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a b s t r a c t

Surface approximation with smooth functions suffers the problems of choosing the basis functions and
representing non-smooth features. In this work, we introduce a sparse representation for surfaces with
a set of redundant basis functions, which efficiently overcomes the overfitting artifacts. Moreover, we
propose an approach of parameterization transformation, which makes the possibility to represent non-
smooth features by the composition of a smooth function and a non-smooth domain optimization.
We couple the sparse representation and the parameterization transformation in a global optimization
to respect sharp features with smooth polynomial basis functions. Our approach is capable for
approximating a wide range of surfaces with different level of sharp features. Experimental results have
shown the feasibility and applicability of our proposed method in various applications.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In geometric modeling, surface approximation is one of the
most important and interesting research topics. Actually, it is the
fundamental problem of data fitting. Fitting data with a linear
combination of a family of basis functions has been widely studied
in various applications such as data smoothing, data predicting,
feature extraction, etc. [1,2]. The coefficients for basis functions
are obtained by solving a least-squares solution [3,4]. The choice
of basis functions will make a big difference on the fitting results.

To be flexible about basis functions, sparse representation is
first proposed in image processing problems [5] like noise reduc-
tion, image compression, face recognition, and pattern classifica-
tion. It represents input signal by automatically choosing proper
basis from a redundant set of basis functions (upper row in Fig. 1).
As many as possible functions can be put into basis set to sat-
isfy more geometric features, what is more, sparse representation
could effectively overcome the overfitting artifacts. However, it is
nontrivial to represent non-smooth features using a set of smooth
basis functions (middle row in Fig. 1).

Fortunately, we realized that in addition to the functions them-
selves, the definition domain (the parameterization of input data)
could also affect the shape of function. Specifically, it is possible
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to obtain non-smooth shape by the composition of a smooth func-
tion and a non-smooth domain optimization. Furthermore, geom-
etry itself contains no intrinsic parameterization, it is also quite
unreasonable to fix the parameterizationwhich can be obtained by
existing algorithm. Then we consider the feasibility of represent-
ing various geometric features with parameterization optimiza-
tion. The parameterization of input data has beenwidely studied in
the literature [6]. Current methods try to compute parameteriza-
tion to preserve geometric properties such as angle [7] and triangle
rigidity [8]. But little effort has been put on this problem of finding
a suitable parameterization optimization for good approximation
result under a certain set of basis functions.

In this paper, by coupling sparse representation and parame-
terization optimization, we propose a novel surface approxima-
tion method for representing sharp features using polynomial
basis functions. In a sense it is an implicit composite function
(Section 3.2.1). Since sparse optimization and optimal parameter-
ization will be solved simultaneously, we also present an aug-
mented Lagrange method based formulation and solve it in an
iterative way. Experimental results show that our new represen-
tation method has the ability to approximate sharp features even
with a set of smooth functions (lower row in Fig. 1). That is to say,
definition domains determine the representation ability of the lin-
ear space of predefined basis functions, our idea of optimizing pa-
rameterization just largens this space.

For complex geometric surface, we first decompose it into
multiple small local patcheswhere adjacent patches have overlaps.
Aiming for the continuity of adjacent patches, we finally put
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Fig. 1. Approximating surfaces with sparse representation and parameterization optimization. The upper row shows the result of approximating a smooth surface with
sparse representation. Given a smooth surface patch (a) defined on a planar domain (a1), a subset of basis functions (highlighted in orangewith the corresponding coefficients
shown in the top-right) from a set of redundant basis functions (a2) are chosen to represent (a) as shown in (a3). The lower row shows the results produced by our approach.
Given a surface patch with a crease feature (b) defined on the domain (b1), the naive approximation using the sparse representation (b2) cannot well represent the feature
(b3). With the optimized parameterization transformation (b4), our approximation approach of using the sparse representation (b5) respects the sharp feature quite well
(b6).
forward a consistent surface approximation method by globally
processing small patches.

The contributions of our work are summarized as:

• A new composite representation method is proposed for
surface approximation by coupling sparse representation and
parameterization optimization.

• An augmented Lagrange method based numerical algorithm is
presented to solve the composite problem efficiently.

