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a b s t r a c t

Computing a bijective spherical parametrization of a genus-0 surface with low distortion is a funda-
mental task in geometric modeling and processing. Current methods for spherical parametrization
cannot, in general, control the worst case distortion of all triangles nor guarantee bijectivity. Given an
initial bijective spherical parametrization, with high distortion, we develop a non-linear constrained
optimization problem to refine it, with objective penalizing the presence of triangles degeneration and
maximal distortion. By using a dynamic adjusting parameter and a constrained, iterative inexact block
coordinate descent optimization method, we efficiently and robustly achieve a bijective and low dis-
tortion parametrization with an optimal sphere radius. Compared to the state-of-the-art methods, our
method is robust to initial parametrization and not sensitive to parameter choice. We demonstrate that
our method produces excellent results on numerous models undergoing simple to complex shapes, in
comparison to several state-of-the-art methods.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The task of computing a bijective spherical parametrization
with low distortion is fundamental in computer graphics, geo-
metric modeling and processing, medical imaging, physical
simulations and engineering. For the genus-0 surface, sphere is a
natural parametric domain on which we can construct seamless
parametric representations directly. A good parametrization f :
M-S between a genus-0 surface M and a spherical domain S is
bijective and with possibly lowest distortion, especially with low
maximal distortion. Nevertheless, the problem of producing such a
good spherical parametrization is still an open problem.

Computing a spherical parametrization needs image vertices to
remain on a sphere whose radius is unknown to user in advance.
Bijectivity requires the parametrization to be orientation-
preserving. These requirements can be formulated as non-linear
constraints and make the problem difficult to solve. Numerous
techniques have been developed in the past ten years. For exam-
ple, the harmonic spherical map is angle-preserving [1–3]. A cur-
vilinear coordinate system was proposed in [4] to reduce area
distortion directly. In order to balance angle and area distortions,
Wan et al. [5] proposed an efficient spherical parametrization by
progressive optimization and Wang et al. [6] develop an as-rigid-
as-possible (ARAP) spherical parametrization method. Unfortu-
nately, these methods are without bijective constraints and may
introduce high distortion, even foldovers. On the extreme regions,
for example, long and thin protrusion regions (fingers in the hand),
worst-case distortion triangles or foldovers usually appear.
Recently many locally injective mapping techniques are proposed
to keep the orientation of the mesh elements. Bounded distortion
mapping methods [7–10] can generate bijective mappings if the
boundary has no self-intersections. Sphere is closed and of course
without self-intersections. But the non-linear constraints in
spherical parametrization make their solver (quadratic program-
ming and/or semidefinite programming) hard to extend. Methods
of [11,12] are only for 2D plane domain and not suitable for our
propose. MIPS (Most Isometric ParametrizationS)-like methods
[13–16] optimize an initial injective/bijective mapping to keep the
injectivity/bijectivity and achieve low distortion. AMIPS (Advanced
Most Isometric ParametrizationS) method [15] is a powerful
method to find a locally injective mapping with low maximal
distortion efficiently, but sensitive to initialization and parameter
choice. We extend it onto spherical parametrization with an
adaptive parameter adjustment scheme.

In this paper, we formulate the AMIPS energy subject to the
spherical constraints and develop a rather simple, efficient optimi-
zation method to generate a bijective parametrization with low
maximal isometric/conformal distortion with an optimal radius. The
keys to our method are an adaptive parameter adjustment scheme
during the optimization and computing the optimal radius and
parametrization results alternately. We denote our method as BLD
(Bijective and Low Distortion). Compared to the state-of-the-art
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methods [3,5,6,17], we can achieve a bijective spherical para-
metrization with both lower average and maximal isometric/con-
formal distortion. The contributions of our work are summarized as
follows:

� We introduce a simple method, including a parameter adjust-
ment scheme and an alternately optimization method, to
compute bijective parametrization with low distortion
efficiently.

� Our method is robust to initial parametrization and not sensi-
tive to parameter choice, which is demonstrated in a series of
models undergoing simple to complex geometry.
2. Related work

2.1. Spherical parametrization

Due to its wide applications in graphics and related fields,
spherical parametrization is one of the most studied geometry
processing problems and a wide set of elegant and powerful
algorithms for spherical parametrization is available [18,19]. In the
early years, several methods extend the convex combination on
planar domain [20,21] to sphere domain [22–24], where some of
the linear methods become non-linear regard to distortion.
Recently, more and more work focus on low-distortion spherical
parametrization. Conformal distortion is probably the most pop-
ular distortion measure [1,17,25,2]. In addition, Sheffer et al. [26]
proposed a method to measure angle distortion directly where a
set of necessary and sufficient conditions are formulated for the
spherical angles of the triangulation to form a valid spherical tri-
angulation. However, all methods above cannot guarantee area-
preserving, imposing high angle distortion on highly curved sur-
faces and causing foldovers. Friedel et al. [27] minimize a simple
weighted averages of Dirichlet energy and the area energy to get a
balance between angle and area preservation. Wan et al. [5]
minimize angle and area distortion together with a coarse-to-fine
solving scheme and Wang et al. [6] parametrize the genus-0 mesh
onto sphere with an optimal radius in an as-rigid-as-possible
(ARAP) manner. Nevertheless, the former lacks control over
extreme distortions while the latter does not guarantee to avoid
inversion. In fact, inverted elements often appear if the para-
metrization is far from isometry.
2.2. Inversion-free mappings

