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Abstract Recently, 3D printing has become a powerful tool
for personal fabrication. However, the price of some materi-
als is still high which limits its applications in home users. To
optimize the volume of themodel, while not largely affecting
the strength of the objects, researchers propose algorithms to
divide the model with different kinds of lightweight struc-
tures, such as frame structure, honeycomb cell structure, truss
structure, medial axis tree. However, these algorithms are
not suitable for the model whose internal space needs to be
reused. In addition, the structural strength and static stability
of the models, obtained with modern 3D model acquirement
methods, are not guaranteed. In consequence, some models
are too fragile to print and cannot be survived in daily usage,
handling, and transportation or cannot stand in a stable. To
handle the mentioned problems, an algorithm system is pro-
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posed based on cross sections in this work. The structural
weak cross sections are enhanced, and structural strong cross
sections are adaptively hollowed to meet a given structural
strength, static stability, printability, etc., while the material
usage isminimized. The proposed algorithm system has been
tested on several typical 3Dmodels. The experimental results
demonstrate the effectiveness and practicability of our sys-
tem.

Keywords 3D printing · Cross section · Adaptive hollow-
ing · Structural enhancement

1 Introduction

Three-dimensional printers are able to manufacture arbitrary
complex 3D objects, and many types of material can be
used in 3D printing. Although the cost of 3D printers has
come down significantly over the past few years, the price
of some materials is still high. As a result, saving material
while maintaining the strength of the model is one of the
major considerations of most users, especially in industry.
Therefore, it is an important task to minimize the usage of
material while not largely affecting the strength of themodel.
Three-dimensional printing softwares [6,16] are able to save
material usage through uniformly filling or hollowing. But
users need to heuristically choose an appropriate density or
thickness to balance among structural strength, static stabil-
ity, and material usage. For inexperienced users, it is often a
very difficult task.

Each 3D model has an upright orientation, and we hope
the printed objects are able to stand stable on the plane deter-
mined by their upright orientations. However, we find many
models cannot meet our expectation. Since the static stabil-
ity is not considered during the design or generation of the
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model. Furthermore, the structural soundness of the models
are also not considered during obtainment. In consequence,
some parts of the models are difficult to print, and the man-
ufactured objects are commonly fragile that they cannot be
survived in daily usage, handling, and transportation, and
some of them are even collapsed under their own weight.
Therefore, the stability and structural strength of the 3Dmod-
els should be analyzed and enhanced before printing.

To simultaneously deal with the above problems, we pro-
pose an algorithm system based on cross sections. Inspired
by the structural analysis method presented in [29], we use
bending momentum equilibrium to quickly detect weak and
strong cross sections. The proposed system automatically
enhances all structural weak cross sections and adaptively
hollows the structural strong cross sections, to achieve the
minimal volume of the models, while constrained by a given
structural strength, stability, printability, etc. Our system has
been tested on a large number of 3D models. Experimental
results demonstrate that our system is able to save 75% print-
ing material for the model with huge bodies on average (see
Table 1) and enhance all weak parts of the fragile models
(see Figs. 7, 8).

2 Related work

3D printing Currently, 3D printing has become a hot topic
in computer graphics. A large number of algorithms have
been proposed to deal with complex geometric problems in
3D printing. Some of them attempt to design mechanical
toy and automata [4,45], articulated models [1,28], exter-
nal supporting structures [7,25,30]. The other algorithms are
proposed to improve printing efficiency [31,34] and qual-
ity [10,37], shape details enhancement [21], and dynamic
stability [2,18,19,33]. In contrast, our work is proposed to
reduce the material cost, fix the structural weak regions, and
optimize static stability of the object.

Material cost reduction In computer graphics community,
many efforts have been spent on saving printing material,
while maintaining a certain strength of the printed objects.

Wang et al. [36] used frame structures to fill the interior
of the model with the constraints of stiffness and strength,
static stability, printability, etc. Similarly, the work by Zhang
et al. [42] uses medial axis tree instead of frame structures,
which can naturally transfer the external loads from different
directions to the inner core structure. Different from these
methods, Lu et al. [14] and e Sá et al. [24] divide the interior
of the model with honeycomb cell structure which is known
to be of minimal material cost, while providing strength in
tension.

The algorithms described above have a common point:
They divide the interior of the model with lightweight struc-

tures. However, for some models, their interior spaces have
special usage, such as money box and music box, and
some hardware should be installed inside. Therefore, these
algorithms are not suitable for this kind of models any
more. In contrast, we adaptively hollow the model through
cross section-based optimization, while achieving a certain
strength of the object and ensuring its static stability and
printability.