2. Background and motivation

Surface approximation and data fitting. In Computer Aided Design,
B-splines are the de facto industrial standards for surface
approximation schemes [9–11] though it is much difficult to fit
models with complicated topology. Different from this explicit
representation, implicit function is commonly defined as the sum
of radial basis functions [12–14] or the signed distance [15]. Now
that surface approximation is one specific field of data fitting, other
applications like data mining [3], statistics [1] or biology [2] will
also give much important reference data. Though experimental
results have shown the validity of these representation methods,
overfitting artifacts [16] cannot be avoided by directly minimizing
squared-error or redundant basis functions [3,4].
Sparse representation. To overcome the overfitting artifacts in
traditional fitting above, sparse representation is adopted to
represent given data using a small number of basis functions [5]
and has theoretical guarantee in many image applications such as
noise reduction, super resolution, compression, etc. [17–19].

Being attracted by the advantages of sparse techniques, a good
few researchers have extended these techniques to 3D geometry
processing rapidly and successfully [20]. The work of [21] employs
K-SVD algorithm on accurately compressing point cloud. [22]
uses ℓ1 optimization to compute normals of point cloud. [23]
uses a ℓ0-smoothing method based on discrete gradient operator
inspired by [24]. Wang et al. [25] introduce a weighted ℓ1-analysis
compressed sensing which decouples noise and feature. These
approaches all focus on geometric applications, here we adopt
sparse representation to approximate geometry with a novel
optimization framework.
Basis functions. There are many possible choices for basis func-
tions. [26] uses polynomials for hole-filling problem. [13] adopts
implicit representation with Radial Basis Functions (RBFs) to
achieve surface reconstruction and mesh completion. [27] fits
meshes using PHT-spline. These methods all find a suitable appli-
cation for one specific type of basis functions. Besides the com-
plexity of some basis functions, another weak point is the lack
of universality, e.g., smooth functions cannot represent sharp fea-
tures like crease, cusp, or corner. Our parameterization optimiza-
tion (Section 3.2.1) successfully addresses these problems even
with simple polynomials as basis functions.
Parameterization and geometry features processing. As mentioned
in Section 1, parameterization of geometric data has been well
studied in geometry processing [28,6]. [29,30] compute the param-
eterization in angle space, with the resultsminimizing angular dis-
tortion. [31,32] process the parameterization optimization guided
by stretch. [33–35] try to preserve triangle angles. And [8] aims
for the rigidity of triangles which inspires us with our as-rigid-as-
possible (ARAP) term included in the regularization term (4) in Sec-
tion 3.1.

To align geometry features, NURBS [36] can only represent
features which are parameterized onto the grid of domain and
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it is hard to achieve. The methods of [37–39] are essentially
driven by feature detection or feature-aware energy that will af-
fect the results largely, as well as many other geometry process-
ing problems like geometry inpainting [40,41], mesh smoothing
[42,43] and reconstruction [44]. Without these additional detec-
tion techniques, our novel composite representation algorithm
makes the parameterization automatically respect sharp features
in the input data.

In summary, we develop a novel scheme for a good surface
approximation. Specifically, we allow users to choose any number
of simple polynomial basis functions and adopt a sparse fitting to
automatically choose a small basis set to fit the given geometric
surface.

3. Surface approximation of scalar data

Now that the new composite representation and its solver are
our main contributions, to be clear and compact, we take the
scalar data as input to introduce the methodology and do some
experiments to show the validity of the algorithm in this section.

3.1. Formulation

Denote b = (b1, . . . , bm)T as a set of scalar observations from
some underlying Euclidean space Rk. We use monomial functions
P = {pj(u) : degree(pj) ≤ t}nj=1 defined on Rk as the basis func-
tions, here we set t = 14. The fitting problem, also called regres-
sion, is actually to represent b as a linear combination of the basis
P , which aims to find the coefficients c = (c1, . . . , cn)T by mini-
mizing the error function

F(c,U) =

m
i=1


bi −

n
j=1

cjpj(ui)
2

, (1)

where U = (u1, . . . ,um) ∈ Rk×m are the parameters of the data.
With the same optimization problem (1), we optimize a sparse

vector c (with only a few non-zero values) and the parameter
values U of the input data simultaneously as follows:

min
c,U

F(c,U)

s.t. ∥c∥0 ≤ s,
(2)

where s is the parameter for sparsity.
However, directly solving U in problem (2) means solving

for every ui independently. This trivial approach might lead
to a bad parameterization as shown in Fig. 7. So we add a
regularization term Q (U) to (2) to prevent the parameterization
(the triangulation of {ui}) from transforming badly like irregularity
or flip, our final optimization problem becomes:

min
c,U

F(c,U) + Q (U)

s.t. ∥c∥0 ≤ s.
(3)

We will discuss about Q (U) in Section 3.2.2.