The authors of [7–10] seek a mapping whose conformal or
isometric distortion can be bounded. A maximal convex subspace
is constructed and solved by constrained non-linear optimizations.
Their method is not suitable for our purpose due to the non-linear
constraints of spherical parametrization. Many algorithms for-
mulate the task as a non-linear optimization problem, which
requires an inversion-free initialization and the optimization can
keep this property. For planar parametrization, the initial map is
usually obtained from the Tutte embedding [20,21]. For mesh
deformation, the meshes in the rest-pose are usually served as
initializations. The MIPS energy [13] and its variants [14–16] or
other energies with barrier terms [28,11] are used to prevent
simplices degeneration and penalize high distortion. These
methods can be extended to spherical parametrization. AMIPS is
able to achieve lower maximal distortion, whereas it is sensitive to
initial mapping and parameter choice.
2.3. Distortion measurement

Controlling distortion has been a long standing research pro-
blem in planar mappings and a variety of distortion measures have
been proposed. Sorkine et al. [29] use maxfσ1;σ�1

2 g for computing
parametrizations with strictly bounded distortion. The standard 2D
MIPS energy [13] measures the conformal distortion of the map-
ping: σ1σ�1

2 þσ2σ�1
1 , where σ1;σ2 are the singular values of the

Jacobian of the mapping associated with a triangle. Other type
energies are functionals constructed based on singular value, such
as Dirichlet energy σ2

1þσ2
2, Green–Lagrange energy ðσ1�1Þ2þ

ðσ2�1Þ2 and stretch energy maxfσ1;σ2g. There are three alterative
ways to measure isometric/conformal distortions [30–34]: as simi-
lar as possible (ASAP), as rigid as possible (ARAP) and as killing as
possible (AKAP). In addition, controlling distortion is widely used in
other applications including mesh improvement [35] with σ1σ�1

3
and volumetric mapping [36] with the combination of
σ1σ�1

3 þσ3σ�1
1 σ1σ2σ3þ ðσ1σ2σ3Þ�1. We develop the modified

MIPS energy to spherical parametrization and the resulting map-
ping has a good control over the maximal isometric distortion.
3. Discrete conformal and isometric mappings

Mappings between surfaces (or manifolds in general) have
been well studied in differential and Riemannian geometry [37–
39]. However, discrete surfaces are used in geometric processing,
so we need the variational calculus on each element to generalize
the formulations from continuous to discrete surfaces.

In this paper we consider the mapping f : M-S where M�R3

is the input surface mesh and S�R3 is the spherical mesh. The
map f is a piecewise linear mapping. On each triangle τAM, f τ ¼
Jτxþbτ where Jτ is the Jacobian of f on τ. From the theorem of
continuous mapping [40], we can define two energies Eτangle and
Eτarea on τAM for angle and area preservation:

Eτangle ¼
J Jτ J

2
F

j Jτ j
; Eτarea ¼ j Jτ j þ

1
j Jτ j

: ð1Þ

Where J � JF denotes the Frobenius norm and j � j denotes the
determinant. When the singular values of Jτ are identical, Eτangle
reaches minimum, and f τ is conformal. When j Jτ j ¼ 1, Eτarea is
optimal and f τ is equiareal. A mapping is isometric if and only if it
is conformal and equiareal. We can define the isometric energy
over M:

Eτ ¼ αEτangleþð1�αÞEτarea; ð2Þ

EM ¼
X
τAM

Eτ ¼ αEMangleþð1�αÞEMarea; ð3Þ

where αA ½0;1� is the trade-off between angle and area preserva-
tion. In default, we choose α¼ 0:5 for isometric mapping and α¼ 1
for conformal mapping.

Suppose M¼ fV;E;Fg, which is an oriented piecewise linear 2-
manifold that consists of a set of vertices V¼ fvi; i¼ 0;…;Nv�1g,
edges E¼ fel; l¼ 0;…;Ne�1g and oriented triangles (faces)
T¼ fτj; j¼ 0;…;Nτ�1g. Assume that each 3D original triangle is
equipped with three vertices xτ ¼ fx0

τ ; x
1
τ ; x

2
τ g and the corre-

sponding unknown spherical parametrization coordinates
uτ ¼ fu0

τ ;u
1
τ ;u

2
τ g. Aτ and aτ denote twice of the area of original

triangle τ and the parametrized ones respectively. Given this
setup, we can derive the formulas for Eq. (1) over M. Following
[40], both terms may be rewritten in terms of the coordinates x
and u (instead of in terms of the Jacobians) in an explicit form



Fig. 1. (a) Maximal isometric distortion Diso
max with respect to swith the range (0,10) on

the Hand model. (b) Average isometric distortion Diso
avg with respect to s with the range

(0,10) on the Hand model. Diso is defined in Eq. (12) and the Hand model in Fig. 9.
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(in terms of the mesh vertex coordinates):

EMangleðuÞ ¼
1
2

X
τAM

1
aτ

X2
i ¼ 0

cotðθi
τÞJui

τ�uiþ1
τ J2

 !
; ð4Þ

where θi
τ is the angle opposite to the edge ðxi

τ ; x
iþ1
τ Þ in the triangle

whose vertices are xτ and superscripts are all modulo 3.

