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Abstract

In this paper, we present a quality point cloud normal estimation method via subspace segmentation based on guided least squares
representation. A structure guided low-rank subspace segmentation model has been employed in normal estimation (LRRSGNE).
In order to select a consistent sub-neighborhood for a point, the subspace segmentation model is adopted to analyze the underlying
structure of its neighborhood. LRRSGNE generates more faithful normals than previous methods but at the price of a long runtime
which may take hours. Following its framework, two improvements are proposed. We first devise a novel least squares represen-
tation based subspace segmentation model with structure guiding (LSRSG) and design a numerical algorithm which has a natural
parallelism for solving it. It segments subspaces as quality as the low-rank model used in LRRSGNE but with less runtime. We
prove that, no matter whether the subspaces are independent or disjoint, it generates a block-diagonal solution which leads to a qual-
ity subspace segmentation. To reduce the computational cost of the normal estimation framework further, we develop a subspace
structure propagation algorithm. Only parts of the candidate feature points’ neighborhoods are segmented by LSRSG and those of
the rest candidate points are inferred via the propagation algorithm which is faster than LSRSG. The experiments exhibit that our
method and LRRSGNE generate comparable normals and are more faithful than other state-of-the-art methods. Furthermore, hours
of runtime of LRRSGNE is reduced to just minutes.
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1. Introduction1

A tremendous amount of works on point clouds processing2

and analyzing, such as high quality point based rendering [3,3

4], surface reconstruction [5, 6] and anisotropic smoothing [7],4

benefit from a qualify normal associated with each point. Al-5

though several kinds of 3D scanners output normals with point6

positions simultaneously, more of the ever-broadening range7

of general digitizing devices are not equipped with normals.8

Taking the most commonly used laser scanners as an exam-9

ple, points digitized by them are not intrinsically equipped with10

normals, which have to be estimated from acquired image or11

geometry data [8]. However, the acquired points are inevitably12

defect-ridden and normal estimation is sensitive to these de-13

tects including noise, non-uniformities, and so on. Hence the14

computation of quality normals is a challenge especially in the15

presence of sharp features, e.g., see Fig. 1.16

Regression-based normal estimation methods [9, 10, 11, 12]17

are most widely employed. They use all neighbors of a point to18

estimate its normal and tend to smooth sharp features. Some19

robust statistics approaches[13, 14, 1] estimate consistent sub-20

neighborhoods to compute normals for feature preserving. How-21

ever the most recently proposed statistics-based method [1] gen-22

erates unfaithful results for points with variational density n-23

ear the sharp features, as shown in the top row of Fig. 1. To24

overcome the sampling anisotropy, Boulch et al. [2] design an25

uniform sampling strategy. However, in the vicinity of sharp26

features, some erroneous normals may still persist, as shown27

in Fig. 1. Moreover, the performance of this method drops when28

the dihedral angel is large. Utilizing the subspace structures29

of the underlying piecewise surfaces, LRRSGNE [15] selects30

a consistent sub-neighborhood to estimate qualify normals in31

the presence of noise and anisotropic samplings. It generates32

more faithful normals than previous methods but at the price of33

a long runtime which may take hours. Hence it is impractical34

to employ it in practice.35

In this paper we present a fast and robust approach to esti-36

mate normals for point clouds with sharp features. It follows the37

framework of LRRSGNE with two improvements, which con-38

tribute to make it generate quality normals as faithful as LRRS-39

GNE, but with far less runtime. First, the core of LRRSGNE40

is the neighborhood segmentation via subspace segmentation.41

It employs the structure guided low-rank representation model42

(LRRSG), which is a time-consuming non-smooth optimiza-43

tion problem. We formulate the neighborhood segmentation as44

a least squares representation with structure guiding (LSRSG).45

A rapid algorithm to solve it is devised and the algorithm has46

a natural parallelism. Large-scale dataset can be handled effi-47

ciently using the parallel implementation. We also prove that48

LSRSG generates a block-diagonal solution no matter whether49

the subspaces are independent or disjoint, which leads to a qual-50

ity subspace segmentation1. Second, to reduce the runtime fur-51

1N subspaces are called independent if and only if dim(
⊕N

i=1 Si) =∑N
i=1 dim(Si), where

⊕
is the direct sum. Two subspaces are said to be disjoint
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Figure 1: Estimated normals of two planes with a shallow angle. The results of Li et al.[1], Boulch et al. [2], LRRSGNE, and our method are shown from the first
column to the last. The points are sampled non-uniformly in the top row and uniformly in the bottom row. The points and normals are colored according to the
normals’ direction. Normals consistent with normals of left and right plane are colored in blue and red respectively, and the rest are colored in green.

ther, a subspace structure propagation algorithm is proposed.52

After analyzing the subspace structures for a small percentage53

points near sharp features via LSRSG, the rest candidate fea-54

ture points’ sub-neighborhoods are inferred from the previous55

computed structures. This speeds up the normal estimation sig-56

nificantly and reduces the process from hours to minutes. The57

contributions of our work are summarized as follows:58

• A novel linear subspace segmentation model, LSRSG, is59

proposed. Even if the subspaces are not independent, it60

can exactly recover the subspace structure as well as L-61

RRSG with less runtime.62

• We prove the effectiveness of LSRSG in theory, and de-63

sign a rapid numerical algorithm for solving it. The al-64

gorithm has a natural parallelism which makes it more65

suitable for handling the large-scale dataset efficiently.66

• Combining LSRSG and the subspace structure propaga-67

tion algorithm, we devise a fast and robust feature pre-68

serving normal estimation method. Comparable normals69

are estimated in minutes instead of LRRSGNE’s hours70

of runtime and they are more faithful than other state-of-71

the-art methods.72

2. Related work73

2.1. Normal estimation74

Normals play an important role in surface reconstruction75

and point rendering. There has been a considerable mount of76

works on normal estimation. Hoppe et al. [9] (PCA) estimate a77

point’s normal by fitting a local plane to all neighbors of it. The78

method is the pioneer of regression based normal estimation79

and many variants of it are proposed [16]. Some higher order80

algebraic surfaces are used to replace planes. The properties81

of the spherical fitting are exploited by Guennebaud et al.[10].82

Cazals et al.[17] introduce the quadrics fiting to the normal es-83

timation. Pauly et al.[18] propose a weighted version of PCA.84

if they intersect only at the origin. {Si}
N
i=1 are said to be disjoint if every two

subspaces are disjoint. Notice that if N subspaces are independent, they are dis-
joint as well. Hence disjointness is a more general assumption for the subspace
set.

