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Abstract—Binary representation of users and items can dramatically improve efficiency of recommendation and reduce size of
recommendation models. However, learning optimal binary codes for them is challenging due to binary constraints, even if squared
loss is optimized. In this article, we propose a general framework for discrete matrix factorization based on discrete optimization, which
can 1) optimize multiple loss functions; 2) handle both explicit and implicit feedback datasets; 3) take auxiliary information into account
without any hyperparameters. To tackle the challenging discrete optimization problem, we propose block coordinate descent based on
semidefinite relaxation of binary quadratic programming. We theoretically show that it is equivalent to discrete coordinate descent
when only one coordinate is in each block. We extensively evaluate the proposed algorithms on 8 real-world datasets. The results of

evaluation show that they outperform the state-of-the-art baselines significantly and that auxiliary information of items improves
recommendation performance. For better showing the advantages of binary representation, we further propose a two-stage
recommender system, consisting of an item-recalling stage and a subsequent fine-ranking stage. Its extensive evaluation shows
hashing can dramatically accelerate item recommendation with little degradation of accuracy.

Index Terms—Item Recommendation, Hashing, Block Coordinate Descent, Discrete Optimization, Two-stage Recommender Systems.

1 INTRODUCTION

HE growing number of products and user evolving in-
T terest challenge instant item recommendation. Hashing
is a very promising approach to address this challenge,
which has been applied in Google News Recommenda-
tion [1]. The core idea of hash is to represent users and/or
items by binary vectors (also called binary codes or hash
codes) so that top-K preferred items can be retrieved very ef-
ficiently. Being used for recalling potentially preferred items,
hashing can dramatically accelerate the recommendation of
many complex algorithms [2], [3], [4], [5], [6], [7], since they
only need to re-rank the recalled items.

In this article, we will study discrete matrix factorization
(DMF) since matrix factorization methods are very efficient
and effective for item recommendation [8]. Given an m X n
user-item rating / preference matrix, DMF maps m users and
n items into the same k-dimensional binary hamming space.
Each user and item are then represented by k-bit binary
codes. Compared to the real-valued model, the model size
is then reduced by 31/32 ~ 96.9%. The dot product between
binary codes estimates rating or preference, and can be
computed very efficiently via hamming distance (using CPU
instructions __popent and xor) [9]. Given a user’s binary
code, it is possible to exactly retrieve the top-K preferred
items from n candidate items in sublinear time via multi-
index hashing [10]. Approximated retrieval can be even
done in logarithmic or even constant time [11], [12].

Learning optimal binary codes is generally NP-hard [13]
due to binary constraints. To address this challenge, several
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heuristic algorithms [14], [15], [16] have been proposed,
which first solves a relaxed optimization algorithm via
discarding the binary constraints, and then quantizes the
relaxed solutions. However, Zhang et al. observed that these
heuristic algorithms resulted in a large quantization loss [17]
and proposed to learn binary codes directly. Nevertheless,
several important issues are not addressed yet. First, their
proposed algorithm is based on rating-based prediction,
instead of item-based recommendation. It is well known
that item-based recommendation is the ultimate goal of
practical recommender systems [18] and that optimizing
rating-based metrics cannot guarantee better item-based
recommendation performance. Second, their proposed al-
gorithm is optimized via cyclic coordinate descent, which
only updates one bit each time. This is suboptimal for a
combinatorial optimization problem. Third, only rating data
is modeled, but there are other types of feedback (implicit
feedback such as click, view and like) in recommender
systems. Fourth, auxiliary information of users and items
cannot be taken into account, thus cold-start problems can-
not be well handled. It is worth noting that multi-modal
hashing is very challenging and simple aggregation may
not work well. Finally, though the efficiency improvement
induced by binary representation has been reported in [16],
it is unclear how to balance the efficiency and effectiveness
of recommender systems, since hashing inevitably incurs
quantization loss.