3.2. Methodology

3.2.1. Parametric optimization

Parametric optimization. In fact, the parameterization is optimized
discretely in our solving algorithm (Section 3.3) for problem (3).
To illustrate easily and clearly, we temporarily formulate the
parameterization optimization as a 2D to 2D mapping which
needs further studies in the future. For the initialization of
parameterization u(0), it can be obtained by any existing approach,
we will give a simple discussion later. Here we adopt the LSCM
method [7].
Assume {ui}
m
i=1 is a set of vertices in domain M and {ui}

m
i=1 is

a set of vertices in domain N with Φ(ui) = ui. Let TM be the
triangulation of {ui}

m
i=1 and TN the triangulation of {ui}

m
i=1. Thus

we define the mapping Φ as a piecewise linear transformation
of two-dimensional triangulated structure as illustrated in Fig. 2,
where Φ(u) = w1Φ(ui1) + w2Φ(ui2) + w3Φ(ui3) for any u =

w1ui1 + w2ui2 + w3ui3 lying in the triangle △ui1ui2ui3 with its
barycenter coordinates (w1, w2, w3).
Implicit composite function. By the aid of Φ , we directly obtain a
composite function (Fig. 2). More precisely, a function f defined
on domain M ⊂ R2 consists of some linear combined function
h : R2

→ R and a parameterization mapping Φ : R2
→ R2,

that is, f (u) = h ◦ Φ(u). For our fitting problem, h is a linear
combination of monomial functions with h(u) =

n
j=1 cjpj(u).

Then the composite function will be written as follows:

f (u) = h ◦ Φ(u) =

n
j=1

cjpj(Φ(u)).

This composite function is no longer the simple linear combination
of some basis. The existence of the implicit Φ successfully over-
comes the limitations in trivial linear combination as mentioned
in Section 1 (middle row in Fig. 1), thus the flexibility in basis se-
lection is obvious.

3.2.2. Regularization of parameterization
Our regularization termQ (U) for parameterization consists of a

data term Q1(U) and an ARAP term [8] Q2(U) which aims at shape
preserving for mesh parameterization:

Q (U) = β1Q1(U) + β2Q2(U), (4)

here,

Q1(U) = ∥U − U (0)
∥
2,

Q2(U) =


t

∆t((σ
1
t − 1)2 + (σ 2

t − 1)2),

and β1, β2 are scalar parameters, ∆t is the area of the tth triangle,
σ 1
t and σ 2

t are the signed singular values of the Jacobian of the tth
triangle’s transformation. For more details, please refer to Section
4.4 in [8].

3.3. Solver

It is nontrivial to solve the non-linear optimization (3) when c
and U are coupled together.
Auxiliary variables. To this end, we introduce auxiliary variables
f = (f1, . . . , fm)T for converting problem (3) to a newoptimization:

min
c,U,f

∥b − f∥2
+ Q (U)

s.t. ∥c∥0 ≤ s,

fi =

n
j=1

cjpj(ui), i = 1, . . . ,m.

(5)

Augmented Lagrange method. The augmented Lagrange method
(ALM) [45] is adopted to solve (5) as follows:

min
c,U,f

∥b − f∥2
+ Q (U) +

ρ

2

m
i=1


fi −

n
j=1

cjpj(ui) +
λi

ρ

2

s.t. ∥c∥0 ≤ s,

where Λ = (λ1, . . . , λm) are the Lagrange multipliers, ρ is
the penalty factor. We apply the alternating direction method of
multipliers (ADMM) to alternately update variables c,U, f and Λ.
Iteration process. The parameters β1, β2, s, ρ and τ are fixed. With
the initialization of triangulation U (0), Λ(0)

= 0 and f(0) = 0, we
update each variable iteratively via:



