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a b s t r a c t

Mesh saliency was introduced and joined the community of computer graphics ten years ago, which can
benefit various applications, for instance, mesh reduction, mesh segmentation, self-similarity matching,
scan integration, volume rendering, 3D printing, etc. Before, saliency detection had been successfully
applied to image processing and pattern recognition to study how the world is perceptually intelligible
for robots. In contrast to color of images and coherence of videos, geometric signals are defined with
two-dimensional manifolds whose discrete representation is irregular, leading differences to the nature
and difficulties to the solution of mesh saliency. To tackle the challenge, the last decade has witnessed
significant advances in mesh saliency detection. However, a survey of recent advances in mesh saliency
detection as well as its applications does not yet exist to date. This paper provides a first and compre-
hensive reference source of shape context based mesh saliency for researchers from a wide range of
domains, including but not limited to computer graphics and vision. It reviews main contributions,
advantages, drawbacks, and applications of known mesh saliency detection methods and discusses
current trends and outlook for future study.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

“Seeing comes before words [1].” “Most of what our eyes take in is
filtered, as we cannot process all that is within the field of our
vision [2].” John Berger

The human visual system (HVS) is a significant part of how we
process sensorial information and a key factor in how we learn. In
order to reveal the brain's perception processing mechanisms,
over the past decades, a large number of neurophysiological and
cognitive neuroscience researches have provided in-depth and
detailed experimental data and theoretical models. For example,
Science, Nature, and Neuron published several remarkable findings
[3–6] relevant to the behaviors within the process of the HVS. The
visual media, including digital images, videos, and three-
dimensional (3D) models, contains superfluous visual informa-
tion, of which the portion that is visually interesting is filtered and
referred to saliency [2]. Saliency detection, thereby, imitates the
Wenping Wang.
ways of seeing and becomes an interdisciplinary scientific study of
theoretical computer science and the human perception.

This paper, in particular, surveys recent developments in shape
context based mesh saliency. By “mesh saliency”wemean enabling
a machine system to automatically reason about which points or
regions of a 3D polygonal mesh are perceptually important [7], so
the artificial intelligence can observe like the humans. The term of
“perceptually” distinguishes the topic surveyed from others
detecting interest points [8] or keypoints [9], though they do have
overlaps (see Section 7.1).

Moreover, the task of mesh saliency is relevant to a relatively
mature research area called visual saliency in image analysis (see
Section 7.2), as both are related to the nature of the HVS but from
different perspectives. Compared to 2D images, 3D meshes have
several deviations, leading challenges to mesh saliency detection.
For instance, (i) 2D images and videos have regular discrete
representations, which are irregular for 3D meshes [10]; (ii) 3D
meshes provide more geometrical (depth) information which are
hidden from static 2D images, also 3D shapes are believed to
encode surface metric dimensions unambiguously [11]; (iii) fea-
tures extracted from 3D models are not affected by scale, rotation,
and illumination [12]; (iv) salient objects (or regions) are
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empirically centered of 2D images, while such an assumption does
not hold for 3D meshes. Although the discrepancies between 2D
images and 3D meshes are noticeable, when we look for a solution
to the issue of saliency detection the principals get intimately tied
up – saliencies originate from visual distinctness, rarity, or surprise,
and often are attributed to variations in data attributes at multi-
scales and multi-levels [13,14].

The motivation of this work is three-fold. First, the present
advances in modeling, digitizing, and visualizing techniques have
led to an increasing amount of 3D models, both on the Internet
and in domain-specific databases. As a result, there is a growing
need for the task of 3D geometric analysis and processing, where
the use of mesh saliency has been found within a wide range of
applications. Second, since Lee et al. [15] firstly introduced mesh
saliency into the graphics community ten years ago, the last dec-
ade has witnessed significant progress toward the development of
new methods and applications. Meanwhile, we strongly believe
that the long and challenging journey to mesh saliency detection
has just started, as the highly relevant studies such as visual sal-
iency and scene saliency are drawing more and more attention.
Third, so far there does not yet exist a survey of recent mesh sal-
iency detection as well as its applications. To avoid that the wheel
would be reinvented, the paper provides a first and comprehen-
sive source of shape context based mesh saliency.

So, the paper first reviews 35 representative methods pub-
lished from 2005 to 2015. Then, with 7 examples, it demonstrates
how mesh saliency significantly improves mesh simplification,
mesh segmentation, mesh resizing, normal enhancement, volume
rendering, 3D printing, and scan integration. Next, 12 feasible ways
related to qualitative evaluation and quantitative evaluation of
mesh saliency are discussed. Lastly and more importantly, with
4 key insights, the survey sheds light on current trends and out-
look for future study.

In particular, we noticed that the majority methods of mesh
saliency detection are local contrast based and for capturing “sal-
iency seeds”, i.e., the most representative salient elements. Con-
sequently, often the saliencies detected are too dispersed. In other
words, their scale is small, and their number is large. Even, the
structure of 3D models is somewhat “damaged”. The reason is that
the recent study on mesh saliency does not fully appreciate the
two-stage characteristic of the HVS, which has been well discussed
in other areas such as neurophysiology and cognitive neu-
roscience. For example, literatures [3–6] showed the role of the
Fig. 1. An illustration of the two-stage characteristic of the human visual system (HVS)
followed by a slower, task dependent, top-down, global contrast based saliency extractio
quickly throughout the old man, flowers, trees, and grass, searching for regions that are l
what had been observed was more globally interesting. (b) A quantitative verification of t
original image was shown to each participant for about 7 s. Then, everyone was queried
the end of your looking?”. The right diagram shows statistics of the two choices, where
flowers, trees, and grass, respectively.
bottom-up and top-down visual attention selection in the process
of the HVS. Remarkably, Koch and Poggio [16] pointed out that the
HVS is essentially served by a two-stage prediction network of the
brain, measuring the local contrast first and then the global con-
trast. The finding, certainly, inspired Cheng et al. [13] to investigate
how the network guides visual saliency detection in image pro-
cessing. Such a useful comprehension to the HVS, in turn, becomes
the fundamental criterion for classifying mesh saliency methods in
the paper. To make an intuitive test of the comprehension, at the
beginning of the work a user study was conducted, and the sta-
tistics, which further prove that the criterion we set is reasonable,
are shown in Fig. 1. Also, the work informs that developing global
contrast based means for perceiving “saliency structures”, i.e., the
most representative salient components, is the next step in mesh
saliency detection.

Finally, it is worthwhile mentioning that in the recent years
range images of 3D point cloud are gaining more attention
researchers paid to computer graphics and vision, especially along
with the emergence of low cost 3D acquisition/virtual reality (VR)
devices. Thus, it is seen that in computer graphics the interest of
saliency detection grows from single objects to larger scenes,
where mesh saliency can facilitate and cooperate with the studies
of scene saliency and object recognition (see the latest survey in
[11]), which at present become more promising research direc-
tions (see more discussions in Sections 7.3 and 7.4).
2. Overview

2.1. Notations

To make this survey self-contained, here we introduce some
basic notations. S represents a 3D smooth surface that is a compact
2-dimensional Riemannian manifold. In differential geometry,
“sharpness” of a point on curves or surfaces is measured by cur-
vature. In the case of surfaces, this measure is the so-called normal
curvature, which smoothly varies within ½k1; k2� where the values
are the principal curvatures. The mean curvature and Gauss curva-
ture, thus, are calculated as ðk1þk2Þ=2 and k1 � k2, respectively. In
the paper, a surface S is discretized and approximated by a trian-
gulated mesh MfV;E; Tg, wherein V, E, and T are the set of vertices,
edges, and triangles, respectively. In the sequel, nð�Þ represents the
normal of a vertex vAV, an edge eAE, or a triangle tAT.
[16,3–6]: a fast, pre-attentive, bottom-up, local contrast based saliency extraction;
n. (a) When we looked at the leftmost image, in the first stage the eye gaze moved
ocally salient; then in the second-stage the gaze clung to the old man, which among
he result in (a), with a user study participated by 150 students aged 17–29. First, the
“which object of the image did you mainly pay attention to at the beginning and at
the cylinders indicate the percentile scores of participants who chose the old man,
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Given a mesh M, a global (resp. local) shape descriptor Γ,
encoding the intrinsic shape contexts of M, is a transformation
function mapping the entire (resp. partial) mesh into a k-dimen-
sional feature space Rk. Specifically, a mesh saliency map Γs, dis-
cussed in the paper, represents a real-valued global shape
descriptor that is parameterized by points or regions.

The 2D Gaussian smoothing kernel is defined as
Gðx;σÞ ¼ 1

2πðσÞ2exp½� 〈x; x〉=2σ2�, where 〈�; �〉 stands for the inner
product, σ determines standard deviation of the Gaussian dis-
tribution, and x is the distribution variable in the domain. We refer
to σ as the inner scale or shortly scale. Since the Laplacian com-
mutes with convolution, given a geometric signal described by a
shape descriptor Γ, it follows that ∇2ðGðx;σÞnΓÞ ¼ ð∇2Gðx;σÞÞnΓ,
where ∇2 (or Δ) is the Laplace–Beltrami operator (LBO), n denotes
the convolution operator, and ∇2Gðx;σÞ is the well-known Lapla-
cian of Gaussian that can be approximated by the differences of
two Gaussian functions (DoG), i.e., �ðα�1Þσ2∇2Gðx;σÞ � Gðx;σÞ�
Gðx; kσÞ, with k being an infinitesimally small constant.

