlab CVX [7]. And the initial control points are

provided with the equivalent map and knots-inserting algorithm.

3.4 Algorithm

Step 1. Given the initial value X̃, the tolerance errors ε0 > 0 and ε1 > 0.

Step 2. Compute matrices G,A,C and vectors q, b in (3.6) with the given sample points {(xk, yk), k =

1, . . . , N}, implicit function f(u, v) = 0 and initial value X̃.

Step 3. Solve the quadratic programming with the Matlab CVX, where λ is determined by GCV

method. Calculate errors e1 = ‖X − X̃‖ and e0 = Ef with the result X .

Step 4. If e0 6 ε0, stop the computation. Otherwise, if e1 6 ε1, insert new knots and get a new vector

X with knot insertion algorithm. Update X̃ = X , and return to Step 2.
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(a) (b) (c)

Figure 6 Sample points mapped to linear borders. (a) Sample points; (b) Linear borders; (c) Sample points mapped to

the borders

3.5 General cases

For the above model, the input data includes given points {(xk, yk), k = 1, . . . , N} and an implicit

curve f(u, v) = 0, while the implicit curve is only used to provide the gradient direction ∇f(u, v) and

approximate the geometric distance f(u, v)/‖∇f(u, v)‖ in the algorithm. Hence the model could be

extended to more general cases. It not only can be used to construct the mapping from the given sample

points to an implicit curve, but also can provide mapping between two groups of given sample points

{(xk, yk), k = 1, . . . , N} and {(Ur, Vr), r = 1, . . . , R}. The signed distance for given points {(Ur, Vr), r =

1, . . . , R} is easily calculated and a direction can be given based on the signed distance, which can be

used to replace the geometric distance and gradient direction in the above model. As an example the

process which maps the given sample points to border lines is provided in Figure 6. This shows the scope

of our model.

4 Applications and results

In this section, we illustrate our results by various examples and show comparison results between original,

intermediate deformed and optimized results in the following figures. And we also successfully apply the

proposed model to several different fields of digital image processing.

4.1 Results

For the given model, it is critical to construct a mapping from given sample points to standard shape or

an implicit curve. Therefore, a few experiments are conducted over various sample points from implicit

or parametric curves to show its effectiveness. And some of these results are illustrated in Figures 7–10,

where the curve with blue points indicates the standard shape, and the black points are sample points

in the experiment.

Example 4.1. Convert the implicit curve

x2 + y2 + yx− 2
√
x2/6 + y2 = 0

to PCID using the model of Section 2.

It is a closed curve in the domain [−4, 4]× [−4, 4]. We select the unit circle as the standard shape and

sample points are obtained from it in Figure 7(a). With the model, a mapping from the closed curve

to the unit circle is constructed as shown in Figure 7(c), where the origin curve and target curve are

unit circle and the given implicit curve respectively. This is the approximate PCID of the implicit curve.

Figure 7(b) shows the result of the first step iteration in our algorithm, which has a big error. After

several iterations, a high-quality result is derived in Figure 7(c). And the mapping result of isolines in

domain [−4, 4]× [−4, 4] is shown in Figure 7(d).

Example 4.2. Construct the mapping from given sample points to the implicit curve, where sample

points are obtained from four different polygons as shown in Figure 8(a), and the implicit curve is defined
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(a) (b) (c) (d)

Figure 7 Mapping from standard shape to implicit curve for Example 4.1. (a) The sample points from standard;

(b) Intermediate result; (c) Improved result; (d) The mapping results of isolines

(a) (b) (c) (d)

Figure 8 Mapping result for Example 4.2. (a) The sample points of several polygons; (b) Intermediate result; (c)

Improved result; (d) The mapping results of isolines

by the zero set of

f = 4y4 + 17x2y2 − 20y2 + 4x4 − 20x2 + 17.

For this example, the origin curve are four polygons, and the target curve is the implicit curve f = 0.

The implicit curve is more complicated as shown in Figure 8, which has four components in the bounded

domain of [−3, 3]× [−3, 3]. The mapping result is given in Figure 8(c) with our method, where the sample

points for every polygon can be properly mapped to the corresponding branch of the implicit curve.

Example 4.3. Sample points {(xi, yi), i = 1, . . . , k} are taken from two curves shown in Figure 9(a),

which are nested. And the implicit curve is (u2 + v2 − 1)(u2 + v2 − 4) = 0. Give the mapping result from

the sample points to implicit curve.

Sample points are nested, so two nested circles g(u, v) = (u2 + v2 − 1)(u2 + v2 − 4) = 0 are selected

as the standard shape, which is the target curve in this example. With our method, the good mapping

result is obtained. And we show one intermediate result in Figure 9(b) and the improved result in

Figure 9(c). The mapping result of isolines in domain [−6, 6]× [−6, 6] is shown in Figure 9(d). In fact,

this process provides an approximate implicit representation of the sample points. Assuming the mapping

result is u = u(x, y), v = v(x, y), and we take it into g(u, v) = 0, thus implicit representation F (x, y) = 0

(a) (b) (c) (d)

Figure 9 Mapping result for Example 4.3. (a) The sample points of given curves; (b) Intermediate result; (c) Improved

result; (d) The mapping results of isolines
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(a) (b) (c)

Figure 10 Transverse cones. (a) Transverse cone for Example 4.1; (b) Transverse cone for Example 4.2; (c) Transverse

cone for Example 4.3

is obtained.