EMareaðuÞ ¼
1
2

X
τAM

Aτ
aτðuτÞ

þaτðuτÞ
Aτ

� �
; ð5Þ

where aτð�Þ denotes the area of the parametrized triangle uτ .

Remark 1. Eτangle is 1/2 times inverse mean-ratio metric [41–43].
The energy Eangle has been studied in many applications of surfaces
and manifolds: harmonic mapping in [44], mesh quality optimi-
zation in [45], and the MIPS energy for conformal parametrization
in [13] and Dirichlet integral [46] of per parameter area. It is clear
that if a degenerated triangle τ appears, Eτangle ¼ Eτarea ¼1. From
Eq. (1), Eτangle and Eτarea both achieve their lowest value 2.
4. Bijective spherical parametrization

In this section, we first formulate the optimization for bijective
spherical parametrization in Section 4.1, then present a simple
two-step iterative algorithm to solve it in Section 4.2.

4.1. Formulation definition

The radius of parametrization sphere r affects the area distor-
tion. To make the isometric distortion as low as possible, the
radius of sphere r is considered during the optimization. Thus, we
would like to define the following constrained non-linear opti-
mization problem for parametrization:

min
u;r

EMðu; rÞ;

s:t: Jui J2 ¼ r2; i¼ 0;…;Nv�1: ð6Þ
where EM is shown in Eq. (3) and r¼ 1:0 for conformal para-
metrization. Optimizing this problem can achieve small average
distortion efficiently. However, it produces some high distortion
mesh elements. In other words, it is not capable of controlling the
maximal distortion despite a low average distortion. As we all
know, producing spherical parametrization of genus-0 surface
with lowmaximal distortion is important in geometric processing/
modeling, physical simulations and numerical analysis. Bounded
distortions have been studied in [47,7,8] for planar/volume para-
metrizations/deformations. They are hard to be extended to
spherical parametrizations. To the best of our knowledge, algo-
rithms with low maximal distortion for spherical parametrizations
have not been developed. To suppress the worst-case distortion,
we combine an exponential function with Eτ (called AMIPS in
[15]). The energy functions are defined as follows:

min
u;r

Esðu; rÞ ¼
X
τAM

exp s � Eτ� �
;

s:t: Jui J2 ¼ r2; i¼ 0;…;Nv�1: ð7Þ
where s is a parameter controlling the penalty for distortion.
Generally, a small s has little effect on penalizing the maximal
distortion, and a large s causes numerical instability. Fig. 1 shows
the influence on the maximal isometric distortion and average
isometric distortion on Hand model. This figure shows that, given
a distorted input, the maximal isometric distortion decreases
rapidly as s increases, while average isometric distortion decreases
at the beginning, then it will increase slightly. This is because as s
varies, average isometric distortion is sacrificed to get lower
maximal isometric distortion. Based on this observation, in our
implementation, s is adaptively increasing during the optimiza-
tion,which is described in Section 4.2 in detail.

4.2. Numerical optimization

The algorithm starts with a valid bijective spherical para-
metrization, for instance, we use the harmonic spherical para-
metrization [24] the unit sphere. In most cases there are high
distortion triangles for isometric parametrization on the initial
sphere. We proposed the following scheme and efficiently to
reduce the maximal distortion significantly without inducing
numerical instability.

1. We use the optimization Eq. (6) in the first 100 iterations. It
helps us to decrease the distortion efficiently on each element
instead of those on the extreme elements since the each
element of initial guess is far from isometry/comformal. It is
necessary enough to decrease both the average and maximal
distortion significantly.

2. s is adaptively increased during the optimization. While a
bijective initial guess with extremely high distortion is given, a
default s¼ 5 used in [15] may make the solver trapped in local
minimum, and output an unsatisfactory result. In our imple-
mentation, we change s from 0.1 to 10.

It is non-trivial to solve such a non-linear problem with non-
linear constraints mentioned in Eqs. (6) and (7). Observing that the
non-linear optimization problems Eqs. (6) and (7) couple the
optimal radius r and spherical parametrization coordinates u
together, we develop a two-step iterative algorithm updating the
variables separately.

Starting from a valid initial spherical parametrization from any
available algorithm, which may produce extremely large distor-
tion, our algorithm alternatively updates r and u to return a
bijective spherical parametrization with low distortion. The two-
step iterative algorithm is described as follows.

4.2.1. Optimizing u
Based on the locality of energy in Eqs. (6) and (7) and given a

radius r, we efficiently update u with inexact BCD (block coordi-
nate descent) method [48,15] (details can be found in Appendix
A). The algorithm is as follows.

A bijective initial spherical parametrization from any available
algorithm should work well. Our method is insensitive to different
initializations (See Section 5.1). In default, we set the harmonic
spherical parametrization [24] on unit sphere as the initial bijec-
tive parametrization.