Structural analysis Since structural soundness of 3D mod-
els are not considered during the acquirement, many models
are difficult to print and transport, etc. A large number of
algorithms have been proposed to analyze the weak regions
of the model and even fix them.

Stava et al. [27] proposed a novel algorithm to detect the
structural problematic regions with the given external loads
and fix them through heuristically hollowing, thickening, and
strut insertion. Zhou et al. [44] proposed an optimization
framework to analyze all weak regionswithout specific exter-
nal loads. However, the finite element method (FEM) used
in their algorithms is time-consuming when the input models
are complex. Xie et al. [38] propose an accelerated analysis
algorithm through locally updating stiffness matrix of FEM.
Furthermore, Umetani et al. [29] and Xu et al. [39] analyze
the key stress of the model based on bending momentum
equilibrium which enables interactive analysis speed. In this
work, the method proposed by Umetani et al. [29] is used to
detect structural weak and strong regions. The weak regions
are enhanced, and the strong regions are adaptively hollowed
which is not considered in [29] and [39].

Static stability With the advent of 3D printing technologies,
it becomes very easy to detect whether a model is static sta-
ble or not. Traditionally, users often glue the printed objects
onto a heavy pedestal which is very tedious. To automatically
implement the static stability of an object, Prévost et al. [23]
proposed a formulation to modify the volume of the object,
while preserving its surface details. For some cases, they need
to interactively edit the shape of the model during the opti-
mization. However, their method do not consider thematerial
cost and structural strength. Yamanaka et al. [40] controlled
the mass center of the object by optimizing the density dis-
tribution of the truss structure. Although the volume of the
model is optimized in their method, they also do not consider
the structural strength of the model. Musialski et al. [18,19]
proposed shape optimization frameworks, which can achieve
both static and dynamic stability. Although [19] takes into
account structural strength in shape optimization, it is diffi-
cult for them to handle structural weak regions. In this work,
we propose an algorithm system to simultaneously optimize
stability and material usage, and enhance weak parts.

Offset surface Offsetting is a fundamental and important
geometric operation in rapid prototyping. Although the off-
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setting operation is mathematically well defined, offsetting a
solid model exactly has proven to be difficult [11]. To handle
this problem, researchers have paid many attentions to gen-
erate offsetting surfaces for triangular mesh [5,12,13,32].
Kim et al. [12] present an algorithm by moving all vertices
along the multiple normal vectors of a vertex to generate off-
setting surface. Liu et al. [13] proposed a fast offset surface
generation algorithm to construct intersection-free offset sur-
faces, while preserving sharp features. Chen et al. [5] used
layered depth-normal images to uniformly offset the surface.
An accelerated version of [5] is proposed byWang et al. [32]
to organize the samples into structured points and perform
parallel computations using multiple cores. Although these
algorithms are suitable for 3D printing, they are not cost-
effective, and structural strength and static stability are not
guaranteed.

Hollowing To design the deformation behavior of 3D
printed object, Zhang et al. [41] proposed an interactive tool.
Given a soft material to be used in 3D printing, the thickness
of the model is optimized by considering bending behavior
of this material. To print a boundary surface, we need to gen-
erate a solid volume by some operator. However, it dose not
guarantee the structural strength of the generated volume. To
solve this problem, Zhao et al. [43] proposed an algorithm
to optimize the thickness parameters according to stress con-
straints to extrude the surface for a given boundary surface
and user-specified external loads. However, both algorithms
do not handle structural weak regions.

3 Structural analysis

In this work, we first use cross section-based structural analy-
sismethodwhich has been studied in [29], to detect structural
problematic regions that should be enhanced, and strong
regions that can be hollowed. Although this method can only
give us an approximate detection results, it is fast and the
detected results are good enough for the proposed system.
In the following, we will briefly introduce some details of
cross-sectional structural analysis method closely related to
our algorithms.