At any vertex v, its neighborhood Nðv;σcÞ ¼ fuj Ju�vJoσcg is
a set of vertices within the distance σc measured under either
Euclidean or geodesic distance. In the domain where a surface
descriptor Γ is known, the Gaussian convolution Gwðv; x;σcÞ is
defined as
P

uANðv;σc ÞΓðuÞGðxðu;vÞ;σcÞP
uANðv;σÞGðxðu; vÞ;σcÞ

;

where σc is the scale. By analogy, the bilateral Gaussian convolu-
tion Gbðv; x;σc; y;σsÞ is formulated as
P

uANðv;σÞΓðuÞGðxðu; vÞ;σcÞGðyðu; vÞ;σsÞP
uANðv;σÞGðxðu; vÞ;σcÞGðyðu; vÞ;σsÞ

;

where y and σs are similar to x and σc, respectively. Therefore, a
multi-scale DoG feature space generated by Gaussian convolution
is specified as fGwðv; x;σi

cÞ�Gwðv; x; kσi
cÞgj si ¼ 1, with s being the

number of scales.
Fig. 2. The structure of this survey is constituted of three layers. From bottom to top:
second layer is the taxonomy of mesh saliency detection methods; the third layer exhib
Besides the multi-scale technique above, likewise Gaussian
pyramid in imaging that breaks down an image into successively
smaller groups of pixels, themulti-levelmethod offers another way
for analyzing 3D shapes, such that a 3D object is viewed over
several different level of details (LOD). For instance [17], by suc-
cessively removing collapse edges, a mesh M is remeshed at dif-
ferent levels, obtaining a series of meshes fMigj li ¼ 1, with l being
the number of levels.

In the continuous case, given that f is a real-valued function
(f AC2, defined on S) the LBO is defined as Δf≔divðgrad f Þ, with
grad f being the gradient of f and div the divergence on the sur-
face. From a viewpoint of frequency, the spectra of the LBO contain
intrinsic shape information. Thus, they are called “Shape-DNA”
[18], being defined to be the family of eigenvalues of the Helm-
holtz equation, Δf ¼ λf , and consisting of a diverging sequence
0rλ1rλ2⋯↑þ1. In the discrete case, the LBO is denoted by L
and often expressed using positive semi-definite (PSD) matrices
[19], that is, the eigenvalues of L are non-negative.

2.2. Structure of survey

Before attention from computer graphics was paid to mesh
saliency detection, the nature of the HVS had been widely studied
and explored in different areas, such as psychophysics [3,4], neu-
roscience [5,6,20], biology [21,22], signal processing [23], compu-
ter vision [13], applied perception [24,25], and cognition science
[26,27]. These prior studies, together, formed theoretical founda-
tions of the research of mesh saliency, as illustrated by the first
layer in Fig. 2. Although the first layer is skipped by the paper, it
lays the background of this study to understand what the essential
mechanism of the HVS is, and how the natural abilities associated
with the HVS interpret 3D shapes or projected 2D images.

According to the conventional wisdom of the HVS explained in
Section 1, this survey divides the type of mesh saliency methods
into two categories, namely local contrast based (LC, see Section 3)
and global contrast based (GC, see Section 4). The former captures
the first layer lists research foundations related to the topic of mesh saliency; the
its applications to which mesh saliency has been successfully applied.
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“saliency seeds” [28], i.e., the most representative salient elements
of surfaces, by contrast the latter detects “saliency structures” [29],
i.e., the most representative salient components of meshes. So far,
the majority of known approaches belong to the first category, as
they are based on the exploitation of the first-stage of the HVS.
However, recent advances in saliency detection with 2D images
[13,30] and 3D models [31,32] manifest that the second category is
meaningful and an emerging research [29], given that, compared
to small-scale salient elements, large-scale salient structures are
more advantageous for measuring and predicting visual fidelity
when looking at objects.

The second layer in Fig. 2 demonstrates the taxonomy of
existing mesh saliency methods and reflects our mental map of
the known techniques in mesh saliency. Let symbol Sly be a sal-
iency detection method. In the paper, three rules are designed to
return the classification to which Sly belongs.

(1) type(Sly)¼{local contrast based (LC), global contrast based
(GC)}.

(2) scale(Sly)¼{single scale based (SS), multiple scale based (MS),
global scale based (GS)}.

(3) signal(Sly)¼{point feature based (PF), cluster feature based
(CF), spectrum feature based (SF)}.

In fact, as indicated by the arrows in the taxonomy, these rules
are not isolated but linked in a hierarchical relationship. Accord-
ingly, the paper organizes mesh saliency detection methods in a
top-down manner, i.e., they are ordered by type first, then by scale.

Note that a method Sly may take advantage of a combination of
measures in different scales. In the case, for the sake of simplifi-
cation, the fourth rule of “lifting principal” is adopted to assist in
classifying the method. That is, scale ðSlyÞ ¼maxðSS;MS;GSÞ, with
respect to SSoMSoGS .

Also, it is worth mentioning that the survey only concentrates
on methods whose source signal of saliency information is shape
context based. As for the term “shape”, to be on the same page we
borrow the formal definition given by Dryden and Mardia in [33]:
“all the geometric information that remains when location, scale,
and rotational effects (i.e., Euclidean transformations) are filtered
out from an object”. In fact, besides using intrinsic shape contexts,
the eye fixation data is another important type of signals for mesh
saliency detection, which can be collected by using physical eye-
tracking devices or laborious annotations. Such a method is often
regarded as an auxiliary tool for many researches such as applied
perception [34,25] and computer animation [35]. Considering a
case that a subjective evaluation of the method not only is
expensive but also seems unconscionable for automatic systems,
methods of the eye-tracking based class are out of the scope of the
survey.

The third layer in Fig. 2 will be viewed in Section 5, showing
typical applications where mesh saliency has been successfully
applied. Section 6 presents qualitative and quantitative evaluation
of mesh saliency methods. Section 7 discusses current trends and
outlook of mesh saliency detection. Conclusions are made in
Section 8.
3. Local contrast based (LC) methods

The idea of local scale based methods was introduced by Koch
and Ullman in [36], who had suggested that salient regions should
be those that are distinctive from their immediate surroundings in
different scales. Thus, the distinctness of a point or region can be
measured by taking deviations where a wider surround filter is
subtracted from a narrower center filter. Further, an LC method
falls into three subgroups, namely GS, MS, and SS, by checking the
following criteria:

(i) if the band width of a filter reaches the diameter of input
domain, the method is global scale based (GS);

(ii) otherwise, if the deviations take place more than once, the
method is multiple scale based (MS);

iii) otherwise, the method is single scale based (SS).

Also, it aims to detect the most representative salient elements
of a 3D object, which often are small-scale and dispersed.

3.1. Single scale based (SS) methods

Surface roughness variation was regarded as a metric for
detecting salient region in [37,38], by making statistical con-
siderations about the dihedral angles associated to faces and ver-
tices of a mesh. Even though this measure is perception-inspired,
it is, specifically, more suitable for assessing the degree of distor-
tions produced by watermarking 3D meshes.

The method in [39] defined a local surface patch, which was
associated with and represented by a shape descriptor. For each
patch, a representative point at the center of its mass is chosen
and associated with the highest curvature across the patch. Thus, a
salient geometric feature is constructed by clustering together a
set of descriptors that are interesting enough in the sense that
they have a high curvature relative to their surroundings and a
high variance of curvature values. When estimating the saliency of
a patch, the area and the number of local minimum(s) or max-
imum(s) curvatures are considered as well. However, this means
does not function well in online mode as the overhead is high in
both time and space due to the involved implicit fitting scheme.

A learning based approach was introduced by Atmosukarto and
Shapiro [40], where the absolute Gaussian curvature is used as low-
level surface property that is convolved with a Gaussian filter to
reduce noises. In the training step, for each vertex a histogram of
neighboring low-level features is constructed. Then, for those
manually marked points their histograms are saved and used for
training. After that, the classifier is able to label each of the points of
any 3D object as either salient or non-salient, providing a score of
confidence for its decision. However, usually the supervised learn-
ing method is time consuming, thus its popularity is impaired.

Miao and Feng [41] proposed the drawing of perceptual sal-
iency extremum lines that are the loci of extremum points of a
function, describing the perceptual saliency along the principal
curvature directions on the underlying 3D shape. For a vertex v,
the perceptual saliency measure is expressed as the local projec-
tion heights between v and its neighbors. Thus, a center-
surrounding bilateral filter operator on Gaussian-weighted aver-
age of local projection heights between v and its neighbors is
defined as Gbðv; Ju�vJ2;σc; j 〈u�v;nðvÞ〉j ;σsÞ. This method bears
some interesting similarities with [42] in that the local projections
or motions of vertices are more adequate than the conventional
surface curvatures for assessing visual saliency regions.

Inspired by Harris and Stephens who had proposed an interest
points detector for images [44], Pratikakis et al. [43,45] extended
the Harris operator into 3D cases. Instead of exploiting the Hessian
operator immediately, a continuous Gaussian function is applied to
the integration of the derivatives. For a vertex v, its Harris
response is computed as ΓsðvÞ ¼ detðAÞ�β � ðtrðAÞÞ2, where A is the
integrated matrix produced by the 3D Harris operator, and β is a
range parameter. The 3D Harris operator is simply single scale
based, whilst it can achieve results that are comparable to more
complicated methods such as [7] (see Fig. 3). However, likewise
the work in [39], the 3D Harris operator relies on the procedure of



Fig. 3. In contrast to the global scale based method in [7] that captures regional importance (right, the warm is high and cold is low), the single scale based 3D Harris in [43]
detects saliencies in the form of points (left, the marked spheres). Yet, in their results the locations with more geometric information and larger curvature are rather similar.
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local implicit fitting that usually demands tremendous computa-
tion time and memory.

3.2. Multiple scale based (MS) methods

Lee et al. [15] presented a center-surround operator for detecting
mesh saliency in a scale-dependent manner. There are five scales
used, and the surface mean curvature is employed as source signal
of filtering. The saliency of a vertex v at a single scale level is the
absolute difference of two Gaussian filters. Hence, the final mesh
saliency of v is evaluated by adding the saliency maps at all scales.
The main disadvantage is that the Gaussian-weighted difference of
fine and coarse scales can result in the same saliency values for
two opposite and symmetric vertices because of the absolute
difference in the computation.