182 L. Xu et al. / Computer-Aided Design 78 (2016) 179–187
Fig. 2. A surface patch with a crease feature f is represented as a composition of a smooth function h and a parameterization Φ(u), where f is a sparse representation from
a set of redundant basis functions and Φ(u) is a planar transformation from a predefined triangulation domain.
Fig. 3. Overview of our approach. (a) The input surface patch (in blue) with an initial parameterization obtained by the LSCM (in buff); (b1) and (b2) show the two results
of intermediate iterations during the optimization. In each iteration (b1) and (b2), a surface (in cyan) is obtained by the composition of the surface (in yellow) represented
by the sparse representation and the optimized triangular parameterization domain (in buff). (c) Shows the final result.
(1) c-subproblem/sparsity optimization:

min
c

ρ

2

m
i=1


f (k−1)
i −

n
j=1

cjpj(u
(k−1)
i ) +

λ
(k−1)
i

ρ

2

s.t. ∥c∥0 ≤ s.

(2) U-subproblem/parameterization optimization:

min
U

ρ

2

m
i=1


f (k−1)
i −

n
j=1

c(k)
j pj(ui) +

λ
(k−1)
i

ρ

2
+ Q (U).

(3) f-subproblem/data fitting:

min
f

∥b − f∥2
+

ρ

2

m
i=1


fi −

n
j=1

c(k)
j pj(u

(k)
i ) +

λ
(k−1)
i

ρ

2
.

This subproblem has a closed-form solution f (k)
i =

2bi+ρai
2+ρ

with

ai =
n

j=1 c
(k)
j pj(u

(k)
i ) −

λ
(k−1)
i
ρ

for i = 1, . . . ,m.
(4) Λ-update:

λ
(k)
i = λ

(k−1)
i + τρ


f (k)
i −

n
j=1

c(k)
j pj(u

(k)
i )


, i = 1, . . . ,m.

Implementation. There are in all three subproblems and one update
in the iteration steps:

• c-subproblem is the traditional sparse representation problem
which can be solved by the classical orthogonal matching
pursuit(OMP) algorithm [46];

• U-subproblem is solved using a function named find_min_
using_approximate_derivatives in dlib library using Broyden–
Fletcher–Goldfarb–Shanno (BFGS) search strategy [47], it
numerically approximates the gradient instead of taking a
gradient function;

• f subproblem and Λ update are simple scalar operations.
• The algorithm terminates if the error between two steps is

smaller than a threshold or the number of iteration steps is
bigger than a threshold.

3.4. Performance

For the parameters in above algorithm, we experimentally set
them as β1 = 0.2, β2 = 0.1, s = 15, ρ = 0.1, τ ≤ 1.0.

Fig. 3 shows the overview of our algorithm applied on a
scalar data with sharp feature (a). Two intermediate iterations are
illustrated (b1) and (b2). As the solver iterates, the representation
gradually approximates input data. When the algorithm reaches
the terminal condition, we get the final representation result (c).

Fig. 4 shows twomore examples with the comparison between
our approach and traditional sparse representation (1). Input
(a) with initial parameterization, both the representation results
of traditional sparse representation (b) and our method (c) are
computed. The colormap of fitting error makes the approximation
performance visible and clearly tells that nomatter the input signal
contains feature or not, our composite representation performs
much better. Especially, it respects sharp feature well even under
smooth polynomial functions.

Fig. 5 illustrates how energy changes for some examples.
Generally, our algorithm terminates at about 15 steps. The time
cost is also shown in the figure.
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Fig. 4. Comparison between our approach and traditional sparse representation. (a) The two input surface patches (in blue) and initial parameterizations (in buff). (b) and (c)
are the results of traditional sparse representation and our approach respectively. With fixed parameterization, sparse representation (yellow models in (b)) directly makes
the final results (in cyan). From the colormaps of approximation error in the bottom-right, smooth surface (upper row) can be approximated well, but the crease feature
(lower row) is difficult to represent. Using our new parameterization optimization (in buff), in addition to the better approximation result of smooth patch, the feature is
also successfully respected.
Fig. 5. Statistics of our algorithm on changes of fitting error and time cost. The models come from Figs. 3 and 4.
Fig. 6. The approximation results with different initial domains (in buff). (a) The input surface patch. (b) Shows the initial parameterizations obtained via two different
approaches. The upper row is computed using discrete conformal mapwith circulator border, the lower row comes from least square conformal map. Starting from different
initializations, our algorithm can always find the optimal parameterizations (c) to well represent the input surface (d). It is clear from the colormaps of approximation errors
(d).
3.5. Discussions

