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a b s t r a c t

This paper presents a novel mesh saliency detection approach based on manifold ranking in a descriptor
space. Starting from the over-segmented patches of a mesh, we compute a descriptor vector for each
patch based on Zernike coefficients, and the local distinctness of each patch by a center-surround
operator. Patches with small or high local distinctness are named as background or foreground patches,
respectively. Unlike existing mesh saliency methods which focus on local or global contrast, we estimate
the saliency of patches based on their relevances to some of the most unsalient background patches, i.e.
background patches with the smallest local distinctness, via manifold ranking. Compared with ranking
with some of the most salient foreground patches as queries, this improves the robustness of our
method and contributes to make our method insensitive to the queries estimated. The ranking is
performed in the descriptor space of the patches by incorporating the manifold structure of the shape
descriptors, which therefore is more applicable for mesh saliency since the salient regions of a mesh are
often scattered in spatial domain. Finally, a Laplacian smoothing procedure is applied to spread the patch
saliency to each vertex. Comparisons with the state-of-the-art methods on a wide range of models show
the effectiveness and robustness of our approach.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Visual saliency is an important and fundamental research
problem in neuroscience and psychology to investigate the
mechanism of human visual systems. It has also been an attractive
topic in computer vision and computer graphics in recent years.
Mesh saliency reflects perceptually important points or regions of
polygonal meshes. While mesh saliency may not outperform some
differential geometry measures, such as curvature, as a mesh
feature in all the applications, it has great value for human
centered visual computing applications, such as abstraction [1],
simplification [2], smoothing [3], illumination [4], shape matching
[5], rendering [4] and viewpoint selection [6–9], especially with
the rapid growth of number and size of 3D models.

Although there has been significant progress in mesh saliency
detection, most previous works depend on a local center-surround
operator [10–12] and multi-scale computation [2,3,5,13]. They tend
to be susceptible to noise. For example, Refs. [2,10–12] simply select
regions where the curvature of a surface vertex or patch is diff-
erent from its immediate neighbors. The computation of curvature

employed by these methods is sensitive to noise. Ref. [3] proposes a
novel approach for mesh saliency estimation considering both local
contrast and global rarity, which is robust against noise. However, it is
not easy to tune the parameters to obtain faithful results. Leifman et al.
[13] choose 20% of the most distinct vertices and extreme vertices as
focus points. Regions that are close to the focus points catch more
attention than faraway regions. But some salient regions, the distinct-
ness of all vertices within which is less than 20%, will be missed.
Furthermore, the multi-scale operation employed in the above meth-
ods may only alleviate the influence of noise to some degree.

To handle the aforementioned problems, we propose a novel,
simple and robust method for detecting regions of interest on
surfaces. Visual forms may possess one or several centers of
gravity about which the form is organized [13]. Human attention
is firstly attracted by the most representative salient elements (we
name them as saliency queries) and then the visual attention will
be transferred to other regions [14]. We employ a semi-supervised
algorithm, manifold ranking, to imitate the process. First, we
oversegment a mesh into patches and compute a descriptor for
each of them via Zernike coefficients, which is more informative
and robust than curvature. Then the distinctness of each patch is
estimated locally using these descriptors. Instead of selecting some
foreground patches such as saliency queries, patches with the
smallest distinctness values, i.e. some of the most unsalient back-
ground patches, are chosen as queries to improve the robustness
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of our method. With these queries and a self-adapting graph
defined in the descriptor space of patches, the saliency of all the
patches is determined using manifold ranking. Ranking in the
descriptor space is more applicable for mesh saliency since the

salient regions of a mesh are usually scattered in the spatial
domain. Finally, we use simple Laplacian smoothing to spread
the patch saliency to vertex saliency. The patch descriptor and the
strategy to generate the queries together contribute to make our

Fig. 1. Method overview. (a) Input mesh. (b) Over-segmentation. (c) Some of the most unsalient background patches (red). (d) Mesh saliency. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 2. Our method is robust to patch numbers. From left to right, the patch numbers are 3924, 1970, 902 and 772.

Fig. 3. Mesh saliency via ranking with curvature-based patch descriptor (the left column) is sensitive to local geometry, while using Zernike-based patch descriptor (the
right column) is more tidier and faithful.
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method robust to noise. Experiments demonstrate that our single
scale method outperforms many state-of-the-art methods, espe-
cially when the models are contaminated by noise. The contribu-
tions of our method are as follows:

� Manifold ranking is introduced to imitate the transformation of
human attention for mesh saliency detection. It is easy to
compute and efficient.