For a given3Dmanifold triangularmeshM ,we slice it into
N cross sections in a direction randomly sampled on Gaus-
sian shape (which will be further discussed in Sect. 4.3.4),
with slicing thickness {hi }i=N

i=1 . As we know, structural weak-
ness of a cross section is defined considering two factors:
the magnitude of force needed to break a cross section,
and the area over which the force is distributed. Thus, let
fmin(Γ, p, φ) be the minimal force at position p on the sur-
face, needed to produce the critical stress on cross section
Γ in bending direction φ. With bending momentum equilib-
rium, fmin can be calculated as follows:

Fig. 1 Overview of the proposed system

fmin(Γ, p, φ) = |(I − ξ ⊗ ξ)(p − g)|σ̂L Zξ η, (1)

where ξ and η are the axis of local coordinate system of
Γ , Zξ = Iξ /|η|max, Iξ is the second moment of area, σ̂L is
maximum stress which is given as 60MPa, and g is the mass
center of the model. The smaller the force fmin, the more
fragile the cross section Γ .

For a cross section, we choose the minimal force from all
possible force points and bending directions to evaluate its
fragility, that is

fmin(Γ ) = min
p,φ

fmin(Γ, p, φ), (2)

If fmin(Γ ) < f̂max, it is considered as fragile and should
be enhanced, and if fmin(Γ ) > α f̂max, α ∈ [1,+∞], it is
regarded as strong cross section and can be hollowed, where
f̂max is the critical force to distinguish between structural
weak and strong cross sections, which is set as 0.2 kgf in
[29], and α is a parameter that can be given by users to define
structural strong cross sections. Equation (1) will be used as
mechanical constraint in our algorithm system (Sect. 4.3),
to guarantee structural strength of the model. The interested
readers are recommended to article [29] for more details.

4 Algorithm

In this section, we propose an algorithm system to automat-
ically enhance the structural problematic cross sections and
adaptively hollow the strong cross sections of the model. The
overview of our system is shown in Fig. 1.

A cross section Γ is a polygon, composed of n ordered
points Γ = {pi }i=n

i=1 (see the green points in Fig. 2). In gen-
eral, a model can be divided into two parts by each cross
section. The part with smaller area is donated as S+, and the
other part is donated as S−. To calculate fmin, force points
and bending directions should be given.As described in [29],
the points on S+ are selected as force points. For each force
point, we uniformly samplem directions as its bending direc-
tions, that is force directions. Our system moves to cross
section points along their shifting directions which will be
introduced in Sect. 4.1. The points after optimization are

123



952 W. Wang et al.

Fig. 2 Some points may have
poor shifting directions. We
search for new proxy points for
them. Yellow points are skeleton
points, and green points are
cross sections points

indicated as p′
i = pi + ti · di , i = 1, 2, . . . , n, where ti is

the movement of pi along direction di , and the optimized
version of Γi is denoted as Γ ′

i . Since cross sections are opti-
mized in 2D plane, pi and di are 2D points and just have x-y
coordinates, that is pi = (pix , p

i
y) and di = (dix , d

i
y).

4.1 Shifting direction

Before presenting our system, we should first calculate shift-
ing directions for cross section points. We can simply use
point normal np or inverse point normal −np as shifting
direction of point p. But with these directions, the optimized
cross section may self-intersect or intersect with the other
cross sections. Therefore, themajor factor to be considered in
determining the shifting directions is intersection which will
happen in concave regions. For every given cross-sectional
polygon Γ , the shifting direction di for each vertex pi is
expected to:

– let Γ ′ be homeomorphic to Γ and have similar shape,
– avoid self-intersection on Γ ′,
– and provide relative large space for shifting.

In fact, the second and the third expectations are coupled—
the harder the self-intersections occur, the larger range of
displacement ti on eachp′

i . To achieve these goals, the heuris-
tic of letting neighboring di s be nearly parallel is conducted.
Similar heuristic method was used in [22] to generate 3D
homeomorphic surfaces. Specifically, we use the 2D shape
skeleton [3] to establish shifting direction for each vertex pi
on a polygon Γ .

Each point q in the skeleton sk(Γ ) of Γ is the center
of a maximal disk D(q) contained in Γ . We call a point
q ∈ sk(Γ ) the mating skeleton point of p [denoted by q(p)]
if p is on the boundary of D(q). For each vertex pi ∈ Γ , a
proxy point v(pi ) ∈ sk(P) is defined for finding a shifting
direction. An iterative algorithm is developed:

– First of all, let v(pi ) = q(pi );

– For every vertex pi , if ‖v(pi ) − pi‖ < rmax, we search
for a neighboring point p∗ of v(pi ) on sk(Γ ) that

‖p∗ − pi‖ > ‖v(pi ) − pi‖,

and then p∗ is assigned as the new proxy point of pi ;
– The update of proxy point is repeatedly applied until

‖v(pi ) − pi‖ ≥ rmax is satisfied on all vertices.
– For weak cross sections, the shifting directions of the
points are outer vectors, that is diw = pi−v(pi )||pi−v(pi )|| . While
they are inner vectors for strong cross sections, that is
dis = −diw.