For these examples, cones generated by

{Pi+1,j − Pi,j , i = 1, . . . , n− 1, j = 1, . . . ,m} and {Pi,j+1 − Pi,j , i = 1, . . . , n, j = 1, . . . ,m− 1}

are transverse, which are shown in Figure 10.

4.2 Applications

In fact, the mapping from one region to another, which maps given points to curves with some good

properties, can be constructed with the model depicted in Section 3. According to this feature, it could

be applied in some fields such as compatible triangulations, image deformation and interactive fisheye

views.

4.2.1 Compatible triangulations

In computational geometry, so-called compatible triangulations [17] of two planar regions bounded by

different polygons is an important problem. Let P and Q be simple polygons with vertex sets p1, . . . , pn
and q1, . . . , qn. Firstly, we should construct an approximate implicit representation of one polygon such

as polygon Q. And it is not difficult to obtain with our model since it maps the vertexes of polygon Q to a

standard shape which has an implicit representation. Based on the approximate implicit representation of

Q, a continuous one-to-one map ψ which maps each vertex pi ∈ P to approximate implicit curve, can be

provided with the given model. In the process, polygon P and approximate implicit curve are the origin

curve and target curve respectively. With the triangulations of polygon P , the compatible triangulation

of Q can be carried out just by computing the corresponding triangulations using the mapping ψ. In

Figure 11, the compatible triangulation results of two polygons are shown.

4.2.2 Image deformation

Image deformation [5] permits users to simply draw the outline Q of the source image region and sketch

a new boundary shape S onto the location where this region is to be pasted. Since our method can be

extended to construct mapping from sample points to polygon as shown in Subsection 3.4, a continuous

map from the target image region to the source image region which maps each vertex si ∈ S to the corre-

sponding vertex qi ∈ Q can be provided easily. Based on the resultant mapping, the deformed image can

be quickly computed using texture mapping. For an example, the source image and outline are shown in

Figure 12(a). After the outline is sketched to the new place as shown in Figure 12(b), the image defor-

mation result using our method is provided in Figure 12(b), where the visual distortions in the deformed

image are very small by our approach. And we also provide a local image deformation result as shown in

Figure 13, which can be done by fixing several inner points to given positions in this process. The origin

fixing inner points and their target positions are shown in Figures 13(a) and 13(b) respectively, which

are highlighted in green.
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(a) (b)

Figure 11 Compatible triangulation. (a) Source picture; (b) Target picture

(a)

(b)

Figure 12 Snake image deformation result. (a) Source image; (b) Deformed image

4.2.3 Interactive fisheye views

Interactive fisheye views [22] are focus plus context techniques, which are characterized by the in-place

magnification of the focus area and the continuous transition to the demagnification of the surrounding

context. The result supports detailed inspection tasks and also maintains a sense of the entire data set.

With our method, the sample points can be selected from a small circle for local magnification, and a

large circle is used as the standard shape. It means that the small circle is selected to be the origin curve

and the target curve is a large circle. Then, a mapping from the sample points to the large circle is given.

The result is shown in Figure 14(b), where local details of the focus part becomes larger and the context

area has some distortion. We can further learn from the techniques of focus plus glue plus context; a

larger circle should be selected as the glue area at the same time. Then, more position constraints need be

added in our model, which is used to ensure that there are fewer distortions after mapping in the context

area. The mapping result is in Figure 14(c), which restricts the distortion to the glue area around the

focus. Such results are valuable for helping users maintain a mental map of workspace.

As can be seen in the above examples, the results through our approach are excellent. Our method

(a) (b)

Figure 13 Mona image deformation result. (a) Source image; (b) Deformation image
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(a) (b) (c)

Figure 14 Fisheye results. (a) Original picture; (b) Global context distortion; (c) Distortion area around the focus

has several advantages: (1) It is fast and robust since the proposed framework is quadratic programming;

(2) it is a continuous method that guarantees the processing result without any folding over on itself; (3)

the adaptive subdivision principle based on the B-spline can also be used during the processing.

5 Conclusion

We have discussed a new representation for a plane curve, which combines the advantages of parametric

and implicit representations. Additionally, the model is provided to get the mapping from given sample

points to the implicit domain. Based on this model the conversions among them will become easy. Several

examples and applications are given to show its effectiveness. The main disadvantages of the method are

that it can not be applied to some special cases (for example, a curve with singularities), and sometimes

using the GCV computer the parameter consumes more time if there is a large matrix. Our future

research work is to improve on our method, extend it to three-dimensional spaces and use it in volume

data parametrization.
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