They assign the Gaussian weights to the neighbors when esti-85

mating the local plane. By analyzing local information, such as86

curvature and noise, Niloy et al. [12] find the size of neighbor-87

hoods adaptively. For each point, Yoon et al.[14] obtain several88

different normals by generating random subsets of point cloud.89

Then a ensemble technique is used to combine the several d-90

ifferent normals into a single. It is more robust to noise and91

outliers. However, all these methods fail to correctly estimate92

normals near sharp features.93

Inspired by the feature preserving image filters, methods94

based on the improvement of preliminary normals are studied.95

Jones et al. [19] derive more faithful normals by 3D bilater-96

al filter. Given a point, Calderon et al. [20] select the nearest97

neighbors belonging to the same plane with it by half-quadratic98

regularization which takes into account both positions and pre-99

liminary normals of the points. By fitting the points and their100

preliminary normals, [21, 22] define normals as the gradients of101

locally reconstructed implicit surfaces. Although these method-102

s improve the preliminary normals, estimating the preliminary103

normals roughly respecting sharp features are necessary.104

Another class of methods is based on Voronoi diagram or105

Delaunay triangulation. For each point, Amenta et al.[23] de-106

fine the normal as the line through it and the furthest Voronoi107

vertex in its Voronoi cell. But it works only for the noise-free108

point clouds. By finding big Delaunay balls, Dey et al.[24]109

extend this technology to noisy point clouds. Alliez et al.[25]110

introduce a more stable normal estimation method which com-111

bines the advantages of PCA and Voronoi diagram. However,112

none of these methods are designed for the point clouds with113

sharp features.114

More recently, various works on feature preserving normal115

estimation are proposed. Hang et al.[26] present an interesting116

combination of point cloud resampling and normal estimation.117

It is capable of producing accurate normals for the models with118

noise and outliers. However, the output of this method is a new119

consolidated point cloud, thus the normals corresponding to the120

original points are not computed. By maximizing the objec-121

tive function based on kernel density estimation, Li et al.[1]122

reduce the influence of neighbors lying on different surfaces. It123

generates quality normals only for the point clouds which are124

sampled uniformly, since the kernel density estimation is sensi-125

tive to the sampling anisotropy. An uniform sampling strategy126

is proposed by Boulch et al.[2] to overcome the problem. How-127
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ever, this method still fails to correctly estimate the normals128