To this end, we first propose a general framework of
discrete matrix factorization. It can take both explicit and
implicit feedback as input, by supporting squared loss and
logistic loss. Whatever loss function is used, the optimiza-
tion of this framework can be boiled down to a binary
quadratic programming (BQP) problem. To avoid bad local
optimum, it is better to solve BQP via semidefinite relax-
ation (SDR) followed by Gaussian randomization (GR). SDR



is known as an excellent solver of BQP [19], but suffers from
computational issues. In particular, regarding k-variable
BQP with a positive semidefinite matrix, SDR+GR induces
less than 36.4% degradation of the objective value, but costs
O(k3-5) for fixed precision [19]. This motivates the proposal
of block coordinate descent (BCD), compromising between
cyclic coordinate descent and SDR. Moreover, it will be
theoretically shown that BCD subsumes cyclic coordinate
descent when only one coordinate is in each block. To better
support item-based recommendation, an interaction-based
regularization is introduced, to penalize users’ non-zero es-
timated preference for unrated items. This also helps to deal
with the sparsity challenge of recommender systems, par-
ticularly in implicit feedback. For the sake of deriving more
compact and informative binary codes, balanced and decor-
related constraints are also imposed, as suggested in [17].
To incorporate auxiliary information of users and items,
we extend this framework by introducing extra hash codes
for auxiliary information and propose to learn hash codes
for users and items with precluding encoded knowledge in
extra codes. Interestingly, the fusion is hyperparameter-free,
providing some insights for multi-modal hashing. To better
show the advantages of binary representation, we further
propose a two-stage recommender system, consisting of a
highly efficient item-recalling stage and a highly accurate
fine-ranking stage. The item-recalling stage utilizes discrete
matrix factorization, since it can dramatically accelerate the
retrieval of the top-K preferred items.

Finally, we extensively evaluated the proposed frame-
work on 8 real-world datasets. The results show that the
proposed algorithms outperform the state-of-the-art base-
lines significantly. The proposed BCD-based optimization
can yield much lower objective values and significant higher
recommendation performance than cyclic coordinate de-
scent. In spite of hyperpameter-free, the extension for aux-
iliary information performs much better than competing
baselines, revealing that simply aggregation can not deal
with multi-modal hashing. The evaluation of the two-stage
recommender system shows that discrete matrix factoriza-
tion can significantly accelerate item recommendation with
less than 4% degradation of NDCG@20 in most cases.

This paper is an extension of our preliminary paper [20],
in which we incorporate auxiliary information of users and
items by a regression-based modeling, consider the logistic
loss function and introduce an interaction regularization. In
this article, we further deliver the following contributions.

o We propose a block coordinate descent (BCD) to di-
rectly learn binary codes for compromising the effi-
ciency and effectiveness of optimization. It is theoret-
ically shown that BCD subsumes cyclic coordinate de-
scent when each coordinate is considered a block. The
evaluation results show that the optimization algorithm
yields lower loss value and higher recommendation
performance.

o We propose a hyperparameter-free method to model
auxiliary information. The evaluation on multiple
datasets shows that it is much better at retrieving poten-
tially preferred items than the regression-based method
and other baselines.

o We propose a two-stage recommender system, consist-
ing of highly efficient item-recalling stage and highly

2

accurate fine-ranking stage. The evaluation results bet-
ter show the advantage of discrete matrix factorization
in accelerating the recommendation of practical recom-
mender systems.

o We conduct more extensive experiments on more and
larger-scale datasets, report more performance metrics
of recommendation, and compare the proposed algo-
rithms with more competing baselines. The evaluation
results better show the significant superiority of the
proposed algorithms.

2 RELATED WORK

We will review recent advance of hashing-based recommen-
dation algorithms. For comprehensive reviews of hashing
techniques, please refer to [21], [22]. For better presentation,
we organize them into two categories: quantization-based
methods, which first solve relaxed problems and then quan-
tize relaxed solutions, and optimization-based methods,
which directly tackle optimization with binary constraints.