Assuming that saliency map over a given mesh is a real-valued
Morse function, Liu et al. [46] defined salient critical points as the
points where the Morse function's gradient vanishes, namely, the
minima, maxima, and saddles. The existing method in [15] is
employed for detecting mesh saliency, while the saliency of a
vertex v is changed to be the Gaussian-weighted average of the
mean curvature difference between v and its neighboring vertices.
The advantage of this method is that the bilateral filtering is
applied to anisotropically smoothing the Morse function, so the
number of critical points can be much lower than that yielded by
using mean curvature function directly. The major drawback in
this method's current implementation is that the number of sali-
ent critical points is dependent on the iteration number that
cannot be accurately controlled.

Given a mesh M, the method presented by Castellani et al. in
[42] remeshes M at l different levels of decimation. Hence, salient
point detection is then composed of two phases, namely intra-
octave and inter-octave phases. In the first phase, instead of
regarding surface curvatures as perceptual signals of saliency, it
modifies the method in [15] by evaluating how significant the
motion of a vertex along its surface normal is after filtering. At the
ith-scale σi, for a point v of an octave mesh Mj the intra-octave
saliency map is defined as

Γi
jðvÞ ¼ j 〈nðvÞ;Gwðv; v;2σiÞ�Gwðv; v;σiÞ〉j :

In the second phase, there are five levels of decimation used for
validating the points of each octave Mj. Only those appearing at
least in three octaves are retained. Such a “joint multi-scale”
paradigm is robust to noises and insensitive to mesh resolution
change, making it suitable for dealing with scanned point sets.

Euclidean distance metric is widely used with the DoG operator
for approximating a time-varying diffusion process, which seems
indiscreet in 3D cases. Thus, Zou et al. [9] introduced salient
keypoint detection by searching local extrema in Geodesic Scale
Space (GSS). If the geometric attribute value associated with a
point v at scale σi is larger or smaller than any other vertices in
Nðv;σiÞ⋃Nðv;σi�1Þ⋃Nðv;σiþ1Þ, v is selected as a local extremum.
GSS is helpful for mesh saliency detection in the sense that
ambiguous neighborhood produced by Euclidean measure usually
leads to ambiguous saliency. However, GSS suffers from poor
performance as it often requires a quadratic fitting performed
around the neighborhood of each vertex.

The method called MeshDoG was introduced by Zaharescu et al.
[48], where the scale space of a geometric property Γ is built
progressively: Γ0 ¼Γ, Γ1 ¼Γ0n Gwð�; �;σÞ, Γ2 ¼Γ1n Gwð�; �;σÞ, etc.
Convolved functions are subtracted: DoG1 ¼Γ1�Γ0, DoG2 ¼
Γ2�Γ1, etc., in order to obtain the difference of Gaussian operator.
Since the same Gaussian kernel is used for convolutions, there is
no need for normalization. Moreover, the corner characteristic is
applied to refining the points of interest, which is defined as λmax

=λmin where the values are the eigenvalues of the Hessian matrix
of the finally convolved function at each vertex. Later on, the
computation of this method is improved in [49], by relaxing the
constraint that the mesh vertices must correspond to a regular
sampling of the underlying continuous surface. In addition, the
gradient computation is cast into a least square minimization
problem that can be efficiently estimated using a linear solver.

SIFT [50] is a well known operator for extracting distinctive
features of 2D images. Godil and Wagan [51] extended 2D SIFT into
3D cases for identifying the local salient points of surfaces.
Nevertheless, we are not convinced of how useful the method is,
partially because it requires a pre-processing where a surface
mesh should be voxelized, given that so far voxelizing a given two-
dimensional manifold is still a challenging problem. By contrast,
Ohbuchi et al. [52] applied the SIFT operator to projected 2D
images of a 3D model viewed from uniformly sampled locations
on a view sphere. Therefore, the salient map of the model is
constructed by integrating the detected visual local features into a
histogram using the Bag-Of-Features approach. This method,
essentially, is an imaging-based visual saliency technique. Thus,
some saliencies in spatial space might be overlooked in
imaging space.

The spectral analysis tool called admissible diffusion wavelets
(ADW) was proposed [53], where admissible wavelets are for-
mulated as differences of adjacent scaling functions with zero
means, such that the expensive QR decomposition is avoided. By
the ADW, given a mesh M, a function f AC2ðSÞ, and a vertex
uAVðMÞ, the scaling coefficient Sf ðj;uÞ is a smoothed repre-
sentation of the function f at a scale j, and the wavelet coefficient
Wf ðj;uÞ records the residual detailed information of f with respect
to the scale j. Since the wavelet operator is closely related to the
discrete Laplace operator L, the ADW have similar effects with the
difference of two Gaussian convoluted scalar fields. In short, for a
given function defined at the vertices of a mesh, its wavelet
coefficients encode the saliency information of multi-scale details.
It is advantageous that a choice of the function is not fixed. Thus, a
saliency map in terms of the ADW can be computed from other
functions on the shape, such as texture and vertex coordinates.

The Curvature Scale-Space 3D (CS3) was presented in [47] (see
Fig. 4). Let f j : V-R denote the smoothed discrete surface signal
(curvatures) at level j, and define F j ¼ ðf jðv1Þ;…; f jðvnÞÞ, where



Fig. 4. The Curvature Scale-Space 3D (CS3) [47] representation holds a stack of Gaussian smoothed surface curvatures (from left to right, the scale is 3.0, 7.5, and 13.8,
respectively) that can be used directly in multi-scale feature extraction and descriptor computations. It has been verified in [15] that salient features extracted in the multi-
scale manner are meaningful to the human vision and cognition.
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n¼ jVðMÞj . The implicit surface smoothing scheme is employed
to obtain the smoothed surface signal, F jþ1, at level jþ1, by sol-
ving the following sparse system of linear equations

ðI�tjLÞF jþ1 ¼ F j;

where tj is the time step , and I and L are the matrices of identity
and discrete LBO, respectively. Thus, the multi-level and multi-
scale representation of the surface signal of M is then given by the
sequence ðF0;…; Fl�1Þ. In addition, the scale parameter tj for each
level j can be defined in terms of the variance of the transfer
function at that level. Thus, the obtained sequence of scales,
ðt0;…; tl�1Þ, together with the stack of smoothed signals,
ðF0;…; Fl�1Þ, define the CS3 representation. Finally, the differences
between the smoothed signals at consecutive levels can be used to
approximate the Laplacian of the input signal, whose local extrema
can be regarded as saliencies of models. The major advantage of
CS3 is the ability of performing automatic scale selection, which is
indispensable to most partial shape matching tasks.

Jia et al. [54] proposed a region descriptor based on its vulner-
ability to a resizing direction and used this descriptor to compute
the region's saliency based on its contrast to neighboring regions.
The algorithm runs in three steps. First, a method based on face
clustering is used to merge neighboring triangles into representative
clusters, thus the contraction of the dual edge builds a hierarchical
segmentation tree. Second, for a region r, its saliency value is based
on its contrast to the neighboring regions as

ΓðrÞ ¼ 1
n

X
ri ANðr;σÞ

g�1
i wðriÞdðr; riÞ;

where Nðr;σÞ denotes the set of regions within the Euclidean dis-
tance σ to the region r, n is the number of regions in Nðr;σÞ, wð�Þ
represents the area of a region, gi ¼ Jvr�vri J2 with vr and vri
respectively being the center point of regions r and ri, and dð�; �Þ is
the absolute difference between vulnerabilities of two regions. Third,
the final mesh saliency map is constructed by adding three saliency
maps after applying the non-linear normalization of suppression.
The method successfully overcomes the issue that existing saliency
maps cannot be used for mesh resizing because they are computed
without considering the resizing direction.

Instead of using conventional surface curvatures as [15], Miao
et al. [55] proposed to compute the relief hight of each vertex over
a given mesh, by assuming that S, approximated by the mesh, is
composed of a smooth base surface B�R3 and a height function
f : S-R. Therefore, the relief height values can be estimated by
minimizing the energy function as follows

min
X

eAEðMÞ
f ðve0 Þ� f ðve1 Þ� 〈ve0 �ve1 ;nBðeÞ〉
� �2

;

where ve0 and ve1 are terminals of e, and nBð�Þ is the base's normal.
Unfortunately, this work does not achieve satisfactory, even
somewhat noisy, experimental results. Because the relief analysis
is particularly suitable for surfaces abundant in detail, for instance,
the challenging archaeological reliefs.

More recently, a method [56] was introduced to treat a poly-
gonal mesh as a 3D point set. Likewise the one in [42], the method
detects fine-scale salient features as well. Nevertheless, it differs
that the distinctness measure is done by computing a per-region
contrast from cluster uniqueness and spatial distribution, thus
cutting computational costs. In the adaptive fuzzy clustering step,
it assigns each point to a cluster based on the point's closeness to
others in terms of both spatial distance in Euclidean space and
geometric distance in a descriptor space, then computes prob-
abilities that a point belongs to all clusters. Note that an adjacency
graph of clusters, where spatially closed regions are connected by
an edge, is constructed to speed up the clustering. For each of the
clusters obtained, the uniqueness and distribution are computed.
Finally, each point is assigned a saliency value which is a linear
combination of saliency from all clusters, weighted by the prob-
ability that the point belongs to a cluster. Without topological
information of shapes, the method achieves results that are
comparable to state-of-the-art. However, the expensive clustering
strategy limits its uses to point clouds representing a real larger
indoor or outdoor scene.

3.3. Global scale based (GS) methods

The idea behind the learning based methods in [57,58] is that
salient regions of an object are those that are consistent within a
class while distinguishing from other classes. In the training stage,
n local descriptors are randomly chosen across each shape. Thus,
given a local descriptor Γ of a mesh, its retrieval performance is
computed and normalized between 0 and 1, evaluating the quality
of its retrieval list via the Discounted Cumulative Gain. This
method is specifically designed for content-based shape matching
and retrieval. It depends on the database under consideration and
how the training pool is partitioned into object classes. In addition,
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the scale (size of the region) covered by each spherical shape
descriptor has an impact on the results.