for the points extremely near sharp features. Moreover, it tend-129

s to smooth out the edges when the dihedral angles are large.130

Wang et al.[27] identify an anisotropic neighborhood via itera-131

tive reweighted plane fitting. Three kinds of weight functions132

related to point distance, fitted residual, and normal difference133

are considered. However, the estimated normal of a point with134

a close-by irrelevant surface may be inaccurate. Utilizing the135

structure of the underlying piecewise surfaces, Zhang et al. [15]136

(LRRSGNE) propose a robust normal estimation method which137

can recover the sharp features faithfully, even in the presence of138

noise and anisotropic samplings. However, it is too slow to139

employ it in practice, since it requires to solve a non-smooth140

optimization problem for each point near the sharp features. By141

only solving a linear system for a small percentage candidate142

feature points and propagating the structure information to the143

rest rapidly, we design a novel normal estimation method much144

faster than LRRSGNE.145

2.2. subspace segmentation based on Low-rank representation146

and its variations147

The low-rank representation (LRR) is pioneered by Liu et148

al. [28] for the subspace segmentation. Lu et al. [29] propose a149

generalized version of the LRR under the Enforced Block Di-150

agonal conditions and design a least squares regression model151

for the subspace segmentation. These methods outperform the152

state-of-the-art algorithms especially when the data is corrupt-153

ed by noise. Moreover, they prove that LRR and least squares154

regression model can exactly recover the subspace structures,155

if the data is drawn from a union of subspaces which are inde-156

pendent. However, they may fail when the assumption is vio-157

lated. By incorporating a structure guiding item into the LRR,158

Zhang et al. [15] propose LRRSG which provides a practical159

way to handle more general subspace segmentation problem.160

It achieves excellent performance in normal estimation. Given161

a neighborhood of a point near sharp features, they segment it162

into several sub-neighborhoods by LRRSG. From all the sub-163

neighborhoods, a consistent one is picked to estimate the nor-164

mal. The subspace segmentation method, LRRSG, is further165

introduced into 3D mesh segmentation and labeling by [30].166

Tang et al. [31] analyze and discuss the effectiveness of this167

model in theory. In order to improve the efficiency of the al-168

gorithm, we relax it to a smooth optimization problem which169

generates comparable results but with far less runtime.170

3. Overview171

LRRSGNE [15] actually presents a framework for estimat-172

ing normals in the presence of sharp features. Generally, we173

follow the framework. We will go over the general framework174

and then introduce two improvements which contribute to gen-175

erate normals as quality as LRRSGNE but with far less runtime.176

We assume that the point clouds are sampled from piece-177

wise smooth surfaces and the continuity between these surfaces178

could be G0. Sharp features can be considered as sharp edges or179

corners with G0 continuity or round edges or corners with very180

small blending radii [32]. For a point far away from sharp fea-181

tures, its neighborhood may be approximated by a plane. But182

the neighbors of a point near sharp features are usually sam-183

pled from different surface patches across the sharp features,184

and each of them could be approximated by a plane. Our ob-185

jective is to identify these planes by subspace segmentation and186

find a consistent sub-neighborhood enclosing neighbor points187

sampled from the same smooth surface patch as the point on-188

ly. Neighbor points on other surface patches are discarded.189

Then quality normals can be estimated by the consistent sub-190

neighborhood.191

Given a noisy point cloud P = {pi}
N
i=1 as input, we take192

three steps to estimate the normals respecting shape features.193

First, we detect the points close to sharp features and regard194

them as candidate feature points. Then the neighborhood of195

each candidate point may be segmented into several anisotropic196

sub-neighborhoods. Each sub-neighborhood encloses only the197

points located on the same surface patch. Finally, we estimate198

its normal by selecting a consistent sub-neighborhood for the199

point. The overall procedure is shown in Fig. 2.200

The first step, the detection of candidate feature points, fol-201

lows LRRSGNE. To make our paper self-contained, we give202

a brief introduction here and details are referred to [15]. For203

each point pi, we select a neighborhoodNi of size S . A weight204

wi and a normal ni are computed by covariance analysis of the205

local neighborhood. The weight wi is defined as:206

wi =
λ0

λ0 + λ1 + λ2
, (1)

where λ0 ≤ λ1 ≤ λ2 are the singular values of the covariance207

matrix of Ni [18]. The weight wi measures the confidence of208

point pi close to a feature. If wi is larger than the threshold209

wt, pi is regarded as a candidate feature point, i.e. pi is close210

to a feature. The threshold wt is automatically selected by the211

smoothed distribution of {wi}
N
=1 [15].212

In the second step, LRRSGNE segments the neighborhood213

of each candidate feature point using LRRSG. However we214

only segment the neighborhoods of partial candidate feature215

points. A propagation algorithm is devised to infer the sub-216

neighborhoods of the rest candidate feature points. The algo-217

rithm is described in section 6. Furthermore, the time-consuming218

LRRSG is replaced by our newly designed LSRSG (see sec-219

tion 4). The theoretical analysis and algorithm for solving L-220

SRSG are introduced in section 5.221

Finally, we follow the process of LRRSGNE to estimate222

normals for both candidate feature points and the rest points.223

For each non-candidate point, its neighborhood is consisten-224

t and the normal ni is estimated by PCA. For each candidate225

feature point, utilizing the segmentation of its neighborhood,226

we select one consistent sub-neighborhood to estimate its nor-227

mal, which is introduced in section 4.228

4. Neighborhood segmentation by LSRSG229

Generally, the neighborhoods of points near sharp features230

are sampled from several surfaces. Each surface can be ap-231

proximated by a 2D plane of the 3D Euclidean space where232
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Figure 2: Overview of our method. First, we select the points near sharp features as candidate feature points. Then we classify the neighborhoods of candidate
feature points into anisotropic sub-neighborhoods. In order to speed up this process, we segment some neighborhoods by LSRSG and derive the segmentation of
other neighborhoods from their results. Finally, the accurate normal of each candidate point is estimated using a selected consistent sub-neighborhood.

the model is embedded. We formulate neighborhood segmen-233

tation as a subspace segmentation problem. Given a set of data234

drawn from a union of multiple subspaces, subspace segmen-235

tation aims to group data into segments and each segment cor-236

responds to a subspace. To capture the underlying subspace237

structure of a neighborhood efficiently and effectively, we pro-238

pose the least squares representation with structure guiding (L-239

SRSG):240

min
Z
‖Z‖2F + β‖Ω � Z‖2F s.t. ‖X − XZ‖2F ≤ δ, (2)

where β, δ are parameters, ‖ · ‖F is the Frobenius norm and �241

denotes the Hadamard product. X is the data matrix, each col-242

umn of which is a sampling. Z ∈ RN×N is a coefficients matrix,243

i.e. X(:, i) ≈ ∑N
j=1 Z( j, i)X(:, j), where N is the sampling num-244

ber. Now we will introduce how to segment the neighborhood245

by this model. The theoretical analysis will be given in the next246

section.247

For a candidate feature point pi, a larger neighborhood N∗i248

of size S ∗ is selected. The j-th neighbor point p j
i of pi is rep-249

resented as x j = [x j, y j, z j, n j
x, n

j
y, n

j
z]
′
, where [n j

x, n
j
y, n

j
z] is it-250

s normal computed by PCA and [x j, y j, z j] is local coordinate251

of p j
i with pi as the origin. The data matrix X is defined as252

X = [x1, x2 · · · , xS ∗ ].253

Ω is a prior matrix for guiding the segmentation of neigh-254

borhood N∗i and Ω(i, j) � 0. The guiding matrix Ω should255

have the property that the samples from intraclass have small-256

er weights, whereas the samples from interclass have larger257

weights. For any two neighbor points p j
i and pk

i of pi, the dis-258

tance between them is defined as259

Di( j, k) = 1 − | < nj, nk > |, (3)