Given the sphere of radius r, we update each vertex uv by one
step of gradient descent:

uðkþ1Þ
v ¼ uðkÞ

v �αv∇uv E
⋆; ð8Þ



Fig. 2. Comparison of different schemes on radius update. (a) shows a result of
radius r0 in Eq. (10); (b) shows a result of radius update with the second scheme in
Eq. (9) from an initial radius r0 of Eq. (10); (c) shows a result of radius update with
the first scheme in Eq. (11) from an initial radius r0 of Eq. (10). The numbers below
the figure are Diso

max , D
iso
avg and radius respectively.

Fig. 3. Comparison of our parametrization results with different initial guesses.
(a) Initialized with the Harmonic parametrization [24]; (b) initialized with the
Hierarchical parametrization [5]. The color encodes the isometric distortion Diso

defined in Eq. (12). Numbers in bracket denote Diso
max , D

iso
avg and running time (in

seconds) respectively.

Fig. 4. Models with different tessellations produce approximate metric distortions.
(a) The original Bimba model and its BLD result; (b) the re-meshed Bimba model
and its BLD result. Numbers in bracket below the figure denote Diso

max , D
iso
avg , D

iso
dev and

running time (in seconds) respectively.

Fig. 5. The model with a tessellation that varies in element size. Numbers in
bracket below the figure denote Diso

max , D
iso
avg , D

iso
dev and running time (in seconds)

respectively.
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where αv is the step length we need to determine and E⋆ repre-
sents EMðu; rÞ in Eq. (6) and Esðu; rÞ in Eq. (7). ∇uv E

⋆ is computed in
Appendix B in detail. The initial αv is obtained by normalizing the
∇uvE

⋆ to the minimal neighboring edge length of uv. uðkþ1Þ
v is

projected onto the sphere of radius rk. The one step of gradient
descent stops when the energy decreases and there is not any
inverted vertex in the neighbors of vertex uv. If not, we reduce αv

by 0.8 and normalize uðkþ1Þ
v to the length of rk until both condi-

tions are satisfied. When αv is less than 10�10, we set uðkþ1Þ
v ¼ uðkÞ

v

and k¼ kþ1. The key to success is to ensure the vertex on the
sphere of rk and to decrease the energy without self-intersections.

Our algorithm terminates when the relative error of the energy
value is less than 10�5 and that of the radius value is less than
10�3, or the iteration number exceeds the maximal iteration
number.

Remark 2. Different from ARAP [6], where spherical constraints
are satisfied by projecting the updated vertex to the sphere of
radius rk after energy optimization, our search strategy is used by
checking uðkþ1Þ

v on the sphere of radius rk whether decreases the
energy and introduces self-intersections in its neighbors.

4.2.2. Optimizing sphere radius r
Commonly, decreasing the area distortion is a necessary con-

dition to decrease isometric distortion, a small or big value of r
usually yields large area distortion, thus large isometric distortion.
Therefore, finding a sphere with an optimal radius is important for



Fig. 6. Performance of our parameter adjustment scheme on the Cow model in Fig. 9. (a) Optimization (6) in the first 100 iterations; (b) optimization (7) with s¼ 5 for 2000
iterations; (c) optimization (7) with s¼ 0:1 for 2000 iterations; (d) optimization (7) with s-adjustment from 0.1 to 10 for 2000 iterations; (e) optimization (6) in the first 100
iterations, then optimization (7) with s-adjustment from 0.1 to 10 for 1900 iterations. The color encodes the isometric distortion Diso defined in Eq. (12). The numbers in
brackets below the figure are Diso

max , D
iso
avg and the number of triangles whose isometric distortion is greater than the maximal isometric distortion of (e).

Fig. 7. Log-scale of energy (per triangle) with respect to iterations on Hand model
and Cow model in Fig. 9. The y-axis shows the log-scale of energy and The x-axis
shows the iteration number.
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isometric spherical parametrization. The radius r has a direct
influence on the distribution of distortion, so updating r should
guide the penalty of isometric distortion efficiently.

There are two direct methods to optimize radius.

1. The radius is treated as a variable to be optimized directly.
2. Another way for updating radius is to keep the area of the

original surface through the parametrization.

But the initial mapping with too large distortion may cause the
first scheme to be trapped easily. In our method, we first use the
second scheme to optimize radius until the algorithm converges,
then the first scheme is applied to further reduce area distortion.

The radius updating formulation of the second scheme is
defined as follows.

rðkþ1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

τAτP
τa

ðkÞ
τ

s
rðkÞ; ð9Þ

where rðkÞ is the value of r after its kth update, and aðkÞτ is the area of
triangle τ after its kth update in spherical parametrization. To
avoid large area distortion in the first few steps, we set the initial
radius r as

rð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP

τAτ
4π

r
; ð10Þ
The updating method of the first scheme is to optimize area
distortion Eq. (6) directly. rðkþ1Þ can be obtained directly:

rðkþ1Þ ¼
X
τAM

Aτ
aðkÞτ

X
τAM

aðkÞτ
Aτ

1
CCA

1
4

� rðkÞ;
,0

BBB@ ð11Þ

Fig. 2 shows a comparison of different schemes and shows that
the first scheme always achieves both lower maximal distortion
and average distortion.