Tao et al. [14] presented a method for detecting mesh saliency,
in which a semi-supervised mode is adopted. First, via Zernike
coefficients a descriptor is calculated for every patch determined
by oversegmenting a given mesh. Second, through computing the
local distinctness by a center-surround operator, patches with
small or high local distinctness are named as background or
foreground patches, respectively. Third, the saliency of patches is
estimated based on their relevances to some of the most unsalient
background patches via manifold ranking. The method outper-
forms many others because of its high robustness against noises,
while suffering from the involved ray-tracing conflict test for
computing Zernike coefficients (See Table 1 in [14]). Another
limitation mentioned by the authors is that it does not incorporate
any high-level priors.

Placing a mesh at the center of a closed scene, Feixas et al. [24]
proposed an information-theoretic framework, in which a new
definition of mesh saliency was given based on Polygonal Mutual
Information (PMI), representing the degree of correlation between
a polygon and the set of viewpoints. Hence, the polygonal saliency
of a polygon ti is specified as

ΓsðtiÞ ¼
1
n

Xn

j ¼ 1

dðti; tjÞZ0;

where tj is a neighbor polygon of ti, n is the number of neighbor
polygons of ti, and dð�; �Þ is the dissimilarity measure in terms of
Jensen–Shannon divergence. In short, a polygon at the center of a
smooth region will have probably low saliency since the polygons
of this region will present small visibility differences with respect
to the set of viewpoints. This method is specifically suitable for
viewpoint selection as the above definition is view-based, how-
ever the Raycasting in computing PMI degrades the performance.

An intrinsic geometric scale space (IGSS) was constructed by Zou
et al. [59] through the surface Ricci flow that conformally deforms
the Riemannian metric on a surface according to the induced
Gaussian curvature, such that the curvature evolves in a heat dif-
fusion fashion [60,61] that provides a natural multi-scale char-
acterization of the neighborhoods of a given point. In practice, the
IGSS is represented as a time-varying Gaussian function gðV; tÞ
defined on the vertex set V of a triangular mesh M, with gðvi;0Þ
being the initial discrete curvature at viAV and tA ½0;1Þ the time
or scale parameter. Once a feature point v is detected as the local
extremum in the IGSS, it is natural to define the magnitude of the
scale-normalized Laplacian ðtΔgv;tÞ at v as the measure of feature
strength, i.e., the saliency of v within its scale-dependent neigh-
borhood. Because the IGSS purely relies on intrinsic properties of
shapes, this method is generally more robust to noises and
insensitive to resolution changes than the ones based on the mean
curvature flow.

Sun et al. [62] presented a point signature called Heat Kernel
Signature (HKS) by considering heat kernel's restriction to its
temporal domain. Given a mesh M the heat kernel, containing a
large amount of redundant information of the mesh, is defined as a
function gtðv;uÞ : Rþ �M�M-R. Thus, the single point sig-
nature fgtðv; �Þt40g is used for defining HKS over the temporal
domain as

HKSðvÞ : Rþ-R; HKSðv; tÞ ¼ gtðv; vÞ:
The computation of HKS involves the application of the LBO, since
the response of the LBO is a positive semi-definite matrix whose
size is the number of vertices in the model. This matrix is then
decomposed into its eigenvalues and eigenvectors, denoted as λi
and wi, respectively. Therefore, we have gtðv; vÞ ¼

Pn
i ¼ 0

ðe�λi t〈wiðvÞ;wiðvÞ〉Þ, where n is the number of eigenvectors. Via
configuring t and n with specific values, those salient points of a
3D model, especially tips of extremities and protrusions, are
assumed to correspond to the local maxima of HKS. In contrast to
CS3 [47], HKS is mainly degraded by its less control to performing
automatic scale selection.

Hu et al. [64] and Ruggeri et al. [65] showed that the task of
extracting salient geometric feature points can be effectively
resolved in the frequency space of the LBO, where low frequencies
of the Laplace–Beltrami spectrum are related to information about
the global structure and features of the input surface, while high
frequencies reflect fine changes in its shape. In short, the authors
turned to find the critical points of the eigenfunctions that are
defined over an input mesh M as the solutions of the following
eigenvalue problem

f : M-R; s:t:;Δf ¼ λf ; λAR:

This method is theoretically plausible [66], and it generates salient
points that are intrinsically defined by the input shape and invariant
to isometric deformations. Also, the technical core of this method
motivated the rewarding work carried out by Song et al. [67,7].

The method called Heat Walk was introduced by Benjamin et al.
[68] based on heat flow process. Owing to the fact that the heat kernel
controls the geometry-dependent propagation of heat across the
shape, the salient regions of 3D surfaces, called accumulators, can be
considered as places where the heat is dissipated very slow compared
to the rate at which they receive it. By contrast, the unsalient regions,
called dissipators, tend to dissipate heat faster than they receive it. This
approach is helpful in capturing regional saliencies, and the experi-
mental results showed that it has many nice properties, for example,
the resistance to random noise, topological noise, and short circuits.
However, evaluating the importance between the extracted accumu-
lator regions was not given.

Diffusion process was also used by Leifman et al. [69], who
introduced an algorithm according to observations that people are
drawn to differences, extremities, and grouping close items. In terms
of the first consideration, a 2D histogram of spin images [70] is
built for each vertex first, and then a Gaussian pyramid is used to
discretize the continuous diffusion process to measure the dis-
similarity between histograms. Finally, a single scale based com-
putation is employed to evaluate the distinctness of vertices, fol-
lowed by a multiple scale computation to decrease the importance
of 3D textures. In the second consideration, intuitively, an extreme
vertex is a vertex that resides on the “tips” of the object. In the last
step, 20% of vertices with the highest distinctness values are
chosen as focus points, of which the maxima of the distinctness
and the extremity are taken into account the patch association.
The assumption that objects are limb-like is a limitation of this
approach. Hereafter, when it drives best-view selection, the eva-
luator prefers a “side” view rather than a “natural” view.

A hybrid approach which combines the saliency detection and
enhancement was presented by Zhao et al. in [71,72]. The algo-
rithm contains three steps. Firstly, a model is voxelized by the
bounding box which can be divided into several sub boxes. The
scale of the voxelization is specified by the user, thus a surface
patch is the one that is located within a voxel. Secondly, a dis-
similarity measure between a pair of patches from two randomly
chosen sub-voxels is defined by estimating the shape index image
of the model as 2

π arctan
k2 þk1
k2 �k1

, where k1 and k2 are the principal
curvatures. Lastly, an overall dissimilarity map is iteratively
updated, according to that if a patch is significantly different from
patch P, then all other patches similar to the patch will be highly
likely different from P as well. The advantage of this method is
that by enhancing mesh saliency it becomes easier to locate the
meaningful region completely, while it suffers from the voxeliza-
tion and intensive computation if all patches are compared.



Fig. 5. An example of global rarity motivating the notion of topological saliency in
[63]: though peak F remains a lone peak for a significantly larger part of the domain
than the other peaks (A–E, G), it is not considered to be perceptually important by
existing means, and such scenarios are common when studying medical data
obtained using diffuse optimal tomography. To tackle the challenge, topological
saliency considers the presence or absence of other topological features within the
neighborhood of critical points while measuring their importance.
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Global rarity is persuasive for visual attentions, as psychophy-
sical studies [73] have shown that the eye gaze is more interested
in less frequent features while suppressing repeated features of 3D
surfaces. Unfortunately, it was overlooked by previous perception-
independent methods. An intuitive example is shown in Fig. 5,
which motivated the work in [63]. For a critical point pi on M, the
metric of topological saliency is defined as follows

Γσ ðpiÞ ¼
wi

iPðpiÞP
pj ANðpi ;σÞw

i
jPðpjÞ

; ð1Þ

where σ governs neighborhood size, Pð�Þ denotes the topological
persistence, wj

i is a weighting function encoding geometric infor-
mation for feature point pj with respect to pi. Once topological
saliency plot is done as σ increases from 0 to the diameter of input
domain M, the order of saliency of features can be decided. This
work firstly combined geometric and topological information for
mesh saliency detection.

The rarity determined by topological saliency above is sensitive
to topology of shapes, instead Wu et al. [74] suggested to measure
it using geometric information of Zernike moments. Similar to the
model of Cheng et al. [13], the rarity of a vertex can be evaluated
by its contrast to all other vertices. As for a vertex, the more similar
vertices and the closer to other vertices in the feature space, the
weaker its global saliency becomes. Therefore, for a given vertex v,
the global rarity is defined as

P
uAVðMÞdðu; vÞ, where dð�; �Þ is the

dissimilarity of Zernike coefficients between two vertices. Com-
puting Zernike moments by Raycasting results in the major
shortcoming of this method.

Temporal variations of the geometry were not well integrated
into mesh saliency detection until themotion-saliency model
introduced in [75], which, along with surface curvature, visibility,
and rarity, are important ingredients of the HVS. The model con-
tains two sub-processes. In the first process, the differential
velocities of vertices and their connectivity information are used
to group vertices of similar motions into the same cluster. Thus,
the generated clusters should contain vertices that have very close
motions throughout the animation. In the second process, for each
cluster a representative vertex, called a cluster head, is chosen.
Hence, the motion state of a cluster head is extracted via its
velocity relative to the whole object. After that, the motions of the
cluster heads are analyzed throughout the animation to calculate
the saliency of their clusters. Though this work firstly studied
temporal variations in mesh saliency, we were aware that its use is
limited because saliencies captured are almost the parts where
motion changes happen in scenes.
Rewardingly, in [67] it was demonstrated that the irregularity
of the spectrum of a 3D mesh is highly related to the saliency of
the mesh. The frequencies of a triangular mesh M are specified as
the eigenvalues of the Laplacian matrix, with which the Laplacian
spectrum is H¼ fλi;1r ir jVðMÞj ;0rλig, where λi are the
eigenvalues, and i is called frequency index. First, the spectral
irregularity is computed. After that, inspired by HKS [62] a
curvature-weighted shape descriptor called irregularity kernel
signature (IKS) is proposed to deliver and reorganize the saliency
information into the spatial domain. The descriptor represents a
saliency map of the mesh, with which the globally salient points
and the stable locally salient points are detected.