where n j and nk are the normals of p j
i and pk

i , < ·, · > represents260

the inner product of two vectors, and |a| is the absolute value261

of a. Di( j, k) represents the score of points p j
i and pk

i belonging262

to different planes. The value of Ω( j, k) is set to 1 if Di( j, k) is263

large enough. In order to improve the reliability of the guiding264

matrix, two strategies are introduced. Firstly, the neighborhood265

segmentation starts from the point pi with smaller wi since the266

normals estimated by PCA are reliable for points away from267

sharp features, and the segmentation results are used to update268

the guiding matrix of a point computed later. Secondly, when269

p j
i or pk

i is near sharp features, the value ofΩ( j, k) is decreased.270

More details are referred to section 4.3.2 of [15].271

The optimal coefficient matrix Z is computed by solving272

problem (2). The affinity matrix S is defined as S = (|Z| +273

|Z′ |)/2, where Z′ is the transpose of matrix Z and |Z| repre-274

sents a matrix which is defined as |Z|(i, j) = |Z(i, j)|. Then275

we segment the neighborhood N∗i into several anisotropic sub-276

neighborhoods by Normalized Cuts [33]. The number of sub-277

neighborhoods is determined by the iterative segmentation pro-278

cess described in [15]. For each sub-neighborhood, a plane is279

fitted and then the distance between pi and the plane is comput-280

ed. The sub-neighborhood with the minimum distance is iden-281

tified as the consistent sub-neighborhood of pi, and an accurate282

normal is estimated using the consistent sub-neighborhood.283

5. Least squares representation with structure guiding284

5.1. Basic model285

For the sake of analysis, we will discuss LSRSG model on286

the hypothesis that the data does not contain noise in this sub-287

section. Given m data points X = [X1,X2, · · · ,Xn] ∈ Rd×m
288

sampled from n subspaces which compose the space S and289

dim(S ) = d. The sample set Xi ∈ Rd×mi is drawn from sub-290

space Si and dim(Si)= di, i = 1, 2, · · · , n. Our task is to group291

the data according to the subspaces from which they are drawn.292

Based on the observation that each sample xi can be repre-293

sented as a linear combination of other samples drawn from the294

same subspace, Liu et al. [28] propose LRR which is a powerful295

tool to recover subspace structure. The model is written as296

min
Z
‖Z‖∗ s.t. X = XZ, (4)

where ‖ · ‖∗ is the matrix nuclear norm i.e. the sum of singu-297

lar value. Liu et al. [28] also prove that LRR obtain a block298

diagonal solution when the subspaces are independent. This is299

perfect for segmentation, since when xi and x j are drawn from300

different subspaces Z(i, j) is zero. However, LRR tends to fail301

when the subspaces are dependent.302

To handle more general subspace segmentation problem,303

Zhang et al. [15] propose the low-rank representation with struc-304

ture guiding (LRRSG):305

min
Z
‖Z‖∗ + β‖Ω � Z‖1 s.t. X = XZ (5)
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where β is parameter, ‖ · ‖1 represents `1-norm. Compared with306

LRR, it can handle more general subspace segmentation prob-307

lem and more suitable for neighborhood segmentation [15].308

The model (5) can be generalized as:309

min
Z

fFBD(Z) + β fS (Ω � Z) s.t. X = XZ. (6)

where fFBD and fS represent arbitrary favorable block-diagonal310

function and separable function, respectively.311

Favorable block-diagonal function: A matrix function f is re-312

garded as a favorable block-diagonal function, iff it satisfying:313

1) f (UMV) = f (M) for all M ∈ Rm×n and all unitary matrices314

U ∈ Rm×m,V ∈ Rn×n.315

2) for all square matrices A and D, f (
[

A B
C D

]
) ≥ f (

[
A 0
0 D

]
),316

and the equality holds if and only if B = C = 0.317

Separable function: A matrix function f is regarded as a sep-318

arable function, iff for all A ∈ Rm×n, f (A) can be represented319

as:320

f (A) = f0(
∑

fi j(|ai j|)), (7)

where ai j is the (i,j)-th entry of matrix A, f0 and fi j, i = 1, 2, · · · ,321

m, j = 1, 2, · · · , n are increasing functions.322

The matrix nuclear norm is a favorable block-diagonal func-323

tion, the `1-norm is a separable function, and the square of the324

F-norm is both a favorable block-diagonal function as well as325

a separable function. The matrix nuclear norm and `1-norm326

are not smooth and it is rather time-consuming to solve Eq. 5.327

However, the square of the F-norm is smooth. Replacing the328

matrix nuclear norm and `1-norm in model (5) with it, we have329

the LSRSG for data without noise:330

min
Z
‖Z‖2F + β‖Ω � Z‖2F s.t. X = XZ. (8)

The effectiveness of it and its generalization (6) are guaran-331

teed by the two following theorems 2:332

Theorem 1: If S1,S2, · · · ,Sn are independent, the optimal so-333

lution to the model (6) is a block-diagonal matrix334

Z =


Z∗1 0 · · · 0
0 Z∗2 · · · 0
...

...
. . .

...
0 0 · · · Z∗n

 , (9)

where Z∗i is a mi × mi matrix.335

Theorem 2: Denote xi as the i-th sample from X. Since both336

zi j and z ji denote the affinity between the sample xi and x j, it337

is natural to suppose that Z is symmetric. If S1,S2, · · · ,Sn are338

disjoint and339

Ω =



A∗1 B∗1 C∗1,3 · · · C∗1,n
B∗T1 A∗2 B∗2 · · · C∗2,n
C∗T1,3 B∗T1 A∗3

... C∗n−2,n
...

...
...

. . .
...

C∗T1,n C∗T2,n C∗T3,n · · · A∗n


, (10)

2The proofs are presented in Appendix A.