4.3. Bijectivity

Our goal is to produce a bijective spherical parametrization
from a 3D genus-0 mesh to a sphere. A parametrization for a tri-
angular mesh is bijective if two conditions hold [49,16]:

(a) The parametrization is inversion-free.
(b) The parametrization of boundary is a bijective map, i.e. the

boundary of parametrization does not intersect itself.

An inversion-free map is guaranteed by minimizing the energy
EM. Since our original mesh is a closed one, that is, the original
mesh has no boundary. Condition (a) is sufficient to guarantee a
bijective spherical parametrization, based on the two-step itera-
tive algorithm in Section 4.2.
5. Experimental results and comparison

We test our method (BLD) on series of models undergoing
simple to complex shapes, and compare it with the state-of-the-
art algorithms including harmonic parametrization (Harmonic)
[24], conformal parametrization (Conformal) [17], hierarchical
parametrization (Hierarchical) [5] and as-rigid-as-possible sphe-
rical parametrization (ARAP) [6]. For both Conformal and Hier-
archical methods, we use the authors’ implementation in our
experiments. All models in our paper are normalized the bounding
box to unit length for comparisons and we use the Harmonic
results as initializations for all models.

Notice that the energy in Eqs. (6) and (7) defined on a vertex
only involves its neighboring vertices, we group the disconnected
vertices into a block which can be updated simultaneously. To
realize this, we use the standard graph coloring algorithm in Boost



Fig. 8. Spherical parametrizations of five simple models using Harmonic, Hierarchical, ARAP and BLD. The color encodes the isometric distortion Diso and yellow faces
highlight inverted. The numbers in bracket below the figure are Diso

max , D
iso
avg , number of triangles whose isometric distortion is greater than the maximal isometric distortion of

BLD and number of inverted triangles respectively.
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Graph library. To implement our algorithm efficiently, we paral-
lelize our inexact BCD method using OpenMP in Cþþ on a
desktop PC with a 3:3 GHz Intel Core i3 and 8 GB RAM, which is
about 2–3 times faster than the serialized version. We ensure that
better performance can be obtained on a higher configured
computer.



Fig. 9. Spherical parametrizations of four complex models using Harmonic, Hierarchical, ARAP and BLD. The color encodes the isometric distortion Diso and yellow faces
highlight inverted. The numbers below the figure are Diso

max , D
iso
avg , number of triangles whose isometric distortion is greater than the maximal isometric distortion of BLD and

number of inverted triangles respectively.
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Distortion metrics: Different distortion metrics are defined to
quantify the spherical parametrization. Denote σ1;τ ;σ2;τ as the
signed singular values of Jacobians Jτ(σ1;τoσ2;τ), following Sorkine
et al. [29], we define the isometric distortion of triangle τ as follows:

Diso
τ ¼maxfσ2;τ ;σ�1

1;τ g; ð12Þ
which can penalize the shrinking distortion (i.e. σ1;τ-0) better than
ðσ1;τ�1Þ2þðσ2;τ�1Þ2 in [6]. Diso

τ reaches the minimum 1 when both
singular values are 1.

Similarly, we define the area distortion and angle distortion as
follows:

Darea
τ ¼ σ1;τσ2;τþ1=σ1;τσ2;τ ; ð13Þ

Dangle
τ ¼ σ1;τ=σ2;τþσ2;τ=σ1;τ : ð14Þ

Obviously, the minimum of Darea
τ and Dangle

τ are both 2.
We report their maximum, average and standard deviation
over the whole surface, denoted as Diso

max;D
iso
avg ;D

iso
dev, Darea

max ;D
area
avg ;

Darea
dev , D

angle
max ;Dangle

avg ;Dangle
dev . To visualize the Diso and Dangle over the

mesh, we use the color-coding patterns in Figs. 8-upperleft,
9-upperleft and 11-upperleft and set the best values in bold.
5.1. Robustness to various initializations

An initial bijective spherical parametrization result from any
available algorithm is required to input. To test the sensitivity of our
method to initializations, we use Harmonic [24] and Hierarchical [5] as
two initializations, and make a comparison on the two results in Fig. 3.
From the results we can see that almost the same parametrization
results produced by our algorithm with different initializations.



Table 1
Statistics and timings on isometric spherical parametrization. Models are from Figs. 8 and 9 respectively, #vert and #tri denote the number of vertices and triangles of the
original mesh respectively, each distortion metrics are defined in Eqs. (12) and (13), #FO denotes the number of inverted faces, and the last column shows the timings of each
method.