2.1 Quantization-based Methods

Hashing can be categorized into data-independent or data-
dependent methods. The pioneer work of hashing in recom-
mender systems is to use data-independent hashing, i.e., Lo-
cality Sensitive Hashing (LSH), for clustering similar Google
News readers, so as to find similar users efficiently [1]. Then
a two-stage framework was proposed for scalable news
recommendation [23], by building hierarchical clustering on
the results of LSH. However, it is totally different from our
two-stage framework, which learns hash codes from rat-
ing data and auxiliary information jointly. Data-dependent
hashing, depending on the actual points in the dataset, at-
tracts more attention in other scenarios of recommendation
in recent years. For example, random projection was applied
for mapping user/item latent factors from regularized ma-
trix factorization into a hamming space [24]. Similarly, Zhou
and Zha [15] exploited iterative quantization (ITQ) for gen-
erating binary codes from real-valued user/item latent fac-
tors. In order to derive compact hash codes, the decorrelated
constraint was imposed on user/item real-valued latent fac-
tors [14] before quantization. However, because of the loss of
latent factors” magnitudes induced by quantization, hashing
only preserves similarity between user and item, rather than
inner product based preference [16]. Therefore, Zhang et
al. proposed to impose a constant feature-norm constraint
on user/item real-valued latent factors, and then quantized
magnitudes and similarity separately. The relevant work can
be summarized as two independent steps: relaxed learning
of real-valued latent factors with specific constraints, and
subsequent binary discretization.

2.2 Optimization-based Methods

The two-step methods suffer from a large quantization loss
according to [17]. Therefore, Zhang et al. proposed to di-
rectly learn binary codes in matrix factorization with binary
constraints by cyclic coordinate descent [17]. For the sake of
obtaining informative and compact hash codes, the balanced
and decorrelated constraints were further imposed. How-
ever, this algorithm was only designed for rating data, but



not applicable for binary or implicit feedback. Hence, Zhang
et al. proposed to optimize the pairwise ranking between
interacted and non-interacted items for each user with bi-
nary constraints [25]. The optimization was also based on
cyclic coordinate descent. Lian et al. proposed a unified
framework for both explicit and implicit feedback datasets
by the introduction of interaction regularization [20] and
further incorporated auxiliary information by a regression-
based method. Zhang et al. built Deep Belief Network for
modeling auxiliary information and incorporated its repre-
sentation into collaborative filtering [26]. Liu et al. proposed
discrete factorization machine for better modeling auxiliary
information [27] and learned hash codes also based on cyclic
coordinate descent, but targeted rating data and only ranked
rated items.

Compared to existing research, the proposed algorithm
has the following differences (also advantages) in addition
to the ones' inherited from the preliminary work [20].
First, the optimization problem is based on block coordinate
descent, which can subsume the widely-used cyclic coor-
dinate descent. Second, the proposed method for modeling
auxiliary information is hyperparameter-free, efficient and
effective for item recommendation. Finally, we propose a
two-stage recommender system, better showing the advan-
tages of binary representation in practical recommendation.

3 PRELIMINARY

Explicit feedback is usually represented by a rating matrix
while implicit feedback by a preference matrix. They are
collectively referred as a rating matrix in the sequel. Assume
there are m users and n items, then the rating matrix R is
of size m X n, and its each non-zero entry r;; indicates a
user’s rating/ preference for an item j. The observed entries
are denoted by Q = {(¢, j)|ri; is known}. The set of items
which a user ¢ rates is denoted by I; and the set of users
rating an item j by U;.

3.1 Matrix Factorization with Priors on Missing Values

Weighted Regularized Matrix Factorization (WRMEF) is a
very effective method for collaborative filtering for implicit
feedback [28] and optimizes the following objective function

D wij(riy =Pl @) + A O Pl + 1Y a1,
0 i J
where w;; denotes the weight of the rating r;;, p; and
q; € R* represent latent factors of user ¢ and item j, respec-
tively. w;; is set to 1 if (¢, j) ¢  and to a tunable parameter
a (> 0) otherwise according to [28]. This weight is also
considered the confidence of the rating, so ratings have
much higher confidence than others. This first part of the
objective function can be decomposed into two components,

S wiilri—pigy)’ =a > (ry—pia;)’+ Y (p7a)°
i.J (i,4)€Q (1,5) €8

where 7;; = 0 if (i,7) ¢ €. Therefore, in addition to clas-
sical {o-norm, WRMEF intrinsically imposes an interaction
regularization on missing values, which penalizes non-zero

1. Handling multiple loss function, taking both explicit and implicit
feedback as input
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preference prediction of unrated items for each user. It is
very nature to extend the regularization to rating data, as
done by [29], and the effect for improving item recommen-
dation was empirically studied on multiple datasets. The
interaction regularization, also dubbed implicit regulariza-
tion [30], has also been extended to tensor factorization. We
will also adopt this interaction regularization for handling
both explicit feedback and implicit feedback.