� Instead of transferring saliency from unstable foreground patches,
some background patches are selected as queries, whichmakes our
method not sensitive to input parameters and robust against noise.

� Considering that salient regions of a mesh are usually scattered
in the spatial domain, a self-adapting graph is defined in the

descriptor space of patches, which benefits to reveal the
saliency patches independent of their locations and cardinality.

2. Related work

Existing mesh saliency methods fall into two categories: salient
points detectors [15–17] and salient regions detectors. Our method
belongs to the latter which generates a saliency map, i.e. a saliency
value for each vertex.

Early mesh saliency detection methods estimate saliency of a 3D
shape by computing saliency in its 2D projection. Guy and Medioni

Fig. 4. Our mesh saliency results are insensitive with different descriptor scales. The results shown from left to right are obtained with the scale of 3.0l, 4.0l, 5.0l, 6.0l.

Fig. 5. The saliency maps generated using a two-loop graph in the spatial domain and those generated using our self-adaption graph G in the descriptor space, and the
pseudo-ground truth [16] (from left to right). Taking the top row as an example, the saliency of left and right thigh is different when ranking in the spatial domain and is the
same when ranking in the descriptor space.
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[18] propose a scheme for computing a saliency map based on
edges in a 2D image, and apply it to 3Dmeshes. Yee et al. [4] use the
method in [19] to calculate a saliency result of a coarsely rendered
2D projection of a 3D dynamic scene. Mantiuk et al. [20] present a
2D saliency algorithm to guide MPEG compression of a 3D scene
animation.

Recently, some works compute saliency on meshes directly.
Shilane et al. [5] analyze distinctive regions based on performing a
shape-based search. However, the results undesirably change with
training database. Leifman et al. [13] develop an approach to
detect the interest regions of surfaces for viewpoint selection.

There are also many mesh saliency algorithms extended from
image saliency methods. Itti et al. [19] use the center-surround
mechanism at different scales to compute a saliency map. Inspired
by [19], Lee et al. [2] define mesh saliency in a scale-dependent
manner using a center-surround operator on Gaussian-weighted
mean curvatures. They also show that mesh saliency can visually
enhance mesh simplification and viewpoint selection. Instead of
using only the local geometric cues, Wu et al. [3] extend Cheng
et al. [21] to compute mesh saliency. They consider both local
contrast and global rarity. Spectral analysis is once an effective
approach for image saliency detection [22]. Similar to the spectral
residual analysis in [22], Song et al. [23] analyze the spectral
attributes of the log-Laplacian spectrum of a mesh. The spectral
residual in the spectral domain is transformed back to the spatial
domain to obtain the mesh saliency map. Although there are many
image saliency methods [21,24,25] in spatial domain achieving far
faithful results than spectral based methods recently, they are not
extended to 3D meshes and the spectral approach [23] is the best

mesh saliency method as far as we known. We generalize the idea
of Yang et al. [24] to mesh saliency detection. The approach is
expected to work for 3D mesh, since we can treat image and mesh
in a united way using a graph consisting of oversegmented
patches. However similar to the above, there are still many
problems needed to be conquered during the generalization, such
as the choice of proper descriptor and construction of the graph
used in manifold ranking, since image and mesh have different
generation mechanisms and the nature between image saliency
and mesh saliency is different.

3. Approach

3.1. Algorithm overview

Our method involves three main steps (see Fig. 1). Taking a mesh
as input, we oversegment it into patches and compute a descriptor
for each of them based on Zernike coefficients [28] (Section 3.3).
Then a rough distinctness of each patch is estimated locally (Section
3.4). Among the most indistinct patches, we chose some of them as
queries. After constructing a self-adaption graph in the descriptor
space of patches (Section 3.5), the saliency of all the patches is
computed based on their relevances to the given queries via
manifold ranking (Section 3.6). Finally, a smooth vertex saliency
map is achieved by splatting the patch saliency. The pseudocode of
our method is shown in Algorithm 1. Before detailing the main
steps, we introduce manifold ranking briefly in Section 3.2.

Fig. 6. Saliency generated by ranking with background queries is more stable than with foreground queries. The red patches in (a) and (c) denote the background queries
with local contrast smaller than 0.05 and 0.1. (b) and (d) are the corresponding saliency maps of (a) and (c). (e) and (g) are the foreground queries with local contrast greater
than 0.6 and 0.2, respectively. (f) and (h) are the corresponding saliency maps of (e) and (g), respectively. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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Algorithm 1. Manifold ranking based mesh saliency.