Model #vert/#tri Diso
max/D

iso
avg/D

iso
dev

Darea
max /D

area
avg /D

area
dev Dangle

max /Dangle
avg /Dangle

dev
#FO Time(s)

Fandisk-Harmonic 606/1208 146.69/2.51 /4.42 357.55/4.49/10.94 60.04/2.56/1.83 0 5.87
Fandisk-Hierarchical 606/1208 3.94/1.48/0.27 2.81/2.03/0.10 6.64/2.52/0.49 0 –

Fandisk-ARAP 606/1208 12.56/1.57/0.57 15.43/2.41/0.68 10.36/2.20/0.36 0 10.79
Fandisk-BLD 606/1208 2.06/1.39/0.20 3.01/2.07/0.14 2.98/2.24/0.18 0 0.63

Skull-Harmonic 20 002/40 000 45.05/2.29 /1.02 144.61/3.52/2.63 69.38/2.43/0.74 0 63.88
Skull-Hierarchical 20 002/40 000 56.68/2.22/0.88 44.78/3.44/0.89 256.29/2.35/2.37 0 –

Skull-ARAP 20 002/40 000 7.97/1.15/0.16 8.57/2.04/0.11 11.55/2.02/0.10 0 703.09
Skull-BLD 20 002/40 000 1.83/1.15/0.08 2.30/2.02/0.02 2.69/2.04/0.04 0 32.44

Max-Plank-Harmonic 15 000/29 996 29.59/1.83 /0.65 19.68/2.90/1.15 56.51/2.27/0.75 0 125.76
Max-Plank-Hierarchical 15 000/29 996 7.30/1.44/0.29 8.08/2.07/0.16 11.62/2.40/0.51 0 –

Max-Plank-ARAP 15 000/29 996 8.74/1.33/0.31 10.07/2.18/0.36 7.79/2.08/0.15 0 655.93
Max-Plank-BLD 15 000/29 996 1.82/1.28/0.15 2.62/2.06/0.09 2.55/2.11/0.13 0 29.20

FilledPF-Harmonic 7994/15 984 34.18/2.31 /1.18 137.02/4.28/4.39 23.75/2.35/0.69 0 55.76
FilledPF-Hierarchical 7994/15 984 9.74/1.48/0.33 12.06/2.05/0.20 8.04/2.51/0.58 0 –

FilledPF-ARAP 7994/15 984 176.63/1.62/1.99 145.42/2.53/1.73 222.68/2.18/2.33 0 114.61
FilledPF-BLD 7994/15 984 1.98/1.42/0.19 2.91/2.12/0.11 2.87/2.19/0.16 0 15.80

Santa-Harmonic 20 000/39 996 70.80/4.81 /6.80 3.05 �104/48.80/191.50 7.63/2.21/0.23 0 89.05

Santa-Hierarchical 20 000/39 996 19.27/3.58/1.20 11.18/4.85/1.36 67.18/3.53/1.92 0 –

Santa-ARAP 20 000/39 996 5:13� 104/4.89/35.46 8:71� 104/8.00/60.13 3:02� 104/3.95/21.53 1:32� 104 726.10

Santa-BLD 20 000/39 996 2.57/1.82/0.26 3.75/2.31/0.34 4.03/2.63/0.12 0 42.45

Buddha-Harmonic 44 973/89 942 273.06/2.84 /2.76 743.33/3.79/4.78 211.21/3.39/3.15 0 146.04
Buddha-Hierarchical 44 973/89 942 66.58/1.81/0.83 32.22/2.16/0.35 1:34� 104/3.01/5.31 0 –

Buddha-ARAP 44 973/89 942 1:51� 104/1.80/9.25 1:76� 104/2.62/10.08 1:29� 104/2.45/8.89 396.45 1:03� 104

Buddha-BLD 44 973/89 942 1.93/1.32/0.14 2.81/2.09/0.09 2.83/2.12/0.10 0 76.95

Bunny-Harmonic 20 002/40 000 2:68� 104/8.18/37.47 9:32� 105/237.07/692.01 208.61/2.31/1.63 0 160.27

Bunny-Hierarchical 20 002/40 000 7:94� 105/52.76/1:01� 104 8:52� 106/1:66� 104/7:45� 105 2:20� 105/8.88/166.41 0 –

Bunny-ARAP 20 002/40 000 1:40� 104/2.95/18.49 2:31� 104/3.93/22.20 1:28� 104/3.50/16.54 1:38� 104 708.89

Bunny-BLD 20 002/40 000 3.65/1.82/0.55 5.22/2.36/0.59 5.41/2.59/0.70 0 80.47

Hand-Harmonic 42 068/84 132 4:05� 104/19.58/14.51 4:36� 106/2:30� 104/1:61� 105 7:79� 104/2.56/26.99 0 662.73

Hand-Hierarchical 42 068/84 132 2:13� 105/4.53/90.13 3:09� 105/9.66/1:44� 104 1:08� 105/5.96/67.07 0 –

Hand-ARAP 42 068/84 132 2:11� 104/4.56/19.83 2:60� 104/5.32/21.08 1:72� 104/5.01/19.44 3:21� 104 1:25� 104

Hand-BLD 42 068/84 132 6.28/2.19/0.34 6.49/2.52/0.47 6.57/3.07/0.69 0 194.47

Cow-Harmonic 23 023/46 042 1:03� 105/83.13/468.86 3:93� 107/9:67� 105/8:77� 106 307.75/2.29/2.07 0 634.52

Cow-Hierarchical 23 023/46 042 1:07� 105/14.52/168.11 1:38� 106/80.03/1:36� 104 1:04� 106/7.87/91.54 0 –

Cow-ARAP 23 023/46 042 5:26� 104/13.33/76.79 1:61� 105/38.53/226.63 1:76� 104/5.40/26.81 4:43� 104 1:68� 104

Cowþ-BLD 23 023/46 042 3.99/2.45/0.48 6.28/2.49/0.76 6.74/3.83/0.91 0 88.24
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5.2. Robustness to tessellations

To test the sensitivity of our method to different tessellations,
Bimba model with different tessellations is compared in Fig. 4. Fig. 4
(a) shows the original Bimba model whose triangles vary severely and
the mesh of Fig. 4(b) is quasi-regular. The corresponding distortions
are not much different and our method is robust to different tessel-
lations. In addition, we also shows Fandisk model with a tessellation
that varies in element size in Fig. 5. In this example, we remesh the
triangles of Fandisk model with different sizes in the left column, and
our BLD result in right column. This result shows that our method is
insensitive to the anisotropy of meshes.