Instead of using the spectrum of LBO directly, the log-Laplacian
spectrum is used in [7]. That is, A¼ log ðjHj Þ, where log denotes
the natural logarithm acting as a spectral re-distributor. In order to
compute spectral deviations from the norm, an approach with no-
learning is adopted. Therefore, spectral deviation can now be
computed as the spectral irregularity R¼ jA� JnnAj , where Jn ¼ 1

n
½1 1 ⋯ 1� (n¼9, for example). To bring the spectral representation
back to the spatial domain, a composition S¼WDWT � B is per-
formed, where D¼DiagfexpðRÞg, W is the eigenvector matrix, and
B is the distance-weighted adjacency matrix. Therefore, the sal-
iency map ΓsðviÞ for vertex vi is derived by summing S along the
ith row. This method is theoretically sound in terms of Fourier
transformation and achieves good results, unfortunately it suffers
from inability for perceiving high-level saliency (see Fig. 6).
4. Global contrast based (GC) methods

In contrast to local contrast based methods, global contrast
based methods aim at detecting the most representative salient
components of a 3D mesh, which often appear large-scale and
robust.

CRF-based mesh saliency detection was presented in [77],
which consists of two steps. In the first step, a multi-scale repre-
sentation of a given mesh is constructed by proposing a rank-
based Gaussian filtering. The filtering not only utilizes geodesic to
reduce neighborhood ambiguities produced by Euclidean measure
but also replaces Gaussian-weighted position with surface curva-
ture for higher robustness against scanning noise. Therefore, at
each scale, a 3D vector representing the displacement of point p
from its original position on a mesh after the filtering is obtained,
which is projected onto nðpÞ to reduce a scalar quantity. In the
second step, unlike [15] simply sums over the multi-scale infor-
mation, the Conditional Random Field (CRF) framework is incor-
porated, i.e., a label assignment s¼ fsp; 8pAMg is defined, where
the label set comprises the scale indices. Solving this CRF in
accordance with the maximum a posteriori probability criterion via
belief propagation (BP) assigns a label to each point on the mesh.
Therefore, points assigned the same principal scale comprise the
non-salient regions, while the left points comprise the salient
regions. Since all points are identified as either salient or non-
salient, therefore compared to most existing mesh saliency
detection methods the CRF-based approach is more effective in
capturing stable saliencies, while a limitation is that the accuracy
of final results is somewhat sacrificed.

Sipiran and Bustos [32] introduced the term key-component as a
region on a 3D mesh where there are a lot of discriminative local
features. This method consists of three steps. First, the effective
and efficient 3D Harris operator [43,45] is employed for detecting
keypoints. Second, let S¼ fs1; s2;…; sng be the set of keypoints
previously detected, partitions Si � S are found by fulfilling four
constraints in order to group them according to their closeness.
The partitioning is done by solving a Multidimensional Scaling
problem that a set P �R2, in which Euclidean distances between



Fig. 6. An illustration of mesh saliency detection method based on spectral processing in [7]. The method is capable of dealing with meshes containing a large number of
vertices, e.g., Lucy model is of 14M vertices. However, it fails to detect the breasts as salient in Woman model (ground truth of the rightmost model is labeled and colored in
red). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 7. A comparison between local salient elements (top row) and global salient structures (bottom row) [29].
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elements in P approximately preserve the geodesic distances
between elements in S, is computed. Finally, each cluster will
generate a component comprising the region of the mesh where
the keypoints are located. The advantage of the method is that the
number of key-components should be much less than the number
of conventional salient seeds, so using the results in subsequent
tasks would be more efficient. While a large portion of the final
results are repeatable components, which does not comply with
the principal of rarity of the HVS.

Very recently, the low-rank and sparse analysis was utilized by
Wang et al. [29] for detecting mesh saliency, based on a strong
belief [7] that effectively and accurately recognizing the global
importance of different frequency information will help quantify
the saliency of 3D models. To do so, a powerful structure-aware
descriptor was introduced, with which the original model M and a
constructed low frequency model Ml are used to represent the
high level and low level information, respectively, forming a multi-
level expression of a 3D model. At each level, a multi-scale shape
context, describing the shape characteristics, is constructed by
considering the contours on a vertex-wise bi-harmonic distance
field. Given a vertex vi, its multi-scale shape context is defined as
f i ¼ ½m; p1; pd1;…; pk;pdk�, where m is the local metric (e.g., cur-
vature), pi is the normalized perimeter of the ith contour, and pdi is
the corresponding probability distribution histogram of the dis-
tances fdig. Thus, the vertex-wise shape descriptor is expressed as
Fi ¼ ½f hi ; f li� in the shape contexts of M and Ml. The descriptor of
each vertex is assembled to span a feature space, which can be
reorganized in the form of matrix F¼ ½Fi;…; Fn�. Therefore, we
further divide the feature space F into two subspaces of Fl and Fg ,
where Fl is the local feature subspace and Fg is the global structure
subspace. It is proven that the first subspace is low-rank and the
second is sparse, which, in turn, characterize local feature sal-
iencies and global structure saliencies, respectively (see Fig. 7).
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5. Mesh saliency detection applications

Table 2 summarizes state-of-the-art work of mesh saliency
detection that have been elaborated in the previous two sections,
also applications where the work itself has tested are enumerated.
Though the range of the applications is wide, there does not exist
one method that is superior to other measures in all aspects, as
some target a specific application. Besides the applications listed
by the table, others include mesh denoising [78], mesh remeshing
[79], icon generation [58], abstract caricature [80], facial expres-
sion analysis [81], data visualization [82,83], and 3D printing [84].
In this section, a few typical works are briefed, meanwhile we refer
the readers to the references in the table.
5.1. Mesh simplification

In general, small high-curvature details in the middle of largely
flat regions are likely to be decimated by most mesh simplification
methods, while it is desirable that these small surfaces can be
perceived as they are more visually prominent. For instance, in a
bust model mesh, the back will be simplified more than the front,
since there are a lot of salient regions in the face such as the eyes,
the nose and the mouth.

In order to meet the requirement, Castelló et al. [76] included
viewpoint saliency in the viewpoint-driven simplification scheme
by using a criterion to weight the importance of a viewpoint. By
quantifying the variation in the shape viewed from c, the scheme
defines a new simplification error deviation for an edge collapse asP

cACΓsðcÞj f ðc;MÞ� f ðc;M0 Þj , where C is the global camera space,
Γsð�Þ is the viewpoint saliency, and f ðc; �Þ is calculated from the
projected areas of each polygon. The effectiveness of the scheme is
demonstrated in Fig. 8.

5.2. Mesh segmentation

Mesh segmentation is a classical problem in computer graphics
for cutting up a complex object into simpler sub-objects. It can be
interpreted either in a purely geometric sense or in a more
semantics-oriented manner. The first case complies with some
properties of meshes (e.g., curvature or distance to a fitting plane),
Fig. 8. An illustration of saliency-driven mesh simplification with Buddha model ðjTðM
respectively. The middle top and middle bottom are close-ups of decimation result ðjTðM
the improvements achieved make the most salient regions such as the mouth, eyes, we
while the second case aims at identifying parts that correspond to
high-level features.

The mesh decomposition method (called K-means) [85] was
applied to the metamorphosis of polyhedral surfaces, which con-
tains four steps: preprocessing, electing the initial representatives
of the patches, determining the decomposition, and reelecting the
representatives. In the fourth step, the goal is to minimize the
following energy function

min
X
p

X
tAPðpÞ

Distðp; tÞ;

where Distðp; tÞ is the shortest distance from a patch representa-
tive p to a triangular face t belonging to the path P represents. To
improve decompositions where the human intuition is pertinently
matched, Wang et al. [29] revised the above equation by adding a
new term in which the saliency similarity between p and t is
considered. From Fig. 9, it is seen that the boundaries of different
segmented parts are closely related to the structures, thus the final
segmentation results are improved effectively.

5.3. Mesh resizing

The resizing of 3D meshes is a popular and useful operation
that is often regarded as a special kind of shape deformation. By
resizing we mean scaling or stretching the object along several
orthogonal directions or dimensions to fit a new prescribed size
[86]. One of the key issues in mesh resizing is that some visually
salient features of the underlying model should be preserved as
much as possible.

Jia et al. [54] suggested resizing should be distributed non-
homogeneously throughout the mesh, protecting salient regions,
while stretching others excessively. To do so, the following energy
function is to be minimized

min
X

eAEðMÞ

ðv0
e0 �v0

e1 Þ�wðeÞðve0 �ve1 Þ
ðve0 �ve1 Þþα

�����

�����
2

þg

2
4

3
5:

In the first term, edges of a mesh are stretched by updating
positions of vertices and keeping the connectivity unchanged. In
order to preserve those edges whose saliency is high, the
weighting is a linear combination of uniform and target scale
β, that is wðeÞ ¼ΓsðeÞþð1�ΓsðeÞÞβ. The second term, i.e.,
Þj ¼ 60;866Þ [76]. The left and right show the original model and saliency map,
Þj ¼ 8;999Þ with and without considering mesh saliency, respectively. It is seen that
aring, and hair are preserved better.



Fig. 9. An illustration of saliency-driven mesh segmentation with Armadillo and Dinosaur models. [76]. (a) and (c) are saliency driven K-means mesh decompositions [29].
(b) and (d) are K-means mesh segmentations [85].