Note that rmax is a maximally allowed hollowing thick-
ness which can be determined experimentally or by the
manufacturability-based analysis taken in the following sec-
tion. An illustration of our algorithm is shown in Fig. 2. It
can be found that the shifting vectors between neighboring
vertices become more and more conformal to each other and
the shittingwill have less chance to generate self-intersection
on Γ ′.

4.2 Objective and constraints

Moving bounds For structural enhancement, the movement
of the lower bound is zero L p

w = 0. To avoid intersection, we
should calculate a safe upper bound for each cross section
point. For point p, we generate a ray r(p)whose end point is p
and the direction is dp

w. The first intersection point v between
r(p) and the other rays is found. The distance betweenp and v
is set as itsmovement upper boundofp, that isU p

w = ||p−v||.
If r(p) intersects nothing, its upper bound is set to infinity,
U p

w = +∞.
For adaptive hollowing, the length between p and v(p) is

set as themoving upper bound of p, that isU p
s = ||p−v(p)||.

To guarantee the printability of the model, the movement
lower bounds should be larger than the printable lower bound
ξmin of the printer. However, moving distance along moving
direction cannot directly reflect the thickness of the surface,
because most moving directions are not perpendicular to the
surface. To obtain a valid moving lower bound for point p,
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Fig. 3 2D polygons before and after optimization (a). Notations used
in static stability constraint (b)

we project the desired minimal printing thickness value in
its normal direction np onto its moving direction dp

s to get a
valid moving lower bound:

L p
s = ξmin

(dp
s )Tnp

, (3)

Cross-sectional area The goal of our system is to minimize
the volume of the model, and it can be approximately calcu-
lated with the area of the cross sections. For a cross section
Γ , its area is calculated as follows:

S(Γ ) =
i=n∑

i=1

1

2

∣∣∣∣∣
pix p(i+1)

x

piy p(i+1)
y

∣∣∣∣∣, (4)

where |.| indicates the determinant of matrix, and p1 = pn+1
(see in Fig. 3a).

Structural strength To guarantee the optimized model has
a certain structural strength, a structural strength constraint
should be added in our algorithm system. According to
Eq. (1), the structural strength constraint is defined as fol-
lows:

fmin(Γ,qk, φ j ) > γ, qk ∈ S+, j = 1, 2, . . . ,m (5)

whereγ is a parameter to control the strength of the optimized
model which must be bigger than f̂max, that is γ > f̂max, qk
is a force point, and φ j is one of its bending directions.

Static stability Theupright orientation,which canbeobtained
by the state-of-the-artmethods [8,35], of themodel defines its
supporting plane. The points of the model on the supporting
plane are named as supporting points. Aswe know, to achieve
static stability, the projected mass center of an object, along
its gravity direction, must be inside of the convex hull CH
(see magenta polygon in Fig. 3b) of the supporting points.
Thus, we have the following static stability constraint:

c(M)⊥g ∈ CH (6)

where c(M) is themass center of themodelM , g is the gravity
direction(‖g‖ = 1), and ⊥g denotes the perpendicular pro-
jection onto the supporting plane along g. Constraint Eq. (6)

is able to pull c(M)⊥g inside of CH , but it will be just on the
boundary of H (see the red point in Fig. 3b). To improve it
(see the blue point in Fig. 3b), an optional constraint is given
in the following:

||c(M)⊥g − c(CH)|| < ε, (7)

where c(CH) is themass center ofCH (see the green point in
Fig. 3b) and ε is a parameter to control the distance between
c(M)⊥g and c(CH). In Fig. 3b, the upper bound ε̄ of ε is the
inscribed circle radius of CH .

Given a cross sectionΓ , we represent its hollowed version
as Γ ′ (see the polygons in Fig. 3a). Based on cross sections,
we can approximately and easily calculate the mass center ĉ
of a hollowed model:

ĉ(M) = Vol(M)c(M) − ∑i=N
i=1 S(Γ ′

i )hi c(Γ
′
i )

Vol(M) − ∑i=N
i=1 S(Γ ′

i )hi
(8)

where S(Γ ′) is the area of cross section Γ ′, which is calcu-
lated with Eq. (4), Vol(M) is the volume of the model M ,
hi is the thickness of the i th cross section, and c(Γ ′) is the
mass center of cross section Γ ′.