5.3. Parameter dynamic adjustment

In our experiments, if s is set to be 5 suggested in Fu et al. [15],
we observed that it may yield high distortion when there are
extremely high or low distortion in the initial guess. This is
because the high distortion causes numerical instability in com-
puting the AMIPS energy and its gradient, and the algorithm is
easily trapped by a local minimum. To tackle this problem, we use
a dynamic adjusting s. We show a comparison on s with AMIPS
[15] and use s¼ 5; s¼ 0:1 which are suggested in authors’ imple-
mentation, see Fig. 6. The figure shows that our parameter
adjustment scheme is more stable than AMIPS [15] with a fixed s,
furthermore, optimization (6) is also necessary to be combined
with the parameter adjustment scheme to get a lower worst-case
distortion with the same iterations.

5.4. Convergence

Since our energy function is locally convex with respect to each
vertex on its one ring neighborhood [13,40], it is effective to apply
inexact BCD method to decrease the energy monotonically. Fur-
thermore, our search conditions can keep the energy decreasing
sufficiently on the sphere of rk and prevent overlaps. Therefore,
globally, the total energy defined on the whole mesh will decrease
relatively rapidly to a minimum value. Fig. 7 shows the log-scale of
our energy on per triangle in the first 100 iterations of Hand model
and Cow model. It is clear that the energy drops severely during
the optimization and it asymptotically goes towards optimal value
(i.e. the minimum of our energy on per triangle is 2) with
increasing number of iterations. It shows that our algorithm finally
converges although the models are with complex geometry.
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5.5. Isometric spherical parametrization

We start from a bijective spherical parametrization where both
area and angle distortion may be very large, optimize (6) for the
first 100 iterations to decrease the average distortion over the
whole surface significantly, and then solve (7) with s increasing
Fig. 10. Isometric spherical parametrizations of two large models with more than
400 K vertices initialized with [50]. The numbers below the figure are Diso

max , D
iso
avg ,

Diso
dev and running time (in minutes) respectively. (a) Vase-Lion model is about with

400 K vertices and 800 K triangles; (b) Buste model is about with 0.6 M vertices
and 1.2 M triangles.

Fig. 11. Comparison of conformal parametrization on Bunny model and the Hand model.
mapping. The color encodes the conformal distortion Dangle defined in Eq. (13) and yellow
Dangle
dev , the number of triangles whose conformal distortion is greater than the maxim

Conformal [17] method by the RiemannMapper tool downloaded from the author's per
during iterations. For most examples in this paper, we choose the
harmonic spherical parametrization as an initial guess and we
found our algorithm is not sensitive to initializations discussed in
Section 4.2.1. A fair comparison shall be made by scaling the
Harmonic result to the radius of BLD. The color encodes the iso-
metric distortion Diso whose minimum is 1 and yellow faces
highlight inverted. We also record Diso

max, D
iso
avg , the number of tri-

angles whose isometric distortion is greater than the maximal
isometric distortion of BLD and number of inverted triangles
respectively, see Figs. 8 and 9. The statistics of distortion metrics
and timings of models in Figs. 8 and 9 are shown in Table 1. Since
we use the author's implementation of Hierarchical [5], we only
compare timings with the other two methods. Experiments show
that our method outperforms the other methods in terms of both
worst case distortion and average distortion on a series of models
with simple and complex geometry.

5.5.1. Results on models with simple geometry
Since these models have less curvature change with simple geo-

metry, isometric distortion can be easily minimized and our algo-
rithm converges to a bijective and low distortion parametrization
with an optimal sphere radius within 500 iterations. Fig. 8 compares
our results with Harmonic [24], Hierarchical [5] and APAP [6] on
simple models with the number of vertices under 20 K, and the color
bar shows the isometric distortion distribution from 1 to 3. While
ARAP [6] produces satisfied average distortion but there is no control
on the worst case distortion even overlaps, Hierarchical [5] produces
lower area distortion but sacrifices the worst-case/average distortion,
our method achieves both the lowest maximal isometric distortion
and average isometric distortion among all the methods with com-
parable computation time.
The two columns of (a)–(d) show each result with color coding patterns and texture
faces highlight inverted. The numbers in brackets below the figure are Dangle

max , Dangle
avg ,

al conformal distortion of BLD and number of inverted triangles. We achieve the
sonal website.
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5.5.2. Results on models with complex geometry
It is challenging to parametrize complex models onto sphere