Fig. 10. An illustration of saliency-guided mesh resizing with Lion model. Left: the original model; middle: the saliency guided mesh resizing result [54]; right: the non-
homogeneous mesh resizing result [86].
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g¼P
vAVðMÞðLv0 �gðvÞÞ2, is added to avoid a situation where the

face area may change dramatically during the optimization. Via
the comparison in Fig. 10, it is seen that saliency-guided mesh
resizing achieves more visually appealing results.

5.4. Normal enhancement

The normal enhancement operation is a technique in guiding
the shading scheme for 3D shape depiction. To do so, a novel
approach was presented by Miao et al. [87], where, by dynamically
perturbing the surface normals, the illumination and shading are
adjusted to push the influence of visual attention into the graphics
rendering pipeline.

This approach depends on the classical Phong local lighting model
in which the lighting of vertex v is determined by ambient lighting,
diffuse lighting, and specular lighting. Additionally, it employs the
orthogonal coordinate system whose coordinate axes e1, e2, e3 are
considered as the halfway unit normal h, ðh� lÞ=ðJh� lJ Þ, and
e1 � e2, respectively, where l is the unit light direction. Thus, given a
vertex v on a mesh M the perturbation of the normal vector can be
represented in the above coordinate system as

∇nðvÞ ¼ δ1e1þδ2e2þδ3e3:
First, with the constraint that ∇nðvÞ � hðvÞ ¼ 0, it holds δ1 ¼ 0. Sec-
ond, to solve the equation above, a saliency map Γs of M is com-
puted, normalized, and linearly scaled onto the bound limitation of
δi¼∇i=is, where i is the lighting map estimated by Phong model,
and is is the point light source intensity. Finally, the obtained
saliency-guided luminance variance δi is applied to calculating δ3
that in turn assists in computing δ2. From Fig. 11, it is seen that the
salient surface features are effectively enhanced by altering the shade
of these regions. For instance, the brim of Bunny's ear and the muscle
of Bunny's leg are also improved clearly and attract viewers’
attention.

5.5. Volume rendering

Volume rendering is a technique to compute a 2D projection of
a three-dimensional data set that allows for a layered repre-
sentation of three dimensional intricate structures, where a com-
mon problem is to find a suitable transfer function that provides a
good characterization of those different, even partly overlapping
structures in a 3D volume [82].

In order to draw visual attention to user-specified regions in a
direct volume rendering environment, Kim and Varshney [83]



Fig. 11. An illustration of saliency-guided normal enhancement technique for 3D shape depiction [87]. Left: the original Stanford Bunny; middle: saliency map; right: the
expressive rendering result.

Fig. 12. An illustration of saliency-guided volume rendering direct volume rendering (DVR) technique [83]. (b) and (d) show the traditional volume visualization. (a) and
(c) show the results of applying the saliency-guided enhancement operator to specific regions indicated by the arrows.

Fig. 13. An illustration of 3D printing with (the left Duck) and without (the right Duck) saliency guidance [88].
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presented a new visualization enhancement operator that is
inspired by the center-surround mechanism of visual saliency. The
starting point for this approach is the generation of a saliency field
Γs that defines a value of saliency for every voxel. This assignment
could be based upon user specification (manual painting), eye-
tracking data, or feature computation. Then, the known saliency
map assists in computing a virtual emphasis field B, i.e.,
B¼ A�1Γs. The matrix A is with respect to aij ¼ αGwððvi�vjÞ;σÞ�
βGwðvi�vj;2σÞ, where α¼ 3=4, β¼ 1=4, Gð�; �Þ is the Gaussian
kernel, σ is the scale, and vi and vj are voxels in a neighborhood.
Once we have computed the emphasis field it is used to modulate
the various visualization parameters. Fig. 12 displays the results
where the saliency-guide emphasis field is exploited to modulate
its brightness of every voxels. It can facilitate the users' under-
standing by guiding their attention to regions and objects selected
by a domain expert. The work showed that the saliency
enhancement operator is more effective at eliciting viewer atten-
tion than the traditional Gaussian enhancement operator.
5.6. 3D printing

To address an intrinsic limitation of 3D printing that a single
object cannot be fabricated if it is larger than the working volume
of a 3D printer, Song et al. [84] proposed to connect the printed 3D
parts by 3D interlocking, instead of using connectors, glue, or
skew. When building the saliency connection graph for boundary
voxels to later avoid putting cutting seams (between interlocking
3D parts) on salient object features, they first applied the method
in [15] to compute the saliency value at every mesh vertex and
then estimated the saliency value of each boundary voxel by
averaging the saliency values of all mesh vertices it contains.
Therefore, a strong saliency connection was built only when the
two related voxels had large saliency values (see Fig. 13).

Another saliency-guided 3D printing work was carried out by
Wang et al. [88], who presented an adaptive slicing method for
reducing the manufacturing time of 3D printers while preserving
the visual quality of printing results, with which the printing time
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is saved by 30–40%. They applied the method in [7] to compute the
saliency of an original input model first, and then the visual quality
of an ith layer li is measured by a metric as follows

ΓsðliÞ ¼ΓsðvA liÞ � hi � cos θi;

where Γs is the saliency map, hi is the thickness, and θi ¼minvALi
θðvÞ in which θðvÞ is the angle between the norm of a surface
point v and the Z-direction.

5.7. Scan integration

Automatic 3D model reconstruction from multiple registered
range images plays a key role in robot vision, reverse engineering,
and 3D printing. Mainly, it contains four steps: registration, seg-
mentation, integration, and triangulation. The third step of scan
integration refers to how to integrate the registered range images
captured from different viewpoints into a surface representation
of the same object. In general, it is a rather challenging task,
because the registration errors can be accumulated from one view
to another, leading the overlapping areas, segmented in the second
step, to deviate away from each other.

Recently, Song et al. [7] showed how mesh saliency is able to
significantly improve scan integration (see Fig. 14). The core idea is
that given two registered 3D scans, M1 and M2, they are initi-
alized and partitioned into salient and nonsalient regions with
respect to the pre-computed saliency maps of the scans. In this
way, it redistributes registration errors within each scan in such a
way as to ensure that the salient regions suffer less from regis-
tration errors. The integration scheme for nonsalient regions is
similar to the one presented in [89]. Nonetheless, for the salient
regions where scan integration does not rely on point normals, a
different scheme is put in place by employing the iterative closest
point (ICP) algorithm to reposition points in salient regions. With
applying two different schemes to the saliency-driven segments,
the integrated point cloud Sintegrated ¼ Snon� salient [ Ssalient is
achieved. If there are further scans, it next combines Sintegrated
integrated with the next input scan M3. After all input scan ima-
ges have been integrated through this procedure, a single inte-
grated point set is obtained, and the scan integration procedure
is done.
6. Evaluation of mesh saliency detection methods

Table 1 summarizes feasible methods for evaluating mesh sal-
iency, to which some comments are given. In general, among them
the application-guided assessment is superior, and the reasons are
four-fold. First, unlike the means of qualitative evaluation, it does
not require (pseudo-)ground truth. Second, it does compare var-
ious methods directly and quantitatively, preventing an assess-
ment from subjective judgement. Third, it is self-adapted, as dif-
ferent applications have different scales and metrics usually. Lastly,
it is consistent with the acknowledgement that the true
Fig. 14. An illustration of how the task of scan integration is significantly improved by
respectively one the input scans and the computed saliency map. The third to the sev
preserved by considering the factor of mesh saliency.
effectiveness of a saliency detection method depends on the
applications [13].

6.1. Qualitative evaluation

Unfortunately, there is no real-ground truth for qualitative
evaluation in the context of mesh saliency. The reason is that a
saliency map is not as objective as surface analysis metrics such as
area and curvature (see more discussions in Section 7.1). As a
result, the majority of mesh saliency approaches, such as [58,69],
opted to compare their results with the previous. Such an option,
however, is problematic when the results to be compared are not
accessible, as the instances the prior work give are always limited.
Even if the references are available, it is not a straightforward task
of comparing saliencies by the readers themselves, as different
people might have different ideas of what it means to be impor-
tant (e.g., functional, structural, social, and visual) [90]. Carrying
out user studies can attenuate the issues aforementioned [74],
however it is difficult to prevent an assessment from subjective
judgement; also, the data output is less reusable.

A better way to go is taking advantage of pseudo-ground truth,
which essentially consists of eye-fixation data obtained by physical
eye-tracking or laborious annotations. For instance, an open ben-
chmark http://www.itl.nist.gov/iad/vug/sharp/benchmark/3DInter
estPoint of human-generate ground truth was presented via a
web-based subjective experiment [8]. There, the user is shown the
3D models, one at a time. Given the UI, each person is free to
rotate an object in 3D and then asked to mark the “interest
points”, which are supposed to correspond to the points that
appear at every object in the same category. Considering that the
human judgment is subjective by nature, eventually, some con-
sensuses among the users are reached in order to merge all the
marked points into a final set of pseudo-ground truth. Another
open benchmark http://points.cs.princeton.edu, based on Schel-
ling's focal points, was introduced by Chen et al. [90], who, rather
than asking people “click on important points” [34,35,25,8],
requested participants “select points they think will be selected by
others”.

Now, both benchmarks are reusable for qualitative evaluation
(see Fig. 15) and quantitative evaluation (see Section 6.2). Never-
theless, one drawback is that the scheme of the datasets is
designed for evaluating local contrast based mesh saliency. Hence,
in the future it will be rewarding to provide other pseudo-ground
truth for assessing global contrast based mesh saliency.