3.2 Binary Quadratic Programming

Binary quadratic programming (BQP) is a classical com-
binatorial optimization problem [19], which minimizes a
quadratic function with respect to binary variables, i.e.,

min 7 Az, st.23=1,d=1--- ,k (1)
TER™
where A is a real square matrix. The BQP is well-known as a
computationally difficult problem, particularly belonging to
the class of NP-hard problems. Computing good solutions
is quite a difficult task.

Semidefinite relaxation (SDR) technique is a power-
ful computationally efficient approximation technique for
many difficult optimization problems including binary
quadratic programming. A crucial step in deriving a SDR of
BQP is to observe that z7 Az = trace(AzzT). Introducing a
new variable X = zx” and noting that X = zx' is equiv-
alent to X being a rank-one positive semidefinite (PSD)
matrix, we can obtain the following equivalent formulation

min trace(AX)
Xesk

s.t. Xgq =1, rank(X) =1,

where S denote the set of PSD matrices of size k x k. The re-
formulation allows us to identify the fundamental difficulty
of solving BQP, i.e., rank(X) = 1. Thus, we may drop it to
obtain the following semidefinite relaxation of BQP:

min trace(AX), s.t. diag(X
i trace(AX), st diag

) = 1. @)
SDR can then be solved, to any arbitrary accuracy (e),
in a numerically reliable and efficient fashion, using cus-
tomize interior-point algorithms [31] with time complexity
of O(k351og(1/e)). However, it remains unknown how to
convert the optimum of Eq (2) into a feasible solution of
Eq (1).

If the optimal X* is of rank one, then X* = z*z*7,
and x* is the optimal solution of BQP. Otherwise, Gaus-
sian randomization procedure can be applied, as shown in
Algorithm 1, since X™ is also the optimal solution to the
following stochastic BQP problem,

)I(niI}L Eeno,x) €T AE), sit. Eeonio,x)[&] = 1.
st

According to [32], the approximation accuracy of the
SDR followed by Gaussian randomization is no worse than
2 ~ (.63661 when A is PSD. In other words, even though
BQP is NP-hard, this algorithm can obtain a solution whose
objective value is at most 2 times the optimal value of SDR.



Algorithm 1: Round(X): Gaussian Randomization

Input: The SDR solution X * € RF**

Output: =* the best approximated feasible solution
1 for/{=1,2,--- ,kdo
2 | generate & ~ N(0, X*);
3 L construct a feasible point x; < sign(&;);

4 determine £* < argminge(y,... k) xl Azy;
5 &* < x4+ as the best approximated solution of BQP;

4 DISCRETE MATRIX FACTORIZATION AND EXTEN-
SION

The proposed algorithm treats binary codes as parameters
and learns codes directly by optimization algorithms. De-
noting ¢; € {+1}* binary code of user i and v; € {+1}*
binary code of item j, the inner product is ¢7vp; = k —
2H(¢;, ¢, ), where H(¢, 9) denotes the hamming distance
between binary codes. Based on CPU instructions (xor and
__popent), hamming distance between binary codes is ex-
tremely efficient. Below, we elaborate how to directly learn
binary codes for users and items.

4.1 Loss Function

Let’s first figure out the loss function. As mentioned above,
we need to introduce the interaction regularization. More-
over, we should take both explicit and implicit feedback
as inputs. Therefore, the loss function for discrete matrix
factorization is formulated as follows,

L= Z Ui, @ ;) +p Z (o] ;)
(i,5)€Q (i,§) 2 3)
sty € {£117,9; € {£1}F,

where Z(rij,fij) is a convex loss function, which can be
square loss {(r;;,7:;) = (ri; — f“ij)2, and logistic loss
U(rij ;) = log(l 4+ e~"i"i) in this article. Note that
logistic loss can be used for binary feedback or implicit
feedback [33]. Therefore, the capability of modeling both ex-
plicit and implicit feedback datasets benefits from the usage
of different loss functions and introduction of interaction
regularization.