Parameterization initialization. Fig. 6 shows the results of our
algorithm with different approaches for initial parameterization.
The upper row uses discrete conformal map [48], the lower
uses least square conformal map. Although the initialization
(b) and optimal parameterizations (c) are different, both final
representations approximate input signal (a)well, this is clear from
the error colormaps (e). It means that our algorithm can always
find the optimal parameterization according to the initial domain
and simultaneously find a good representation for input signal
under this transformation.
Influence of regularization. There are two regularization terms in
our formulation (4). Fig. 7 illustrates the difference without and
with triangular regularization term (4). As we can see, this term
helps our algorithm obtain geometry-reasonable transformation
(c). The result without this term (b) has singularities in the
parametric optimization.

4. Consistent surface approximation for meshes

4.1. Approximation of local geometry

For an input geometric data, we separate it into three signals
of x, y, z coordinates (scalar data in Section 3) and process each
coordinate respectively starting from the initial parameterization.
Fig. 8 gives a intuitive illustration with a simple geometry
patch.
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Fig. 7. The influence of triangular regularization term. (a) The input surface patch (blue) with initial parameterization (buff). With regularization term for parameterization,
the transformed result (c) is more reasonable than that without any constrain term.
Fig. 8. Approximation of a geometry patch. (a) Shows an geometric patch (green) with the initial parameterization (buff). Signals along three coordinates are extracted (b)
and processed respectively (c). For each coordinate, it is a composition of sparse representation (yellow) and the common transformed parameterization (buff). (d) Is the
final approximation result.
Fig. 9. Disadvantage resulting from processing each geometric patch individually.
Gaps (b) will be generated in the overlapping region (gray) in (a) by individually
processing adjacent patches (in red and purple).
4.2. Consistent surface approximation

For complex geometric surface, we first decompose it into
multiple small local patcheswhere adjacent patches have overlaps.
Here, we must pay attention to a hidden trouble that individually
approximating the geometric data on each patch using Eq. (3) may
result in gaps. Fig. 9 illustrates this problem with two adjacent
patches. The patches in pink and purple in (a) have an overlap
region in gray, (b) is the result with gaps by individual processing.
To address it, we develop a global approximation method by
blending all local patches in a consistent manner as follows.
Approximation with global consistency Since the adjacent patches
extracted above have overlaps, a geometric point p may appear in
several different patchMp

ℓ , ℓ = 1, . . . , np. Assume the parameters
of p on those domains are {up

ℓ} and sparse coefficients on these
Fig. 10. The influence of patch size. (a) Input geometry. (b1) shows the approximation result using 7-ring neighborhood of surface points as local patches, while (b2) uses
10-ring. (c1) and (c2) are the colormaps of (b1) and (b2).
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Fig. 11. Approximation results for several models with crease features. (a) The input geometries. (b) Our approximation results. (c) Colormaps of approximation errors.
domains are {cℓ}, the local approximation is then represented asn
j=1 cjpj(u

p
ℓ).

Factually, global consistencymeans that the final function value
at each point is decided by several local patch representations, we
compute it by directly averaging the approximations on each Mp

ℓ

with 1
np

np
ℓ=1

n
j=1 cjpj(u

p
ℓ). Then We have:

min
C,U


p


b(p) −

1
np

np
ℓ=1

n
j=1

cjpj(u
p
ℓ)

2
+

K
k=1

Q (Uk).

s.t. ∥ck∥0 ≤ s, k = 1, . . . , K .

(6)

Here, b(p) is the geometric data of point p on the input surface,
K is the number of local patches, C = {c1, c2, . . . , cK } and U =

{U1,U2, . . . ,UK } are respectively the local coefficients and param-
eterizations on each patch.

Solver. Obviously, problem (6) is a large-scale sparse optimization.
We first evaluate every ck and Uk on each extracted patch, then
iteratively update each pair of them in a Gauss–Seidel way by
taking {ci}i≠k and {Ui}i≠k as knownon the other patches. This global
consistent optimization achieves continuity between patches.
5. Results

We experiment on various unitized examples to illustrate the
performance of our globally consistent approximation. All the
examples presented in this article aremade on a dual-core 3.8 GHz
machine with 8G memory.