6.2. Quantitative evaluation

The aforesaid means of qualitative evaluation are sort of
empirical evaluation. Meanwhile, there are criteria, which treat
the saliency detection task as a binary decision problem, for
evaluating new algorithms of saliency quantitatively. The term of
decision is referred to as the gold standard or ground truth judg-
ment of relevance. In practice, with pseudo-ground truth such as
Schelling points [90] a value normalized needs to be chosen as a
the saliency-guided method in [7] (the right most). The first and the second are
enth are results of the state-of-the-art. It is seen that more geometric details are

http://www.itl.nist.gov/iad/vug/sharp/benchmark/3DInterestPoint
http://www.itl.nist.gov/iad/vug/sharp/benchmark/3DInterestPoint
http://points.cs.princeton.edu


Table 1
A table of feasible mesh saliency evaluation methods, where the second column tells the type of an evaluation method that is either qualitative or quantitative; the third
column shows if pseudo-ground truth (p-GT) is required by the method; and the fourth column suggests how costly the method is in general.

Evaluation method Type p-GT Cost Comments

Saliency vs. saliency qlty No Low It is impractical when the references to be compared are not accessible
User study qlty No High It is effective, while the generated data is less reusable
Saliency vs. GT qlty Yes Low The comparisons are convincing; however, to date ground truth for evaluating global contrast based mesh

saliency is not available
PR, ROC, AUC, CC, and F-measures qnty Yes Low These measures have not yet been applied to known mesh saliency methods, although they are highly cited

in the study of visual saliency
FNE, FPE, and WME qnty Yes Low These measures are easy to compute and commonly used
Application-driven assessment qnty No Medium It outperforms the others, as the true effectiveness of a saliency detection method depends on the

applications

Fig. 15. An illustration of qualitative evaluation of salient regions determined by pseudo-ground truth [90], spectral mesh saliency [7], ranking unsalient patches [14], and
DOG of surface curvature [15], from left to right. With the reference of Schelling points, it is convincing that the method in [7] achieves poorer results than the one in [14] and
the one in [15] with the jar model in red box, while it outperforms the other two with the human model in green box. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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threshold in advance, such that the relevant space is separated
from the irrelevant. Thus, the charts of indicators such as preci-
sion–recall (PR), receiver operator characteristic (ROC), area under
ROC (a.k.a., AUC), correlation coefficients (CC), and F-measures can
be drawn to evaluate the effectiveness, i.e., the accuracy of deci-
sions made by different methods. But, in the survey we are aware
that these metrics are never used by the known mesh saliency
methods, even though they are highly cited in visual saliency
study [13,91,92].

The measures of false negative error (FNE), false positive error
(FPE), and weighted miss error (WME) are prevalent, by contrast.
They were firstly defined in [8] and later used in [56,93]. Let G be
the set of ground truth points, and A be the set of points detected
by an algorithm against a model M. A point pAG is considered to
be “correctly detected”, if there exists a detected point qAA such
that q is close to p but not closer to any other points in G.
Therefore, it can be formulated that FNE¼ 1�NC=jGj and
FPE¼ ð1�NC=jAj , where NC is the number of correctly detected
points, and j � j returns the size of a set. In order to take the
prominence of p into account, WME assumes that p is marked by n
subjects within a parameterized geodesic neighborhood. There-
fore, WME¼ 1� Pj Gj

i ¼ 1 niδi=
Pj Gj

i ¼ 1 ni, where if p is correctly
detected by the algorithm δi returns 1; otherwise, it returns 0.

In mesh saliency it is more popular that the quantitative eva-
luation is conducted through the application-guided assessment
using saliency as a weight map (see Section 5). Taking the appli-
cation of mesh simplification discussed in Section 5.1 as an
example, a better mesh saliency detection method is the one that
induces less error between the original mesh and the simplified.
To do so, the measure of the root mean square error (RMSE) is
widely adopted. It is either image-based [94], which renders both
models from vertices of a surrounding dodecahedron using flat
shading then calculates the squared sum of pixel-wise intensity
difference between output “images”, or geometry-based, which
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refers to the well-known Metro method [95]. The measure called
MESH error [96] is common as well, which improves the Metro
method by using the Hausdorff distance. Although neither RMSE
nor MESH measures how well salient areas are preserved, they are
useful tools when comparing the results of two different ways of
simplifying meshes based on saliency [7].

Taking the application of scan integration discussed in Section 5.7
as another example, the integration error introduced in [89] measures
the average squared Euclidean distance between the integrated points
and their closest points in the input range scans.
7. Discussion: Current trends and outlook

A current trend in mesh saliency detection reflects that global
geometric (or topological) data [69,74,67,7,14] of graphics are
more effective than local cues or their combinations [15,39,42] in
achieving perceptually meaningful saliencies. Another trend is
that, besides conventional surface curvatures, recently new
thoughts about the HVS have been explored and incorporated into
mesh saliency detection. The motion of vertices [41], global rarity
[74], visibility [69], and temporal variations of geometry [75] are a
few examples.

Next, we present four key insights into mesh saliency detec-
tion, which are expected to be helpful for researchers in the future
study.

(i) First, of course mesh saliency is an intrinsic attribute of objects
and can benefit various applications, while there are many
open problems: is mesh saliency pose-aware? how to evaluate
the saliency of a region being self-occluded? do shape contexts
change mesh saliency? which properties of mesh saliency in the
first-stage are preserved in the second-stage, and which are not?
Answering them is rather challenging. Not only is mesh sal-
iency selectively subjective in fact but also there are no hints
and comments given by prior work about them. A test case,
illustrated in Fig. 16, is carried out by computing a saliency
map of the same model but in different poses. In order to
evaluate the map, the values are scaled into a range of ½0;1�
first, and then a histogram is constructed for the model with
100 uniform bins spanning the range scaled. Consequently, the
task of comparing 3D shapes can be converted to computing
distances between their corresponding histograms under the
ℓ1 norm. The experiment results indicate that mesh saliency
should be pose variant, also it is certain that this simple test is
far away a satisfactory reply to those problems.

(ii) Second, as stated by Sipiran and Bustos in [32], the detection
of robust components will be the next step in the search of
reliable local structures of 3D models. Compared to small-scale
salient elements, large-scale salient components are more
Fig. 16. The left and the middle are the same model but in different poses. The right diag
the ℓ1 norm, indicating that mesh saliency is pose variant.
structure-preserved thus better adaptable to the fidelity of
HVS. Moreover, it is reminiscent of the last open problem
aforementioned.

iii) Third, since multimedia data plays a key role in human-
centered visual computing field, there will be more attentions
being paid to the study of saliency. Visual saliency, which
mainly targets 2D images, is a topic that is closely related to
mesh saliency. Even if 3D data requires its own processing and
analysis methods, basic knowledge about the similarities and
differences between other topics and the topic itself would be
helpful for making progresses in the future. For instance,
visual saliency is recently exploited to guide scene classifica-
tion in image processing [97], while such an idea has never
been attempted in 3D cases.

(iv) Fourth, along with the emergence of low cost 3D acquisition
devices such as Microsoft Kinect, the amount of range image
data is growing quickly. Such a current trend has reflected the
flourishment of research towards the development of 3D
object recognition systems [11], in which the concern of self-
occlusion in mesh saliency turns out to be an inter-occlusion
problem in scene saliency. Also, treating mesh saliency maps as
surface features (or shape descriptors) offers a new insight
into object recognition potentially.

7.1. Salient points vs. interest points vs. critical points

In mesh saliency detection, it is important to be clear about a
concern – “are salient points equivalent to interest points and critical
points? if no, what is their correlation?”. Indeed, the three types are
highly relevant to the features of 3D models, as all take account of
the fact that the human vision's tendency is drawn to differences.
Thereby, owing to their efficiency of visual persuasion in classical
geometric analysis and processing, these topics have now been
well studied and widely used in computer graphics.

However, as interpreted by Fig. 17, a better answer to the
concern is “not exactly!”. The interest points, being referred to
keypoints [9] as well, are locations that are distinctive in their
locality, stable, and present at all instances of an object or of its
category of objects [8,98]. In general, they are detected by defining
functions summarizing the shape content of localities on a 3D
model in multiple scales, such that the local extrema of those
functions are selected as interest points. Notice that almost (or all)
intrinsic geometric and topological information of shapes can be
helpful for interest point detection, while only the part that is
dependent on the HVS are suitable for mesh saliency detection.
The reason is that, besides the deviations due to geometry and
topology, the eye gaze of the HVS is more prone to visual
uniqueness, unpredictability, rarity, or surprise. To summarize,
salient points are required to be perception-dependent, while
interest points are not.
ram shows that the distance between histograms of saliency map [15] is 1.194 under
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The critical points, nevertheless, are related to the topology of
manifolds and well defined by Morse theory [99]: given a smooth,
real-valued function f : M-R defined on M, the critical points of
f are exactly those where the gradient vanishes. In general, a cri-
tical point can be further classified as the ridge, the valley, or the
umbilical. Ridge points and valley points, whose extremality
coefficients degenerate, identify places where a surface bends
sharply, thus they are perceptually salient [100]. In [63], critical
points were used for complementing mesh saliency detection.
However, compared to geometry of 3D shapes, the uses of topol-
ogy in mesh saliency detection are still relatively less.

7.2. Visual saliency vs. mesh saliency

There has been a substantial body of literature on visual sal-
iency (see [101] for a review). Unlike images and videos where
color and temporal coherence are the most important attributes,
meshes esteem geometry and topology of shapes as the most
important contributors. Thus, the nature of the problem is differ-
ent, so are the solutions to saliency. Since mesh saliency was
derived from visual saliency detection [15], essentially both tasks
share a great common interest in defining saliency maps repre-
senting the level of saliency for visual attentions.