Table 1: Computation time for the toy examples.
LRR LRRSG LSRSG

Two planes 2.31 2.23 0.44
One plane & two lines 2.54 2.32 0.48

where the elements of A∗i ∈ R
mi×mi and B∗i ∈ R

mi×mi+1 are all340

zeros, whereas the elements of C∗i, j ∈ R
mi×m j are all ones, there341

exists β, which makes the optimal solution of model (6) to be a342

block-diagonal matrix.343

Theorem 1 shows that LSRSG achieves the same conclu-344

sions as those of LRR when the subspaces are independent.345

Theorem 2 means that with some predefined guiding matrix,346

LSRSG can exactly segment multiple disjoint subspaces which347

is more challenging and can not be handled by LRR.348

5.2. Robust model349

Since, in most practical cases, X is corrupted by noise, cer-350

tain relaxation to the equality constraint in model (8) is desir-351

able:352

min
Z
‖Z‖2F + β‖Ω � Z‖2F + λ‖X − XZ‖2F , (11)

where λ > 0 is a parameter determined by the noise-scale. From353

optimization theory, it is well known that problems (2) and (11)354

share the same solution [34]. Here we consider solving the un-355

constrained convex optimization (11). The solution of it is the356

point where the derivative is zero:357

2Z∗ + 2β(Ω � Z∗) − 2λ(XT (X − XZ∗)) = 0,
Z∗ + β(Ω � Z∗) − λ(XT X − XT XZ∗) = 0,

(I + XT X)Z∗ + β(Ω � Z∗) = λ(XT X), (12)

where Z∗ is the optimal solution to problem (11) and I is an358

identity matrix. When only see the j-th column of matrix Z∗,359

we have:360

(I + XTX)Z∗(:, j) + β(diag(Ω(:, j))Z∗(:, j))
= λ(XTX(:, j)), (13)

where XTX = XT X, A(:, j) is the j-th column of matrix A, and361

diag(a) is a diagonal matrix with the elements of a on the main362

diagonal. Therefore the solution of problem (11) is:363

Z∗(:, j) = λ(inv(I + XTX + βdiag(Ω(:, j)))XTX(:, j)),
j = 1, 2, · · · , S ∗, (14)

where inv(A) represents the inverse matrix of A. The column-364

s of Z∗ are computed by Eq. 14 independently, therefore this365

solving process is easy to be implemented in parallel.366

5.3. Toy examples367

Some toy examples are provided to verify the effectiveness368

and efficiency of LSRSG. Some data are drawn from several369

disjoint subspaces and segmented by LRR, LRRSG and LSRS-370

G; see Fig. 3. LRRSG and LSRSG use the same guiding ma-371

trix Ω which is constructed by forty percent prior knowledge372

with 30% errors. Firstly, an ideal full guiding matrix G is built.373
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Figure 3: Segmentation results of LRR, LRRSG and LSRSG. The first column is the input data. The segmentation results of LRR, LRRSG and LSRSG are shown
from the second column to the last.

Figure 4: Computation time of LRRSG, LSRSG(NP), and LSRSG(P) with
varies number of data.

Specifically, if two samples p j and pk are in the same subspaces,374

G(i, j) = 0, otherwise G(i, j) = 1. The guiding matrix is gen-375

erated by choosing 40% elements of G randomly and the other376

elements of Ω are all set to zeros. It is further corrupted by377

randomly selecting 30% elements from the 40% elements and378

switching their values, i.e. from ones to zeros (or zeros to ones)379

if they are ones (or zeros) originally. As illustrated in Fig. 3, L-380

RR fails to segment dependent subspaces that is consistent with381

previous analysis in above subsections. Benefitting by the par-382

tial prior knowledge, even with considerable levels of errors,383

LRRSG and LSRSG segment the data faithfully. The comput-384

ing times of the two methods are shown in Tab. 1. These results385

suggest that LSRSG performs as well as LRRSG, but spends386

less time.387

When solving LRRSG, each iteration relies on the result of388

last iteration. However, the column vectors of the solution of L-389

SRSG are computed independently. Therefore, the solving pro-390

cess of LSRSG is easy to be implemented using parallel running391

strategy. For convenience, we use LSRSG(P) and LSRSG(NP)392

to denote the LSRSG implemented in parallel and non-parallel393

version, respectively. The timings of LRRSG, LSRSG(NP) and394

LSRSG(P) are shown in Fig. 4. The data is uniformly sampled395

on two 2-dim subspaces and the number of data varies from396

100 to 1500. This experiment is implemented in Matlab and397

performs with 4 CPU Intel(R) Xeon(R) 2.53 GHz. The solving398

of LRRSG consumes more time than that of LSRSG whether399

or not the process is implemented in parallel. As the zoomed400

view of Fig.4 shows, LSRSG(NP) is more faster than LSRS-401

G(P) when the number of data is small. That is because the in-402

tegration and separation of variables in parallel computing takes403

a part of the time. When the number of data is large, such cost404

is negligible. LSRSG(P) achieves lower computational costs.405

This means that we can use this approach to further increase406

the efficiency when handling the large-scale dataset.407

6. Neighborhood segmentation by propagation408

Although the solving of LSRSG takes less time than409

LRRSG, employing it for each410

candidate feature point is stil-411

l somewhat expensive. Actual-412

ly the neighborhoods of candi-413

date feature points are overlap-414

ping. Inferring the segmentation415

of a neighborhood from comput-416

ed results of the neighborhoods417

overlapping with it, the runtime418

will be significantly reduced. As419

the wrapped figure shown, if the420

6



four neighborhoods represented by circles with solid border-421

s have been segmented by LSRSG, we want to infer the seg-422

mentations of the neighborhoods marked by circles with dashed423

borders. In this section, we design a subspace structure propa-424

gation algorithm to accomplish this objective.425

First, we construct two matrices R and N to store the seg-426

mentation results obtained by LSRSG. The values of R(i, j) and427

N(i, j) represent the number of pi and p j grouped into the same428

subspace and into different subspaces, respectively. To compute429

R and N, a small percent candidate feature points are extract-430

ed and their neighborhoods are segmented by LSRSG. We de-431

note the selected candidate feature points by T = {t1, t2, . . . , tk},432

where k = N×r is the number of points selected, r ∈ [0, 1]. The433

selected points T are expected to cover the candidate feature434

points well and the estimated subspace structures around them435

should be as faithful as possible. Since the points with larger wi436

(problematic points) are usually near a complex structure which437

makes the segmentation more challenging, it is better to select438

none of them. On the contrary, only choosing the points with439

smaller wi may un-cover the problematic points. Therefore, we440

rank the candidate feature points by441

wd
i = |wi − wave|, (15)