Input: A mesh M.
Output: A saliency map S.
Step 1: Oversegment M into patches and
compute patch descriptors in Section 3.3.
Step 2: Compute the distinctness of each patch using Eq. (2).
Step 3: Construct the similarity matrix W using Eq. (3).
Step 4: Choose some of the most unsalient background patches

as queries and determine the indicator vector y.
Step 5: Compute the patch saliency via manifold ranking using

Eq. (1) with the above queries.

Step 6: Achieve a smooth saliency across vertices by splatting
the patch saliency.

3.2. Saliency via manifold ranking

We describe the problem of detecting saliency via manifold
ranking [26,27] as follows: given a number of patches as queries,
all the patches are ranked based on their relevances to the given
queries respecting the manifold structure of the descriptor space
of patches. Specially, given a set of patches X ¼ fx1;…; xl; xlþ1;…;

xng where fxijir lg are queries, the goal is to compute a ranking
function f ¼ ½f 1;…; f n�T which assigns a ranking score fi to each
patch xi. Let y¼ ½y1; y2;…; yn�T denote an indicator vector, in which
yi¼1 indicates xi is a query and yi¼0 otherwise. Then a graph G is
defined to depict the manifold structure of the patch descriptors.
Let W ¼ ½wij�n�n denote the similarity matrix of the graph and
D¼ diagfd11;…; dnng, where dii ¼∑jwij. The following cost function
is defined:

Q ðf Þ ¼ 1
2

∑
n

i;j ¼ 1
wij J

1ffiffiffiffiffi
dii

p f i�
1ffiffiffiffiffi
djj

q f j J
2þμ ∑

n

i ¼ 1
‖f i�yi‖2

0
B@

1
CA: ð1Þ

The first term is a smoothing term which means the saliency of
similar patches should be close, and the second term is a fitting
term which means that the ranked saliency should not deviate too
much from the queries. The two terms are balanced by the
parameter μ. The resulted ranking function is the solution of
f n ¼ argmin Q ðf Þ, which can be written as f n ¼ ðI�αSÞ�1y, where
I is an identity matrix, α¼ 1=ð1þμÞ; S¼D�1=2WD�1=2. Similar to
[24], f n ¼ ðD�αWÞ�1y is used. Define A¼ ðD�αWÞ�1 and set the

Fig. 7. Ranking with unsalient background queries is more robust than with salient foreground queries. The red patches in (a) and (c) denote the background queries with
local contrast smaller than 0.1 on the original model and the model contaminated by 40% noise. (b) and (d) are the corresponding saliency maps of (a) and (c), respectively.
(e) and (g) are the salient foreground patches with local contrast greater than 0.2 on the original model and the model contaminated by 40% noise, respectively. (f) and
(h) the corresponding saliency maps of (e) and (g), respectively.

Table 1
Run times for computing mesh saliency.

Model Patch and descriptor
computing (s)

Queries
selecting (s)

Saliency
detecting (s)

Armadillo (34K) 161.93 3.52 3.32
Bimba (30K) 138.57 2.69 2.62
Dragon (30K) 161.33 2.78 3.92
Gargoyle (25K) 124.69 2.24 2.68
Bunny (14K) 70.50 1.02 0.48
Human (15K) 113.33 1.18 0.93
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Fig. 8. Mesh saliency results of Lee et al. [2] (the left column), Wu et al. [3] (the middle column) and our method (the right column).
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diagonal elements of A to 0, which means that the ranking score of
a query is ranked by the other queries (except itself). This operation
contributes to make our result more robust since a few unfaithfully
estimated queries may be corrected by other queries.

3.3. Patch generation and patch descriptor

We employ the method of Wu et al. [3] to generate a set of
patches P for any input mesh. Three parameters are used to control
the number of patches. As can be seen in Fig. 2, our method is not
sensitive to the patch number. The saliency maps in (a)–(c) of Fig. 2
are similar. Hence we use unified parameters in all the experiments.

Given the patches P, a proper patch descriptor is needed to
compare different patches. We define the patch descriptor as the
mean of the descriptors of the vertices within the patch. As
known, the curvature computation is fairly sensitive to noise.
Alternatively, Zernike coefficients [28] are adopted as the vertex
descriptor, which is rotationally invariant and stable, as shown in
Fig. 3.