To ensure binary codes compact and informative, the
balanced and decorrelated constraints are usually imposed
so that shorter code can encode more information [34]. If
D = (¢, , 0" and ¥ = [1py,--- ,1,]7, the balanced
constraints are 17® = 0,17% = 0, and the decorrelated
constraints are ®7® = mI;, T W = nl,. Since Eq (3) itself
is a combinatorial optimization problem, these constraints
make this optimization much more challenging. Previous
work usually softened these constraints by introducing
real-valued delegate variables with those constraints and
minimizing the distance between binary codes and real-
valued delegations. However, the effect of balance may
be different from decorrelation, so the joint modeling may
not give play to their respective advantages. Therefore, we
suggest the following two regularizations to impose these
two constraints separately,

Ri =@ — Byl + ¥ — Dy,

4
st.1"B,=0and 1D, =0 @)

and ) )
Ry = ||® — Ballp + ¥ — Dal|F,

st. BY By = mI;, and DI D, = nlj,
where By, and B, are delegations of ® for balanced and
decorrelated constraints respectively, and D, and Dy are

delegations of W. Therefore, discrete matrix factorization
optimizes the loss function:

©)

L+ aRy + BRs. 6)

min
®,By,Bq,¥,Dy,Dg

4.2 Optimization

We follow alternating optimization for optimizing the loss
in Eq (6). Alternating optimization takes turn learning pa-
rameters iteratively. Being independent to £(-,-), the objec-
tive functions with respect to By, By, Dy, D, are easy to
optimize but elaborated at the end of this section. In case
of squared loss, the objective functions related to ¢; and v,
correspond to binary quadratic programming problems, but
inhomogeneous?. Due to the symmetry of ¢; and ;, below
we only take ¢; as an example. The objective function with
respect to @; is formulated as,

i (1 - p)el W, + pPT W) ¢,
o in & (1—p)%; pe W)

—2¢] (¥]r; + aBy(i,:) + BBa(i,:)) (7)

where ¥, is a submatrix of ¥ which only includes rows of
rated items by the user 4, and r; is his/her rating vector over
rated items. B(i,:) is denoted the i-th row of matrix B.

In case of logistic loss, in spite of non-linearity, the
objective function can also be boiled down to inhomoge-
neous binary quadratic programming problems by seeking
a upper variational quadratic bound [35]. In particular, the
upper bound of log(1 + e "is®¥%i), r;; € {+1}, can be
obtained based on the following inequality,

log(1 + e_r”d"iT’/’f)
T b 147y
=log(1+ e ¥1) — Tj(ﬁlﬂ’j

<(Fi) (o7 ;)" — ) - %(Tij%Ti/’j + Fij) + log(1 + €"7)

where A(z) = 1 tanh(z/2) = & (o(2)—1) and the equality
holds only if 7;; = ¢7;. Note that A\(0) = £, \(z) =
A(—x). Based on this upper bound, the objective function
for user ¢ is to solve

i T(®wTdiag(\; — p)¥, + p¥T W) o,
o in & (] diag(X\i — p)®; + pT' V)
—2¢] (U]r;/4+ aBy(i,:) + BBa(i,:)) (8)

where A; = [A(7;)];er,. In fact, the quadratic upper bound
exists for any convex loss functions with Lipschitz contin-
uous gradient, so this technique can be applied to many
other convex loss functions. It is worth noting that we
need to keep {#;;|(i,j) € Q} up-to-date after updating ¢;
in this case. Below we study how to solve the following
inhomogeneous binary quadratic programming problem,
min Az — 2bT x, 9
we{t1}*
where A is positive semidefinite.

2. Note that rating should be scaled to align with the range of
preference estimation [17].



4.2.1 Cyclic Coordinate Descent

As we investigated, most existing work of hashing-based
recommendation uses cyclic coordinate descent (CCD) for
optimizing binary quadratic programming problems. CCD
learns one bit each time given other bits fixed, so that the bit
is optimally updated each time. Assuming the bit 24 to be
optimized, the objective function is then reformulated as

min addl'?l + Qxd(adTac — adda:d) — 2bgxq, (10)

Ide{il}

where agq = A(d, d) and a4 the d-th row of the matrix A.
This objective function is equivalent to

: T
min _ z4(agx — bg). 11
ca€iE1} d( d d) (11)
Then the optimal x4 is obtained by
1, ifalx —by <0
=< —1, ifalx —bg >0 (12)
unchanged, otherwise

Note that x4 keeps unchanged when a’x = by, implying
that it is very important to set a good initialization to .
The updating rule is applied for each bit iteratively until
convergence (e.g. « doesn’t change any more).