Using the same values of parameters introduced in Section 3.4,
the final result can be obtained by 1 or 2 consistent blending
iterations in general, and we select the 7-ring neighborhood of
surface vertices as local patches in all the experiments. Suppose
V is the number of the input surface, we generally obtain about
2% patches of V for each geometry surface. Obviously, the number
of patches will decrease greatly when the size of each local patch
increases, but there is no guarantee about the fitting result. Fig. 10
illustrates this problem using Cube model under different patch
sizes. Table 1 lists all the time cost.

Fig. 11 shows several approximation results with sharp
features, Fig. 12 gives more results with much details. According
to the colormaps (c), the approximation error is about 0.03.
This sufficiently tells that our consistent sparse representation
performs quite well on surface approximation. In addition to the
good approximation of smooth regions, it successfully preserves
different levels of geometry features. From the computation time
in Table 1, we will observe that the models with details in Fig. 12
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Fig. 12. Approximation results for several models with much details. (a) The input geometries. (b) Our approximation results. (c) The colormaps of approximation errors.
Fig. 13. Surface reconstruction result. (a) The input point clouds. (b) The underlying triangular structures. (c) The reconstruction results. (d) Colormaps of fitting errors.
Table 1
Time cost for the examples in Figs. 11–13.

Models Fig. 11 Fig. 12 Fig. 13
Cube Cubetorus Cylinder Fandisk Flower Bird Bunny Ball Airplane Head

Vertex 1538 2686 2732 6475 7919 55955 35947 1410/24 9730/154 26909/428
Patch 26 40 39 88 97 882 551 6 41 113
Time (m) 1.3 2.33 1.63 4.5 5.01 27.8 19.1 0.3 1.71 4.62
take much less time than those with sharp features in Fig. 11. This
is due to the higher smoothness of the local patch with details.

Surface reconstruction. A natural application is surface reconstruc-
tion which is also the approximation problem. Fig. 13 shows the
process of reconstruction from point cloud (a) using our method.
We regard point cloud as signals defined on a underlying triangular
structure (b) which can obtained by simplifying (a). By projecting
the points onto this structure, we get the local barycenter coordi-
nates on corresponding triangles. Then we find a cover of (b) as
above and solve the representations taking all points from (a) as
observations. At last the representation for (a) is obtained (c). (d)
shows the fitting error between (a) and (c). As we can see, the er-
ror is much lower than 0.01 meaning that our algorithm can well
represent the input point cloud. The features are also preserved
(second model of plane). Here, we select 1-ring neighborhood of
the underlying triangular structure as a local patch. The number of
patches is showed in Table 1 where the sizes of point cloud (a) and
the triangular structure (b) are both listed in the Vertex term.

6. Conclusion and future work

In this paper, we propose a novel surface approximation
method by coupling sparse representation and parameterization
optimization in a global optimization. The introduction of parame-
terization optimizationmakes it possible to represent non-smooth
features by the composition of a smooth function and a non-
smooth domain optimization, and to some extent this novel idea
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addresses the excessive dependency on parameterization in fitting
problem. Our new approach is capable for approximating a wide
range of surfaces with different level of sharp features. Experimen-
tal results show its powerfulness in different applications and po-
tential in geometric processing.
Insight. The parameterization optimization aims to find a more
proper domain for predefined basis functions, it is in fact learned
from the input geometry. In the point view of deep learning [49],
our method is a multi-layer representation with two layers. This
deeper representation definitely has stronger representation abil-
ity than just one layer. So this multi-layer property illustrates well
why we can obtain promising results in surface approximation.
Limitation. As we introduce amore complex formulation for sparse
representation, more time is needed to solve the problem as
shown in Table 1. For a simple example, our algorithm has to
cost 9.2 s to reach the ideal result for the upper model in Fig. 4,
traditional sparse representation costs only 0.5 s. Application on
higher dimension will definitely cost too much time solving it.
Future work. As discussed above, we regard our work as a
pioneer for representing geometry with multi layers (two in our
approach), one for parameterization transformation and one for
linear combination. Sincewe have not found a suitable formulation
for the parameterization transformation (Section 3.2.1), how to set
the parameterization layer is still unknown. And we believe there
are still a lot of interesting and challenging problems in geometry
processing that can be formulatedwithmulti-layer representation.
We would like to dig more on this novel composite idea to solve
more problems.
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