with low isometric distortion as these large models have complex
geometry (i.e. with long branches). Fig. 9 compares our results
with Harmonic [24], Hierarchical [5] and APAP [6] on complex
models with the number of vertices over 20 K, and the color bar
shows the isometric distortion distribution from 1 to 8. In addi-
tion, statistics of these models is revealed in Table 1. The results
show that Harmonic [24] can deal with large models but produce
large distortions, especially in feature regions, ARAP [6] cannot
produce a bijective parametrization and Hierarchical [5] cannot
produce isometric distortion distribution evenly and the maximal
isometric is uncontrollable, our method can produce a bijective
one with both lowest maximal isometric distortion and lowest
average isometric distortion compared with these methods. We
also computed isometric parametrizations for several large (more
than 400k vertices) meshes with BLD in Fig. 10, and adopt the
parallel algorithm [50] to generate an initial guess since Harmonic
[24] fails to achieve a valid initialization.

5.6. Conformal spherical parametrization

Similar to the isometric spherical parametrization, we reset α
¼ 1:0 and r¼ 1:0 to get the conformal spherical parametrization
which is optimized in the same way. This is just the optimization
of MIPS energy on the sphere domain. Because of the highly dis-
torted initial guess, we apply our isometric spherical para-
metrization in the first 100 iterations, then decrease the angle
distortion by minimizing MIPS energy. Fig. 11 shows the compar-
ison between the famous Conformal [17] computed by the Reim-
annMapper from author's homepage and BLD on the Bunny model
and Hand model. We apply color coding patterns to the spherical
parametrization and texture to the models. The color encodes the
conformal distortion Dangle defined in Eq. (13) with minimum 2
and yellow faces highlight inverted. The color bar shows the
conformal distortion distribution from 2 to 4. The texture results
show that Bunny model in (a) severely flips in the ear region and
so does to the fingers region of Hand model in (c), while results of
BLD in (b) and (d) show that our method is locally angle-preser-
ving, and bijective, especially in the ear of Bunny model and the
fingers of Hand model. From the numbers below the figure, we can
see that our method can penalize the maximal conformal sig-
nificantly without foldovers while the Conformal method has no
control on the maximal conformal distortion with foldovers.
Fig. B1. Computation on each original triangle and parametrization triangle.
6. Conclusion

In this paper, we introduce a simple and effective method for
bijective spherical parametrization with an optimal radius based
on continuous and discrete conformal/isometric mappings, con-
trolling the maximal isometric/conformal distortion and produ-
cing an evenly distortion distribution. We formulate this problem
as a non-linear constrained optimization problem, solve it using a
constrained, and iterative inexact BCD algorithm. Experiments
show that our algorithm achieves the lowest maximal distortion
and average distortion among all the methods, and the computa-
tion speed is comparable to state-of-the-art algorithms.

Our current spherical parametrization has not combined the
two optimization (6) and (7) automatically, we hope to search
framework where optimization (6) can switch automatically to
optimization (7). We also plan to search for more applications
based on our BLD results, such as bijective surface mappings or
correspondences with low distortion.
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Appendix A

In this appendix we introduce the inexact block coordinate
descent method in detail. Consider the optimization problem

min
xA χ

Fðx1;…; xsÞ ðA:1Þ

where variable x is decomposed into s blocks x1;…; xs, the set χ of
feasible points is assumed to be a closed and block multi-convex
subset of Rn. Suppose that F is strictly convex with respect to
variables xi; i¼ 1;…; s, an inexact standard block coordinate des-
cent method for solving Eq. (A.1) is described as follows.
1. Set the initialization as ðx0

1;…; x0
s Þ.

2. For each iAf1;…; sg, the convex subproblem:

xk
i ¼ argmin

xi
Fðxk

1;…; xk
i�1; x

k�1
i ; xk�1

iþ1 ;…; xk�1
s Þ

is solved by a local linear approximation from only one step of
gradient descent instead of local Newton iterations.

3. The algorithm terminates when stopping criterion is satisfied,
and return ðxk

1;…; xk
s Þ. Otherwise, go to Step 2.
Appendix B

In this appendix, we compute the gradient of the energy in Eqs.
(4) and (5) with respect to a vertex uv, denoted as ∇uv E1 and ∇uv E2
respectively. It is clear that

∇uv E1ðuÞ ¼
1
2

X
τANðuvÞ

∇uv E
τ
1;

∇uv E2ðuÞ ¼
1
2

X
τANðuvÞ

∇uv E
τ
2;

Thus, we only need to compute the gradient on each triangle τ:
∇uv E

τ
1 and ∇uv E

τ
1. Suppose triangle τ¼ uv�uvuvþ , then

∇uv E
τ
1 ¼

2
aτ
ðcot θvþℓvþ �cot θv�ℓv� Þ�

Eτ1
aτ
ℓ?
v ;

∇uv E
τ
2 ¼

a2τ�A2
τ

Aτa2τ
ℓ?
v ;

where θv is the angle at the v-vertex, ℓv is the opposite edge of
v-vertex and ℓ?

v is the 90° counter-clockwise rotation of ℓv, see Fig. B1.
At last, the gradient of the energy in Eq. (7) can be obtained

easily by the chain rule.
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