4.3 Algorithm system

4.3.1 Formulation

After structural analysis with Eq. (2) under a given slicing
direction, we collect the structural weak cross sections�w =
{Γ | fmin(Γ ) < f̂max} and structural strong cross sections
�s = {Γ | fmin(Γ ) > α f̂max, α ∈ [1,+∞]}. A cross section
Γi has n points, so it has n unknown Ti = [t i1, t i2, . . . , t in].
Then, a cross section-based optimization framework is pro-
posed to optimize them, while enhancing the structural weak
cross sections and hollowing the structural strong cross sec-
tions:

min{Ti }
∑

Γi∈�w∪�s
S(Γi , Γ

′
i )hi+

λ
∑

Γi∈�w
(var(Ti ) + ∑

j∈Nei(i) ||var(Ti ) − var(T j )||2)
s.t.

Lik
w ≤ t ik ≤ Uik

w , Γi ∈ �w, k = 1, 2, . . . , n1
Lik
s ≤ t ik ≤ Uik

s , Γi ∈ �s, k = 1, 2, . . . , n2
(5), (6), or (7)

(9)

where n1 and n2 are the number of points on the correspond-
ing cross sections, ik means the kth point on the i th cross
section, and t ik represents the kth element in Ti . var(Ti ) is
the variance of the movement vector Ti of Γi , Nei(i) is the
adjacent cross sections of i th cross section, and λ is a param-
eter to balance material cost and shape of the cross sections,
which is set to a small value in our implementation. The
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second item in objective function of Eq. (9) is used to con-
trol the movement of the points on a cross section and its
neighbor cross sections in �w. By optimizing this objective
function, the shape of the weak cross regions and smooth-
ness between neighboring cross sections can be preserved as
much as possible. For the cross sections in �s , their details
are not important, so we do not need to control the move-
ment of their points. S(Γi , Γ

′
i ) represents the area difference

between the initial cross section Γi and cross section Γ ′
i after

optimizing, which is defined as:

S(Γi , Γ
′
i ) =

{
S(Γ ′

i ) − S(Γi ) Γi ∈ �w

S(Γi ) − S(Γ ′
i ) Γi ∈ �s

, (10)

where S(Γ ) is the area of cross section Γ , which is defined
in Eq. (4).

In formulation (9), both constraints (6) and (7) are able
to pull the projected mass center inside of CH . But con-
straint (7) can better control the distance between c(CH)

and c(M)⊥g , that is the stability. Therefore, constraint (7) is
optimized in our experiments. And users can select an appro-
priate constraint according to their demands. The material
usage and stability caused by constraint (7) will be discussed
in Sect. 5.2.

Formulation (9) is a nonlinear optimization problem,
which can be effectively solved with interior point algorithm
provided in [20].

4.3.2 Deformation

Given the optimized weak cross sections �′
w, the whole

surface should be deformed to fit the shape of these cross sec-
tions, so that the weak regions are enhanced. We first fix the
points on cross section in �′

w, and then, as-rigid-as-possible
surface modeling method [26] is used to deform the other
regions of the model. Since the smoothness is considered in
our optimization objective function, the finial shape will be
smooth.

4.3.3 Hole generation

Given the optimized (hollowed) cross sections �′
s on dif-

ferent layers, the interior surface M0 is constructed by the
strip triangulation method [17] with a variation to avoid
intersection between M and M0. The efficient intersec-
tion detection is realized by the OBB tree-based proximity
query [9].

4.3.4 Discussion

Our optimization framework (9) assumes a given slicing
direction and therefore generates a direction-dependent opti-
mum. As seen in Fig. 1, our system includes an iteration

Fig. 4 Input 3D model (a) is sliced and analyzed in a large number
of directions sampled on a Gaussian sphere. Here we only show four
analysis results of them (b). In (b), red cross sections are fragile and
blue cross sections are non-fragile

in slicing direction, because cross section-based structural
analysis method is sensitive to slicing direction. Figure 4
shows the structural analysis results of a human model that
is sliced in four different directions. From this figure, we
can see that different slicing directions will result in dif-
ferent weak and strong cross sections. For a given slicing
direction, optimization formulation (9) can give us a solu-
tion at that direction. Then, slicing direction is changed
and formulation (9) is implemented again. The whole pro-
cess can be implemented iteratively, until the model has no
weak regions. For each iteration, we are able to obtain holes
and their total volumes. Finally, the holes in some iteration
with the maximal total volume is selected as the final holes.
However, to totally enhance the whole model, we some-
times need to sample a large number of slicing directions,
resulting in a large number of iterations of our system. In
consequence, the effectiveness of our system will be largely
affected.