Taking the global contrast based saliency detection as an
example, Shen and Wu [92] suggested that salient object detection
is not a pure low-level, bottom-up process, but higher-level
knowledge is nontrivial even for task-independent image sal-
iency. So an image is represented as a low-rank matrix plus sparse
noises in a certain feature space, where the non-salient regions (or
background) can be explained by the low-rank matrix, and the
salient regions are indicated by the sparse noises. In the feature
Fig. 17. An illustration of the correlation between interest points and salient points.
In the left image, the red dots stand for points indicated as human-generated
ground truth by collecting eye fixation data, and the yellow dots stand for points
marked by the interest point detection algorithm presented in [8]. Suppose that the
ground truth amounts to salient points, as diagrammed in the right image, the two
types of interest points and salient points do have overlaps but are not equal to
each other. The lines in blue, red, and yellow represent regions that are true
positive, false negative, and false positive, respectively. This illustration verifies the
correlation that interest points� salient points. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this
paper.)

Fig. 18. An illustration of the case where visual saliency is applied to mesh remeshing
visual saliencies; right: the saliency-guided remeshed vase model. The original vase ha
space, each vector consists of 53 features that are stacked verti-
cally with conventional local low-level information of RGB color
with global high-level guidance of steerable pyramids and Gabor
filters. After clustering, by staking all fi, i.e., the representative
feature vector of the ith segment, into a matrix, which is further
decomposed into two parts, the low-rank matrix and the sparse
matrix. Apparently, this visual saliency detection work, along with
other work [102] based on low-rank and sparse analysis, strongly
inspired the recent work of Wang et al. [29] for mesh saliency
detection.

Except that, there exist works in which visual saliency can
accommodate geometric processing directly. For example, as
demonstrated in Fig. 18, given a parameterized mesh and a texture
map the visual perceptual attributes of the texture are first com-
puted using a visual discrimination metric, then the pre-
computation of visual saliencies is then used to guide the dis-
tribution of samples to the surface mesh. During mesh remeshing,
few samples are distributed to texture areas with strong visual
masking properties and more samples to texture areas with
weaker visual masking properties.

Meanwhile, we note that applying mesh saliency to image
processing is a problem that has not yet been attempted, whereas
investigating the problem can potentially benefit many tasks, such
as texture synthesis. In [103], the algorithm called feature-aligned
shape texturing extracts some salient feature curves of a 3D shape
as prior knowledge of the sequent process of texture analysis and
synthesis, where periodic texels are oriented and aligned with the
direction of the salient curves on the 3D shape. One limitation is
that the texel structure of source patterns is in the form of stripe or
block with regular boundaries, to which those linear shape fea-
tures are catered. Nonetheless, if fractal textures are used, the
algorithm may fail to deal with a case where the structure turns to
be irregular. In the case, the tool of mesh saliency, detecting
regional saliencies of the shape, can be a better choice to obtain
prior knowledge, such that, given a salient region and an unsalient
region, different schemes of texture synthesis are employed to
determine the location and connectivity of the texels.

7.3. Object recognition vs. mesh saliency

This subsection mentions another active research area called
object recognition, which is relevant to mesh saliency, due to the
correlation between salient points and interest points as explained
in Section 7.1. Generally speaking, the goal of an object recognition
method, which consists of three main steps: feature detection,
feature matching, and feature verification, is to correctly identify
objects present in a range image, and determine their poses (i.e.,
positions and orientations) [104]. By contrast, mesh saliency aims
to detect regions and points of a range image, and determine their
saliencies (i.e., distinctness, rarity, and surprise). Though their
[79]. Left: the original textured vase model; middle: the texture and its computed
s 7171 vertices, and the remeshed vase has 2000 vertices.



Table 2
The state-of-the-art work of mesh saliency detection that is ordered by year. Note that the eleventh column only lists applications the work itself tested. The set of
applications includes simplification (a), segmentation (b), good view selection (c), shape matching and retrieval (d), alignment (e), watermarking (f), feature evaluation (g),
scan integration (h), illustration (i), medical imaging analysis (j), sampling (k), resizing (l), and smoothing (m).

Year Sly Type Scale Signal Connectivity Applications Performance

LC GC SS MS GS PF CF SF

2005 Lee et al. [15] n n n Mesh a, c Fast
2006 Lavoué et al. [37] n n n Mesh f, g Fast

Gal and Cohen-Or [39] n n n Mesh d, e Slow
2007 Liu et al. [46] n n n Mesh g Fast

Shilane and Funkhouser [58] n n n Mesh a, c, d Slow
2008 Zou et al. [9] n n n Mesh d Slow

Atmosukarto and Shapiro [40] n n n Mesh d Slow
Castellani et al. [42] n n n Point set h Fast
Ohbuchi et al. [52] n n n Mesh d Slow
Feixas et al. [24] n n n Mesh c Slow
Zaharescu et al. [48] n n n Mesh d Fast

2009 Zou et al. [59] n n n Mesh a, d, g Fast
Sun et al. [62] n n n Mesh d Fast
Hu et al. [64] n n n Mesh d Fast
Miao and Feng [41] n n n Mesh i Fast

2010 Pratikakis et al. [43] n n n Mesh d Slow
Ruggeri et al. [65] n n n Mesh d Fast

2011 Godil and Wagan [51] n n n Mesh d Slow
Benjamin et al. [68] n n n Mesh b Fast

2012 Hou and Qin [53] n n n Mesh/point set g Fast
Leifman et al. [69] n n n Mesh c Fast
Zhao and Liu [72] n n n Mesh a Slow
Song et al. [77] n n n Mesh a Fast
Ivan and Benjamin [32] n n n Mesh – Fast
Hadi et al. [47] n n n Mesh d Fast

2013 Doraiswamy et al. [63] n n n Mesh – Fast
Song et al. [67] n n n Mesh – Fast
Wu et al. [74] n n n Mesh a, k Slow

2014 Song et al. [7] n n n Mesh a, b, h Fast
Jia et al. [54] n n n Mesh l Fast
Miao et al. [55] n n n Mesh a Fast
Bulbul et al. [75] n n n Mesh – Slow
Wang et al. [29] n n n Mesh b, m Fast

2015 Tao et al. [14] n n n Mesh – Slow
Tasse et al. [56] n n n Point set – Fast
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goals are different, likewise keypoints widely used in the appli-
cation of object recognition (see the latest survey in [11]), salient
points have been found uses in extracting surface features and
devoted to matching similarities between two or more shapes
[58,9,40,52,59].

7.4. Scene saliency vs. mesh saliency

In the context of image processing, visual saliency detects
salient objects within a 2D image representing a shot of a real
scene. Often, in computer graphics a scene is the form of 3D
scanned point clouds. As a result, in conjunction with the rapid
technology advancement of data acquisition and computing
power, scene saliency becomes a more promising research area, but
defining a distinctness metric that suits point sets is challenging
since the data designated to work is not only noise-prone but also
large-scale. By far, little attention have been paid to overcoming
the challenges.

A remarkable progress was made by Shtrom et al. [93], who
presented an efficient means in a multi-level manner. For a point
p, a histogram (e.g., 33 bins) of the quantized angular variations
between p and its neighbors is constructed, with which a slightly-
modified point descriptor called fast point feature histogram is
computed. Then, given two points pi and pj, their low-level dis-
similarity dðpi;pjÞ is proportional to the difference measured under
χ2 and inverse proportional to the distance measured under ℓ2.
Due to the lack of connectivity between points, the neighborhood
of pi is specified as dχ2 ðpi;pjÞrdmin, where dmin is tuned. The final
saliency map is comprised of three components: low-level dis-
tinctness, point association, and high-level distinctness.

Unlike the above method [93], it was argued that in larger
scene saliencies are units of various classes [105], with a naive
assumption that computing object-based saliency in laser data is
formulated as searching for a composite of geometric features
(GFs). First, the seeds of line-type and plane-type GFs are detected
via a decision tree; next, two procedures of region growing and
fragment merging are conducted. In order to describe the obtained
combinations properly and compactly, a graphical object repre-
sentation is used, such that all potential objects in the range image
are represented by graphs. Consequently, the object-based sal-
iency computation is converted into a graph matching problem. To
do so, graphs of objects of interest are first learned via manually
chosen object samples composed of laser points. Because a limited
set of GFs is used, the method runs rather efficiently, even if the
scenes designated are complex.

Another object-based method was presented in [106]. Differing
from the aforesaid method [93] where a few classes are pre-
defined, it conducts a strategy of planar region extraction iteratively
before proceeding saliency evaluation, until 95% of the point cloud
is processed, such that all potentially distinct objects are singled
out. After that, two steps of Euclidean clustering and saliency
ranking are executed. However, we are aware that the method
tested in a controlled indoor environment, if not impractical, is
hard to work in real scenes.
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8. Conclusions

The survey provided the first and comprehensive reference
resource of mesh saliency detection as well as its applications,
whose structure was depicted in Fig. 2 in Section 2.

Overall, local contrast based mesh saliency detection methods,
elaborated in Section 3, may be sensitive to noises and other
transformations. On the other hand, although local saliencies can
represent visually interesting information of 3D objects at fine
scales, often they are too “dispersed”, even the structures of 3D
models are somewhat “damaged”. Therefore, the global contrast
based methods, elaborated in Section 4, are capable of finding larger
and more interesting structures. It is expected that more attentions
will be paid to developing GC methods to overcome the short-
comings LC methods have. Additional, rather than introducing the
large body of applications enumerated in Table 2, Section 5 chose
six typical scenarios where mesh saliency plays a key role, including
mesh simplification, mesh segmentation, mesh resizing, normal
enhancement, volume rendering, and 3D printing.

To shed light on current trends and outlook of mesh saliency
detection for future study, in Section 7 three insights into the topic
were presented, and some open problems were raised. Unlike
images and videos where color and coherence are the most
important attributes, meshes esteem geometry and topology of
shapes as key contributors. As a result, the nature of the task is
different, so are the solutions to saliency. Furthermore, salient
points differ from interest points and critical points, as mesh sal-
iency metrics are required to be perception-dependent (see
Fig. 17). Even if 3D data requires its own processing and analysis
methods, basic knowledge about the similarities and differences
between other topics and the topic itself would be helpful for
making progresses in the future.
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