where wave is the average w of all the candidate feature points.442

The points with smaller wd
i are selected.443

Given one of the rest candidate feature points pi and its444

neighborhood N∗i , we select a smaller neighborhood N s
i with445

size S s. The segmentation of the neighborhood N∗i is inferred446

by the subspace structure propagation algorithm, if the current447

point pi and its neighborhoodN∗i are well covered by T . Specif-448

ically, if N s
i
⋂

T = ∅, we add the point pi into T , segment N∗i449

by LSRSG and modify R and N. Otherwise, N∗i is segmented450

by the propagation algorithm presented as follows. We find a451

seed point p j from N∗i with the smallest w and initialize a set452

Q = {p j} representing the points in the same plane with p j. The453

next step is to iteratively add points to the set Q one by one.454

At each iteration, we chose the point having the largest rela-455

tion with Q. The relation RELl,Q between point pl and set Q is456

defined as:457

RELl,Q = max
p j∈Q

(rel(pl, p j)), (16)
458

rel(pl, p j) =

 −1, i f N(l, j) > 0
R(l, j), i f N(l, j) = 0

. (17)

This process is terminated until RELl,Q ≤ 2 or |Q| > 0.7 × S ,459

where |Q| denotes the cardinality of the set Q. Then, for the rest460

of pi’s neighborsN∗i = N∗i \Q, we repeat the process untilN∗i is461

empty. If a neighbor p j is not belong to any previous segmented462

neighborhoods, i.e. no structure information about it is stored463

R and N, it is ignored and deleted from the current neighbor-464

hoodN∗i . Thus,N∗i is segmented into some sub-neighborhoods465

Q1,Q2, · · · .466

7. Results467

To evaluate the performance of our approach, a variety of468

point clouds with sharp features and synthetic Gaussian noise469

are tested. The deviation is defined as a percentage of average470

distance between points. We compare our method with some471

classic and state-of-the-art methods: PCA [9], robust normal472

estimation (RNE) [1], hough transform (HF) [2], and LRRS-473

GNE [15]. According to the sampling strategy, HF has three474

versions: HF points, HF cubes, and HF unif.475

The Root Mean Square (RMS) measure which has been476

used in [15, 2] is introduced to quantitatively analyze the re-477

sults. It is defined as:478

RMS τ =

√
1
|P|

∑
p∈P

( f ( ˆnp,re f np,est)), (18)

where479

f ( ˆnp,re f np,est) =

 ˆnp,re f np,est, i f ˆnp,re f np,est < τ

π/2 , otherwise
, (19)

np,re f and np,est are the reference and estimated normals at p,480

respectively. As proposed by [15, 2], we take τ = 10 degrees481

and regard the points with the measure greater than τ degrees as482

bad points. In this section, all experiments have been performed483

with 2 CPUs Inter(R) Core(TM) i5-3230M 2.60GHZ. We quan-484

titatively analyze the estimation results of the data with synthet-485

ic noise: a centered Gaussian noise with deviation defined as a486

percentage of average distance between points.487

The parameters of our algorithm are summarized below:488

• S : the number of neighbors used to PCA.489

• S ∗: the number of neighbors used to segmentation.490

• S S : the number of neighbors used to compute the overlap491

with T .492

• r: the percentage of neighborhoods segmented by LSRS-493

G.494

• λ and β: parameters used to balance the three items in495

Eq. 11.496

The choice of S and S ∗ depends on the noise. Since only part497

neighbors are used to estimate the normals when points are near498

sharp features, S ∗ should be larger than S . Parameter S S is used499

to guarantee that for each neighborhood segmented by propaga-500

tion algorithm, there is enough points recovered by the neigh-501

borhoods of T . A smaller value of it represents more recovered502

points but higher computational costs. The larger the value r is,503

the more neighborhoods segmented by LSRSG, which repre-504

sents more accurate normal estimation results and higher com-505

putational costs. If the noise ia large, we should relax the fitting506

restriction and decrease the value of λ and increase the value of507

β. In our implementation, S , S ∗, S s, r, λ, and β are selected as508

S = 70, S ∗ = 120, S s = 30, r = 0.1, λ = 1 and β = 4.509

7.1. Computation time & precision510

Fig. 5 shows the computation time, number of bad points511

(NBP) and RMS of PCA, RNE, HF points, HF cubes, HF unif,512

LRRSGNE and our method on the Octahedron and Fandisk513

models. The sampling number of these models varies from 20K514

to 100K. For each model, we add 50% noise. In the second515

and third columns, the value of vertical axes is shown in loga-516

rithmic scale. The computation time of PCA is less than other517

methods, but its precision is the worst. The LRRSGNE obtains518
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Figure 5: Comparison of the speed and performance on the Octahedron and Fandisk models. The computation time, NBP, and RMS are shown from the second
column to the fourth column.

Figure 7: Visual rendering of bad points (the first and third rows) and top view of computed normals near sharp features (the second and fourth rows). 50% noise is
added. The results of PCA, HF points, HF unif, HF cubes, RNE, LRRSGNE, and our method are shown from the first column to the last. Our method respects the
sharp features and generates fewer bad points.
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Figure 6: The distribution of bad points of the Fandisk model (26K) with 50%
noise.