4.2.2 Semidefinite Relaxation

Section 3.2 only discusses semidefinite relaxation of ho-
mogeneous binary quadratic programming. Here we dis-
cuss inhomogeneous ones. We first introduce a variable
t € {1}, and consider the problem,

. T A -b r
minfz”, ¢] |:_bT ol £l

which can be solved by the aforementioned techniques,
i.e.,, SDR followed by Gaussian randomization. Assuming
[Z*,t*] is an optimal solution to this problem, x* = &* x t*
is the optimal solution of the problem in Eq (9). This
equivalence can be observed by rewriting this problem as
ming ; 7 Az — 2tb” x. More particularly, if t* = 1, * is
the optimum of Eq (9); if t* = —1, —&* is the optimum of
Eq (9).

4.2.3 Block Coordinate Descent

Although SDR is known as an excellent solver for binary
quadratic programming, it suffers from computational is-
sues and its time complexity is up to O(k3) for fixed
precision. Therefore, we strike a balance between accuracy
(SDR) and efficiency (CCD), by proposing a block coordi-
nate descent (BCD) algorithm for optimization. Assuming
the block coordinate to optimize is denoted by x; € {1}
of a block [, and splitting the A,  and b according to the
dependence of x;, the problem in Eq (9) can be reformulated
as

(13)

] {Au,l)

: T
min [z, x] Ay
T

x e{E1}F1

Due to the symmetry of A, A(l,l_) = A, Ignoring the
terms independent to x;, the objective function is then
equivalent to

A w} T
1,0 I _ 2 bT bT l: l:| i
A(uJ va b |

. T T
min  x A pnx; — 2xi (b — A, ~x7). 14
mefaipm LD 0 (b )7 (14)
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The problem size can be much smaller than the original
problem in Eq (9) so that efficiency can be dramatically
improved. Compared to CCD, this problem learns x; jointly
so that the approximation accuracy can be improved. Note
that A, i.e., the principle submatrix of PSD A, is also
PSD, this returns to the inhomogeneous BQP.

Due to Gaussian randomization, it is still unknown how
BCD correlates with CCD when only one coordinate is in
each block. The following theorem answers this question.

Lemma 1. When ki =1,  and b and A are scalars in Eq (13),
denoted by x, b, a respectively, the optimum of its SDR is

1 b>0
(zt)* =4 —1 b<0 (15)
0 b=0

Proof. When k; = 1, Eq (2) can be rewritten to

mitna —2bxt, st. —1<zt<1
Z,

Then the optimum of zt depends on the sign of b and is
yielded in Eq (15). Note that when b = 0, the objective
function is constant, so the optimum is the initial value.
Here X in Eq (2) is assumed to be initialized as an identity

matrix. O
T 1 p
Lemma 2. ] ~ N(O0, , then
/ L/] ( {p 1})
1 1
P(zy >0) = 3 + = arctan(%]ﬂ).

Proof. P(zy > 0)
x2 4+ y2 — 2pxy

(o] o0 1
/0 /0 my/1 — p? p( 2(1 —p?)
1 [ [ 1
= /0 /0 V1—pexp(— 5(12 +y? — 2pzy))dady

1 [ [ 1
== / / exp (— = (u® +v?))dudv
™ .Jo _ D v 2
\/l—p2

AT >

=— exp(——)rdrdf
™ Jo — arctan(—2—) ( 2)
1

)dxdy

1-p2

™
== (5 + arctan(

™ 1— p2
1 1
=— 4 — arctan( P )
2 ™ 1-— p2
O
1 g T
fp) = % + %arctan( 1[: p2)
08 f(p)=p
|
06 |
O Y
0.4 }
|
|
0.2 \
|
|
0 |
1 05 0 05 1
p

Theorem 1. CCD is almost equivalent to BCD when only one
coordinate is in each block.