To effectively reduce the number of iterations, we first
sample a large number of slicing directions on Gaussian
sphere. Then, cross section-based structural analysis method
(Sect. 3) is used to detect weak cross sections in each direc-
tion. The number of weak cross sections for each slicing
direction is counted and sorted in descending order. Finally,
the first K direction is selected and used in our optimization
system. In our experiments, K is set to 15.

5 Experimental results

5.1 Implementation details

Our algorithm system was implemented in mixed C++
and MATLAB, and it was run on a PC with Intel(R)
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Fig. 5 Cup model a is optimized with different γ : b 0.5 kgf, c 1.0 kgf,
and d 2.0 kgf. d has the largest γ , so its leg is the strongest. However, it
needs the most printing material. The volumes increased related to (a)
are: 173.72mm3 (b), 453.2mm3 (c), and 1017.4mm3 (d). The red box
in (a) shows the weak regions, and the boxes in (b), (c), and (d) are the
enhanced regions

Core(TM) i7-3770 CPU @ 3.40GHz and 32GB memory.
The results are fabricated by [15] with printing layers of
0.2 mm. Its printing size is 285mm × 153mm × 155mm.
The printing material is white PLA plastic with a yield-
ing strength of 60MPa and Young’s modulus of 2300MPa.
On average, our system needs 25min to finish optimiz-
ing.

5.2 Parameters

In this work, several parameters should be set. m in Sect. (4)
is set to 16, εmin in Eq. (3) is set to 0.5mm, and λ in
Eq. (9) is set to 0.1. For structural analysis, all models
are sliced into cross sections with interval h = 1.0mm
in 100 directions with the form of (x, y, z)T , where each
of x, y, z takes the values (−1, 0, +1). Most models are
uniformly scaled to have the height of 80mm. In our
experiments, these parameters are suitable for all mod-
els.

In addition, γ in Eq. (5) can be given by users to con-
trol the strength of the optimized model. In Fig. 5, a cup
model has a fragile leg (red box in Fig. 5a). Our system
optimizes it with three different γ : (b) γ = 0.5kgf, (c)
γ = 1.0kgf, and (d) γ = 2.0kgf. As we can see from the
green boxes, Fig. 5d is generated with the largest γ , so it
has the biggest structural strength. But its printing material
is the most. Therefore, users are able to manually change
γ to balance between material usage and structural strength
according to their applications. In our experiments, its default
value is set to 1.0 kgf.

ε in Eq. (7) is used to control the stability of the model.
The Hangingball model shown in Fig. 6 is optimized with
three different ε. The model in Fig. 6a is optimized with ε =
10mm, which has smaller volume, while the model Fig. 6c
is optimized with ε = 4mm, and it has much better stability.
Therefore, users can manually adjust ε to balance between
material usage and static stability of the model according to
their requirements. In our experiments, its default value of ε

is set as ε̄/2.

Fig. 6 Hangingball model is optimized with different ε: 10mm (a),
6mm (b), and 4mm (c). The sky blue polygon is CH , red point is
c(CH), and green point is c(M)⊥g . In (c), the model has the best
stability, but it needs the most printing material to print. The volumes
of these models are 1.501 mm4 , 1.808mm4, and 2.164mm4

Fig. 7 Bananaman model (a) is structurally enhanced by Stava et
al. [27] (b) and our algorithm system (c), respectively. Stava et al. added
an external strut to increase its strength, which affects the visual quality
of the model. However, the model generated by our method do not need
external strut, and it has smaller volume than that in (b). Furthermore,
the arms of the model in (c) are fixed which are not handled in (b). The
volume of the models generated by these methods is: 5.172 × 104 (b)
and 2.283 × 104 (c)

5.3 Structural enhancement comparisons

To evaluate the effectiveness of the proposed algorithm
system for structural enhancement, we first compare our
system with the algorithm proposed in [27]. In their work,
FEM is used to analyze the stress distribution of the model,
and the weak regions are fixed through thickening, hollow-
ing, and adding external struts. For the Bananaman model
(see Fig. 7a), its legs are detected as weak regions and
fixed by adding external struts (see Fig. 7b). Although their
method can guarantee the printability of these legs, they may
be broken during cleaning, processing, and transportation.
Moreover, the added strut will affect the visual quality of the
model. Furthermore, they do not consider arms as structural
weak regions. But, in fact, the arms of the Bananaman model
are too fragile to sustain some external loads (see the red
arrows in Fig. 7b).