For each vertex, the square sub-region of its tangent plane with
radius r is considered. The sub-region is divided into a 16 n16 grid.
A heightmap is calculated as the Euclidean distance from grid
points to the mesh surface along the normal direction. It encodes
the local shape surrounding the vertex. In order to achieve rotation

Fig. 9. Mesh saliency results of Lee et al. [2] (the top row), Wu et al. [3] (the second row), Leifman et al. [13] (the third row), and our method (the bottom row).
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invariance, Maximo et al. [28] compute the Zernike-basis expansion
of the heightmap. The descriptor depicts a wider range of surface
shape as the radius r becomes bigger. Compared to multi-scale
descriptors in [5,3], a single scale descriptor is enough to generate
faithful results using our method. Furthermore, our method is
insensitive to the scale, i.e. the radius r for computing the Zernike
descriptor. As shown in Fig. 4, the mesh saliency is not influenced by
the scale greatly. We set r¼3.0 l in all experiments, where l¼0.5% of
the longest diagonal of the mesh's bounding box.

3.4. Local patch distinctness

To generate queries for the ranking process, we estimate local
distinctness by computing the local contrast among the patches:

CðpÞ ¼ 1
n

∑
qANp

dðzp; zqÞ; ð2Þ

where Np denotes 3-ring neighborhood of patch p, n is the number
of Np, zp and zq are the Zernike descriptors of patches p and q,

Fig. 10. Comparisons of our results (the top part) with spectral mesh saliency [23] (the middle part) and pseudo-ground truth [16] (the bottom part). If our results are more
faithful, compared with pseudo-ground truth, the corresponding modes are marked in solid red boxes, otherwise in dashed green boxes. Our results are comparable with
spectral mesh saliency for the rest of models in this figure. All models are courtesy of the Watertight Track of the 2007 SHREC Shape-based Retrieval Contest. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

P. Tao et al. / Computers & Graphics 46 (2015) 264–274 271



respectively, and dð�; �Þ is the Euclidean distance between the patch
descriptors. More faithful local contrast can be obtained by using
more rings at the cost of more computation time. In order to take a
balance, numerical experiments suggest that 3-ring neighborhood
is a good choice.

3.5. Graph construction

To get satisfactory results with less running time, we define the
ranking graph G¼ ðP; EÞ on patch level, where P is a set of patches
and E is the edge set. The choice of E and weights defined on it
affect the final results to a great extent [24,25]. Yang et al. [24]
define a two-ring graph first and introduce more edges by
connecting any pair of patches on the four sides of a image for
image saliency detection. They assume that the patches on the
image sides tend to be background.

However, there is no corresponding assumption for 3D shapes.
Furthermore, the nature between image saliency and mesh sal-
iency is different. The salient regions of an image are usually
concentrated, while those of a mesh are often dispersed. Different
from the graph construction method in [24], G is built in a
descriptor space in a self-adaption way. For each patch, we find
those patches within the radius rz and connect an edge between
the current patch and any neighboring patch. rz is estimated as
follows. We compute feature distances between all patches and
the most salient foreground patch, and sort them in ascending
order. The distance corresponding to the maximal distance incre-
ment from the fifth distance is selected as rz. Thus, even the most
salient patches will not have a few edges. The similarity between
two patches is defined by

wij ¼ e� J zi � zj J=σ2 ; i; jAP; ð3Þ

where zi and zj denote the descriptors of patches i and j,
respectively. The descriptor distance is normalized to the range
[0,1] and we set σ ¼ 10�2

nrz=dz , where dz denotes the maximum
descriptor distance between all patches.

Sidi et al. [29] incorporate the manifold structure of the shape
descriptors when constructing the graph of a collection of mesh
patches too. The diffusion in the descriptor space contributes to
relate the parts independent of their poses, locations and cardin-
ality. As demonstrated in the experiments, our ranking in the
descriptor space reveals the saliency patches independent of their
locations and cardinality too. As illustrated in Fig. 5, the saliency
map via the self-adaption graph in the descriptor space is more
faithful and close to the pseudo-ground truth than that via the
two-loop graph in spatial domain.