Table 2: Computation time of our method and LRRSGNE on Octahedron and
Fandisk models. All times are in seconds

Method Octahedron
26K 36K 65K 82K 104K

LRRSGNE 2101 2556 3594 3991 4414
OUR 40 50 80 93 112

Method Fandisk
19K 25K 58K 77K 103K

LRRSGNE 2967 3176 5273 6261 7593
OUR 55 62 112 141 176

the minimum NBP and the lowest RMS, but it is time consum-519

ing. HF points and RNE is slightly slower than PCA and much520

faster than LRRSGNE. But the quality of normals by them is far521

worse than that of LRRSGNE. The NBP and RMS of HF unif,522

HF cubes, and RNE are comparable, however HF unif is much523

lower than HF cubes and RNE. HF unif generates more faith-524

ful results when the point cloud is sampled non-uniformly. Our525

method is much faster than LRRSGNE and slightly slower than526

HF cubes, HF points and RNE. But its results are comparable527

with those of LRRSGNE and much better than the other meth-528

ods. It balances speed with quality well among all these meth-529

ods.530

Fig. 5 illustrates the computation time in logarithmic scale.531

Tab 2 lists the timings of LRRSGNE and our method for the532

Octahedron and Fandisk models under different samplings. We533

see that our method is about 40 times faster than LRRSGNE for534

models with 100k points.535

To evaluate the quality of the results more precisely, we di-536

vide the normal deviation region of bad point (10◦ − 90◦) into537

eight regions and show NBP in each region in Fig. 6. The visual538

representation of bad points and computed normals near sharp539

features are shown in Fig. 7. Near the sharp features, normals540

estimated by PCA are overly smoothed and the NBP generated541

by it is larger than other methods. Most of bad points generated542

by PCA fall in the regions from 10 to 50 degrees. It is because543

that the normals generated by PCA are excessively smoothed544

and the largest deviations are almost 40-60 degrees. Other edge545

preserving normal estimation methods generate less bad points546

especially in the regions between 20 and 80 degrees. Com-547

pared with HF points, HF cubes and HF unif, RNE preserves548

Table 3: Comparison of RMS and NBP on Octahedron and Fandisk models
with different noise levels. LRRSGNE and our method are comparable and
much better than the other methods.

Method Octahedron (26K) Fandisk (26K)
40% 50% 60% 40% 50% 60%

PCA RMS 0.771 0.773 0.774 0.984 0.986 0.994
NBP 6302 6342 6341 10136 10183 10340

HF points RMS 0.718 0.912 1.080 0.756 0.914 1.060
NBP 5395 8768 12329 5920 8690 11721

HF unif RMS 0.445 0.544 0.614 0.454 0.575 0.701
NBP 2085 3122 3972 2130 3425 5115

HF cubes RMS 0.422 0.538 0.608 0.451 0.571 0.689
NBP 1867 3048 3893 2100 3375 4925

RNE RMS 0.461 0.556 0.661 0.578 0.701 0.819
NBP 2223 3246 4592 3472 5110 6981

LRRSGNE RMS 0.162 0.228 0.346 0.248 0.324 0.426
NBP 264 525 1239 624 1067 1860

OUR RMS 0.165 0.258 0.369 0.266 0.341 0.460
NBP 271 673 1412 719 1180 2175

the sharp features better. But, the normals estimated by them549

are still overly smoothed when extremely near the sharp fea-550

tures (see the regions marked by the red circles in Fig. 7). Only551

LRRSGNE and our method can recover the sharp features well.552

The NBP generated by our method is similar with LRRSGNE553

and much less than the other methods. For LRRSGNE and our554

method, the frequencies of bad points fallen in 80-90 region are555

higher. It is because that heavy noise makes the intersection of556

two planes becoming a ribbon from a line, where the points are557

supposed to have two directions. Therefore, if the normals pre-558

serve the sharp features well, the frequency of bad points fallen559

in 80-90 region maybe high.560

7.2. Robustness to noise and sampling density561

We corrupt the Fandisk and Octahedron models with 40%,562

50%, and 60% noise. Tab 3 shows RMS and NBP of differen-563

t methods on these models. Our method achieves comparable564

results with LRRSGNE and is much better than the other meth-565

ods.566

Fig. 8 shows the bad points on the Tetrahedron models sam-567

pled with face-specific levels of density and corrupted with 50%568

noise. Since PCA, HF points, and RNE are not devised to deal569

with non-uniform point distribution, they are severely affected.570

HF cubes and HF unif are designed to handle density variation571

and perform better than PCA, HF points, and RNE. However,572

in the vicinities of sharp features, many erroneous normals may573

still persist. LRRSGNE and our method preserve the sharp fea-574

tures well, even when the sampling is very anisotropic around575

the sharp features. The NBP and RMS of different methods on576

these models with variational density and noise are furthermore577

illustrated in Fig. 9. The NBP is shown in logarithmic scale. As578

expected, the results of LRRSGNE and our method are compa-579

rable and more precise than the other methods.580

7.3. More results581

In Fig. 10, we apply our method to the scanned point clouds582

in which the typical imperfections, such as noise, outliers and583

sampling anisotropy, are common and the sharp features are584
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Figure 8: Visual rendering of bad points on the Tetrahedron models with 50% noise and variational density. Density is uniform on each face. From the top to bottom
row, the ratios of sampling number on four faces are 1 : 2 : 3 : 4, 1 : 3 : 5 : 7, and 1 : 4 : 6 : 8. The results of PCA, HF points, HF cubes, HF unif, RNE,
LRRSGNE, and our method are shown from the first column to the last. LRRSGNE and our method handle the anisotropic sampling well.

Figure 9: Comparison of the NBP and RMS on the Tetrahedron models. For each model, the ratio of sampling number on four faces is 1 : 2 : 3 : 4, 1 : 3 : 5 : 7 or
1 : 4 : 6 : 8 and the noise added to them is 40%, 50%, or 60%. The results of LRRSGNE and our method are comparable and more precise than the other methods.