In this work, bending momentum equilibrium [29] is used
to detect all possible weak regions of the model. In our
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Fig. 8 Ostrich model (a) is structurally enhanced by Xu et al. [39]
(b) and our algorithm system (c). For this model, the volume of the
model generated by their method is 4.524 × 104, while the volume of
the model generated by our system is 4.485× 104 (without hollowing)
and 1.363 × 104 (with hollowing). In addition, our system is able to
obtain a better static stability (see green points in (a) and (c)

experiment, the arms and legs of the Bananaman model are
detected as weak regions and enhanced with our system (9)
(see Fig. 7c). The printed Bananaman model optimized with
our system is shown in Fig. 12. In addition, our algorithm can
minimize the added volume: The volume generated by their
method and our system is 5.172 × 104, and 5.136 × 104

(without hollowing) and 2.283 × 104 (with hollowing),
respectively.

Similar to our method, Xu et al. [39] proposed a structural
enhancement algorithm based on cross-sectional structural
analysis method.With bendingmomentum equilibrium, they
detect the weakest cross section and heuristically calculate
a scaling factor for the domain including this cross section.
Although their method is able to enhance the weak regions,
the domain includes the weakest cross section that dose not
need to have the same scaling factor, which may waste print-
ing material. In addition, their heuristical strategy does not
consider the smoothness of the cross sections. In contrast,
we propose an optimization algorithm to optimize the shape
of the weakest cross section, while minimizing the volume
to be increased. Figure 8 shows the Ostrich model optimized
by both two methods. To be fair, our model is optimized with
γ = 2.0kgf which is used in [39] for this model. The model
generated by our system (Fig. 8c) has smaller volume than
that in Fig. 8b.

In addition, the algorithms proposed in [27] and [39]
do not optimize the strong regions to minimize the material
usage and obtain static stability of the object. Although Stava
et al. proposed a heuristic hollowing strategy for stress relief,
their method cannot minimize the volume of the model. In
contrast, our system can minimize the volume of the struc-
tural strong regions (see the Figs. 7c, 8c).

Although c⊥g of the model (green point) in Fig. 8a is
inside of CH (sky blue dotted polygon), it is very close to
the boundary. Therefore, this model has a weak stability. Our

Fig. 9 Comparison with the method of Prévost et al. [23] without sur-
face deformation. The projected mass center of a is outside of CH (sky
blue dotted polygon). b and c are generated by Prévost et al. [23] and
our system, respectively. Both methods can achieve the same static sta-
bility, but the volume of the models is: b 2.842×104 and c 1.175×104

Fig. 10 Comparison with the method of Musialski et al. [18] for static
stability. The projected mass center of a is outside of CH (sky blue
dotted polygon). b and c are generated by Musialski et al. [18] and our
system, respectively. Bothmethods can achieve the same static stability,
but the volume of the models are: b 5.712 × 104 and c 1.289 × 104

Fig. 11 Comparison with the method of Wang et al. [32] for material
reduction. Both models are optimized with the same structural strength.
Red points is c(CH), and green point is c⊥g . a is generated by Wang
et al. [32], and its volume is 3.940 ×104 mm3. b is generated by our
system, and its volume is 2.164 × 104 mm3 which is smaller than that
in (a). In addition, the static stability of (b) is better than in (a)

system is able to obtain a better stability (see green point in
Fig. 8c).

5.4 Static stability comparisons

To achieve static stability, Prévost et al. [23] proposed an
algorithm to change the mass center of the model through
heuristically hollowing or deformation. Their method can
guarantee the static stability of the model under a given
posture. However, it is difficult for them to control the vol-
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Table 1 Printing material saved by our system (9). NV., NF., SV., OV., MH., and MR. represent the number of vertices and faces, solid volume,
optimized volume, model height, and material reduced, respectively

Model NV. NF. SV. OV. MR. MH. Running time
(104 mm3) (104 mm3) (%) (mm) (m)