3.6. Ranking with background queries

Similar to [2,3], vertices or patches with high local contrast are
considered as saliency points or patches. Once the local distinctness C
is computed using Eq. (2) and normalized, we can select some patches
with the highest local distinctness as the most salient foreground
queries, i.e. patches with local distinctness larger than some threshold.
However a proper threshold is hard to select and the foreground
queries are sensitive to noise, as illustrated in Figs. 6 and 7. Hence we
select some of the most unsalient background patches as the queries,
which are patches with local distinctness lower than 0.1, and all the
patches will be ranked according to these queries. Unlike using the
foreground queries, the ranking results are more robust for noise and a
wide range of thresholds can be used to determine the background
queries.

The ranking function f is calculated using Eq. (1), which means
the relevances to the background queries. From this perspective,

Fig. 11. Our method is more robust against noise. The top row shows mesh saliency results of Lee et al. [2], Wu et al. [3] and our method for the original Armadillo model.
The second row shows the results of them for the model with 30% random noise relative to the average edge length.
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we compute the saliency map as

SðpÞ ¼ 1� f ðpÞ: ð4Þ
Finally, a Laplacian smoothing procedure is employed to spread

the patch saliency to each vertex.

4. Experimental results

In this section, we evaluate our method on a broad set of object
categories and compare it with state-of-the-art methods, includ-
ing Lee et al. [2], Wu et al. [3], Leifman et al. [13], Song et al. [23]
and pseudo-ground truth [16]. The pseudo-ground truth is from
data collected in a user study using a regression model trained
based on meshes of the same class. All the experiments are run on

a Intel Xeon E5630 2.53 GHz CPU with 12 G memory. The perfor-
mance of our method is shown in Table 1. The saliency computa-
tion involves three steps, namely patches and descriptors
computing, queries selecting and saliency detecting. For a model
with 30K vertices, the first step requires about 146.63 s. The
queries selecting and saliency detecting takes about 2.8 s and
3.13 s, respectively.

As we can see from Figs. 8 and 9, the results of Lee et al. [2] are
greatly influenced by local changes of the curvature. Taking the
Feline as an example, the result is disorganized. Wu et al. [3]
generate better results. However, it is not easy to tune the
parameters to get faithful results. Hence some salient regions
may be not identified evidently, such as the eyes of the Cow and
Horse in Figs. 8 and 9. Leifman et al. [13] choose 20% of the most
distinct vertices and the extreme vertices as focus points. They

Fig. 12. Our method (bottom row) is more robust against noise than Lee et al. [2] (middle row) and Wu et al. [3] (bottom row). The left two columns are front and back view
of saliency results for the original Gargoyle model. The right two columns are front and back view of saliency results for the Gargoyle model with 30% random noise relative
to the average edge length.
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may lose some saliency regions that do not contain focus points.
As shown in Fig. 9, the feet of the Bunny are not obtained. Our
method distinguishes some small salient regions better than the
other three methods, such as the regions in the head of the Feline
in Fig. 8 and the Horse in Fig. 9.

Comparisons of our results with Song et al. [23] and Chen et al.
[16] are shown in Fig. 10. For the models in solid red boxes, such as
the Vase, the Jar and the Glass, our results are more consistent
with the pseudo-ground truth. While Song et al. [23] achieve
better results for those models in dashed green boxes, such as the
Human and the Chair. In general, our saliency results are largely
comparable with them.

Figs. 11 and 12 show the saliency results when the input
meshes contain noise. We add 30% (of the average edge length)
random noise to perturb vertex coordinates. Method of Lee et al.
[2] is not robust because curvature is highly affected by the noise.
The saliency of the Armadillo and the noise contaminated Arma-
dillo are dramatically different, see Fig. 11. Both Wu et al. [3] and
our method compute mesh saliency in a global view. They are
more robust against noise. However, as shown in Fig. 12, our
method achieves more stable results especially for Gargoyle's
wings.

5. Conclusion and limitation

This paper presents a novel method to compute mesh saliency
via manifold ranking. It is robust against noise since it takes some
of the most unsalient background patches as queries. By ranking in
the descriptor space composed of the patch descriptors based on
Zernike coefficients, we can reveal the salient regions independent
of their locations and cardinality. Compared with various state-of-
the-art multi-scale approaches, our simple single scale method
generates comparable even more faithful results on a wide range
of shapes, especially when the models are contaminated by noise.

One limitation of our method is that it does not incorporate any
high-level priors. Taking the Desk in Fig. 10 for example, we fail to
detect the center region of the desktop as salient region without
the guiding from advanced semantic information. In the future, we
plan to investigate semantic priors for 3D shapes and incorporate
these priors into mesh saliency detection.
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