Figure 10: Normal estimation for raw scans of real objects: Genus2 and Taichi. Left to right are the input model, the results of PCA and our algorithm, respectively.
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usually corrupted by these imperfections. Our method can re-585

cover the edges of Taichi and Genus2 models faithfully. N-586

earby surface sheets which are contained in Genus2 model and587

marked by blue circle always challenge normal estimation. The588

normals estimated by approaches based on distance, such as P-589

CA and its variants, tend to be greatly affected by the points590

lying on the other sheet, while our structure based method not.591

Moreover, our method is competent in dealing with raw point592

clouds with non-uniform sampling. In the Genus2 model, the593

region marked by red circle is sampled anisotrpoically. The nor-594

mals estimated by our method preserve the sharp features quite595

well.596

8. Conclusions597

In this paper, we present a fast and feature preserving ap-598

proach to estimate quality normals for point clouds even in599

the presence of heavy noise and non-uniform point distribution.600

Following the framework of LRRSGNE [15], which generates601

more faithful normals than previous methods but at the price602

of a longer runtime, two improvements are presented. We first603

propose a novel linear subspace segmentation model - LSRSG.604

A rapid numerical scheme of LSRSG and its parallel implemen-605

tation are both devised. Besides less runtime, experiments and606

theoretical analysis show that it generates subspace segmenta-607

tion as quality as the low-rank subspace segmentation model608

used in LRRSGNE. To reduce the runtime of the normal estima-609

tion framework further, we develop a subspace structure propa-610

gation algorithm. Instead of computing the subspace structures611

for all the candidate feature points via subspace segmentation,612

only parts of them are estimated by LSRSG. The neighborhood613

structures of the rest candidate points are inferred using the614

propagation algorithm which is faster than LSRSG. It speeds615

up the normal estimation significantly and reduces the process616

from hours to minutes. The experiments exhibit that LRRS-617

GNE and our method generate more faithful normals than other618

state-of-the-art methods. Furthermore, our method generates619

comparable normals as LRRSGNE but with far less runtime -620

about at least 40 times faster than LRRSGNE for models with621

100k points.622

Although we estimate quality normals in acceptable run-623

time with the parameters fixed in all of our experiments, more624

faithful normals can be generated with delicate parameters turn-625

ing. In the future, we would like to choose these parameter-626

s adaptively according to various noise and sampling densi-627

ty. Furthermore, similar to some existing methods [1, 2], our628

method produces jagged features on sparse point clouds. The629

global labeling techniques [35] may be helpful to smooth out630

these jagged feature lines. Another future work is to apply our631

LSRSG model to more computer vision and computer graphics632

applications, such as shape labelling and co-segmentation.633

9. Appendix634

Proof (of Theorem 1): Suppose the optimal solution of mod-635

el (6) is636

Z =


Z11 Z12 · · · Z1n

Z21 Z22 · · · Z2n
...

...
. . .

...
Zn1 Zn2 · · · Znn

 , (20)

where Zi j is the coefficients of X j represented by Xi. We should637

prove Zi j = 0, for i , j. For i = 1, we have638

X1 = X1Z11 + X2Z21 + · · · + XnZn1,

X1 − X1Z11 =

n∑
i=2

XiZi1. (21)

Since these subspaces are independent, S1∩⊕
n
i=2Si = 0. So, we639

have X1 = X1Z11. Evidenced by the same theory, Xi = XiZii,640

for i = 1, 2, · · · , n. Therefore,641

Z̃ =


Z11 0 · · · 0
0 Z22 · · · 0
...

...
. . .

...
0 0 · · · Znn

 , (22)

is also a solution for model (6). According to the definition of642

favorable block-diagonal function and separable function, we643

have fFBD(Z) + β fS (Ω � Z) ≤ fFBD(Z̃) + β fS (Ω � Z̃). Z is the644

optimal solution, so fFBD(Z)+β fS (Ω�Z) ≥ fFBD(Z̃)+β fS (Ω�645

Z̃). Therefore, we have fFBD(Z) + β fS (Ω � Z) = fFBD(Z̃) +646

β fS (Ω� Z̃). This equality holds if and only if Zi j = 0, for i , j.647

�648

Proof (of Theorem 2): First, we will prove that there exist β649

making the solution to be the following form:650

Z =



Z11 Z12 0 0 · · · 0
ZT

12 Z22 Z23 0 · · · 0

0 ZT
23 Z33 Z34

... 0

0 0 ZT
34 Z44

... 0
...

...
...

...
. . .

...
0 0 0 0 · · · Znn


. (23)

where Zi j is the coefficients of X j represented by Xi. The pairs651

of Zi,i+1 and ZT
i,i+1 make sense, since Z is symmetric. Supposing652

one element located in the all zeros submatrix of Z is a (a > 0),653

there ∃ β = n/a make fFBD(Z)+β fS (Ω�Z) > n. Since X = XI,654

I is one solution. However, fFBD(I)+β fS (Ω�I) = n. Therefore,655

this assumption is invalid.656

Next, we will prove that if Z is the optimal solution, Zi,i+1 =657

0, for i = 1, · · · , n. For i = 1, we have X1 − X1Z11 = X2ZT
12.658

Since S1 and S2are disjoint, we have S1 ∩ S2 = 0. Therefore,659
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X1 = X1Z11 and X2ZT
12 = 0. We construct660

Z̃ =



Z11 0 0 0 · · · 0
0 Z22 Z23 0 · · · 0

0 ZT
23 Z33 Z34

... 0

0 0 ZT
34 Z44

... 0
...

...
...

...
. . .

...
0 0 0 0 · · · Znn


. (24)

Z and Z̃ are the same except for Z12. Because X1 = X1Z11, we661

can get X = XZ̃. According to the definition of favorable block-662

diagonal function and separable function, we have fFBD(Z) +663

β fS (Ω � Z) ≤ fFBD(Z̃) + β fS (Ω � Z̃). This equality holds if664

and only if Z12 = 0. Evidenced by the same theory, we have665

Zi,i+1 = 0, for i = 2, · · · , n. �666
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