Bananaman (Figs. 7, 12) 9676 19,352 5.136 1.265 75.2 120 33

Hangingball (Figs. 6, 12) 266 528 8.442 2.164 74.4 80 16

Ostrich (Fig. 8) 7046 14,088 4.437 1.363 69.3 120 35

Buddha (Fig. 12) 9999 19,994 15.019 1.918 87.2 80 24

Frog 12,495 24,990 2.108 0.6183 69.9 80 28

Sphere (Figs. 9, 12) 6042 12,080 5.567 1.194 78.6 80 21

Cube (Figs. 10, 12) 386 768 19.144 2.169 88.7 80 15

Bear (Fig. 12) 10,075 20,146 5.263 1.182 78.5 80 22

Human (Fig. 4) 75,081 15,0170 0.881 0.363 58.8 80 30

The seventh column lists the percentage of the material reduced by our algorithmwhich is relative to the solid volume, that isMR = (SV−OV)/SV.
The last column lists the running time of all models, and the unit is minute

Fig. 12 Printed objects optimized with our system

ume and maintain the strength of the model. Musialski et
al. [18] proposed a shape optimization framework to meet
different goals. For static stability, their goal is to min-
imize the distance between c⊥g and c(CH). Since their
method is a global optimization, it needs less volume to
achieve the same static stability as [23]. But their algo-
rithm cannot minimize the printing material cost. Moreover,
[23] and [18] do not consider the structural strength of
the model. In addition, they sometimes may even hollow
the structural weak regions, because their methods cannot
distinguish between structural weak and strong regions. In
contrast, our algorithm system is proposed to optimize the
mass center of themodel withminimal printingmaterial cost,
while maintaining a given structural strength and printabil-
ity.

Figures 9 and 10 show the comparison results with [23]
and [18], respectively. To be fair, the projected mass centers
are optimized to the same positions as that in [23] and [18].
In Fig. 9b, the model generated by [23] is just heuristically
hollowedwithout deformation, and the volume is 2.842×104

, while the volume of the model optimized by our system is
1.175 × 104 (Fig. 9c). In Fig. 10, the volume of the model
generated by [18] is 5.712 × 104 (Fig. 10b), while the vol-
ume of the model generated by our system is 1.289 × 104

(Fig. 10c).

5.5 Material reduction

Although several algorithms have been proposed to design
lightweight structures for the purpose of reducing material
usage, here we only compare with the algorithm [36] to eval-
uate our system, because this method is the most close to our
work. Bothmethods optimize the volume of themodel, while
constrained by structural strength, static stability, printability.
We compare the material cost with their algorithm under the
similar structural strength. In [36], the external force for the
Hangingball model is set to 10N, so γ in formulation(9) is
set to 1.0kgf. Figure 11a is generated by [36], and its volume
is 3.940×104 mm3, while the volume of themodel generated
by our system (Fig. 11(b)) is 2.164×104mm3. In this figure,
red point is c(CH) and green point is c⊥g . We can see from
this figure that the model generated by our system not only
has smaller volume, but also has better static stability.

In addition, the proposed system is able to enhance the
structural weak regions, which is not considered in the state-
of-the-art methods about structural optimization and shape
optimization.

The printing material reduced by our system and running
time of our system for all models are listed in Table 1. It is
worth noticing that the running time of our system is mainly
related to factors: the number of cross section (the slicing
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thickness h) and the number of vertices on each cross section.
From this table, we can see that our system can save 75%
printing material on average. Meanwhile, the printing time
of the model optimized by our system can be effectively
reduced. Figure 12 shows the printed objects optimized with
our system that appeared in our paper.

6 Conclusions and future work

In this work, we propose an algorithm system to simultane-
ously enhance structural problematic regions, and adaptively
hollow structural strong regions, while constrained by struc-
tural strength, static stability, and printability. A number of
experimental results illustrate the practicability and robust-
ness of our algorithm system and demonstrate that our
algorithm system can increase structural strength, reduce
material cost, and meet static stability of the model.

However, our algorithm system still has several limita-
tions. First, our algorithm system is designed to thicken the
thin parts and dose not consider the external struts. If a model
needs to add external struts, the algorithm introduced in [27]
can be used. Second, our adaptive hollowing algorithm is
mainly suitable for the model whose internal space needs to
be reused. If userswant to generate an objectwith lightweight
structures inside, our algorithm is not as good as [14,36,42].

In the future, we plan to develop an algorithm to combine
adaptive hollowing and lightweight structures designing,
because, for a complex 3D model with several huge parts,
some parts may need to be filled with lightweight structures,
while the other parts’ spaces may need to be reused.
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