Proof. 1t is easy to show that Gaussian randomization fol-
z 1 (xt)* _

t} ~ N(O0, {(xt)* 1 ]) when k; = 1. Lemma 2
implies P(z = 1) = P(&t > 0) = 3 + = arctan(%)
According to Lemma 1, x = sign(b) if b # 0and P(z = 1) =
0.5 otherwise. Therefore, solving Eq (10) via SDR yields the
same solution if by — alx # 0. The differences lies in the
rare case of by — agm = 0, where BCD performs uniform
sampling from {+1} while CCD remains it unchanged. O

lows

Algorithm 2: BCD(A, b): Block Coordinate Descent
for BQP

Input: a psd matrix A and b

Output: =* for ming x7 Az — 2b7 x

1 Initialize x;

2 repeat

3 | Randomly divide {1,--- ,k} into #bk blocks ;

4 | forl={1,--- #bk} do

5 X* ¢ Solve SDRof Eq (14);  // O(k})
6 L x; + Round(X™); /1 O(k3)

~

until Convergent;
Tt — x;

@®

The overall procedure of block coordinate descent for
BQP is shown Algorithm 2 where k is assumed a multiple
of #bk. Note that random grouping is done in each iteration
for the sake of better optimization. The time complexity
is O(k¥°k), where ki = . The empirical comparison
between BCD and CCD for discrete matrix factorization
on multiple datasets is illustrated in Fig. 1 and Fig. 2.
They clearly show that BCD is much better than CCD
at minimizing the loss function, though BCD costs more
time. With the growing block size, the loss can be further
reduced, but the running time also increases. As a result,
block coordinate descent indeed strikes a balance between
efficiency and effectiveness of optimization.

We next investigate how to learn delegate variables,
including By, By, Dy and D;. The updating equation of
By, is similar to D, and the updating equation of By is also
similar to D, so we only consider By, and By.

Updating B;. We use Lagrangian multiplier method to
solve the following optimization

min |® — By||% + 17 Byn. (16)
By,mn
The optimal n* = 2&T1 and optimal B} = & —
$1(n*)’ = (I - %11%)@. Therefore, the optimal By is
the centralized ® since I,,, — %llT is known as a centering
operator. Substituting them back to Eq (16), this equals to

1

[-117®|7 = 27117 ® = |17 @ (7. 17)

n
Therefore, the proposed regularization for balanced
constraints is equivalent to |17 ®||?, constraining column-
sum to be small.

Updating B,. The objective function for learning By is
equivalent to

max trace(®” By), s.t. BY By = mI
d

(18)

2.5 9 —
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Fig. 1. Convergence curve of the overall objective function.
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Let Bd = \/%Bd, then the problem is the same as the
projection of a matrix onto the Stiefel manifold {A €
R™*¥| AT A = I,}. The projection can be solved analyti-
cally [36]. In particular, let ® = UXVT is the thin SVD
of ®, where each column of U € R™*¥ and V ¢ RFXk
corresponds to a left and right singular vector respectively,
then the optimal By is given as follows:

B =/mUVT.

The optimality can be easily established by the Von
Neumann’s trace inequality [37], that is trace(AB) <
>, 0i(A)o;(B), where 0;(A) is the i-th largest singular
value of A.

(19)

4.3

Optimizing discrete matrix factorization is NP-hard, and
an approximation algorithm is suggested. A good initial-
ization algorithm is important for faster convergence and
for approaching better local optimum. Here we first solve a
relaxed problem of Eq (6) by ignoring the binary constraints,
and then quantize the real-valued latent factors to generate
hash codes for users and items. It is worth noting that
balanced and decorrelated constraints are also imposed,
which can lead to a smaller quantization error [17].

The relaxed problem of Eq (6) is also optimized by alter-
nating optimization. The optimized loss function is the same
as Eq (7) for squared loss and as Eq (8) for logistic loss. The
updating equations are the same except ® and ¥ because
of ignorance of binary constraints. Due to advantages of
efficiency and effectiveness, coordinate descent is used for
optimization, and the updating equations can be derived
according to [20], [38], but not elaborated any more in this
extension. Its time complexity is O(|Q2|k + (m + n)k?).

Let the solution of the relaxed problem of Eq (6)
be (®*, ¥*), then ®, ¥ is initialized to feasible solution

Initialization



sign(®*) and sign(¥*) respectively, where sign : R —
{£1} is a sign function. Alternatively, ITQ can be used to
obtain a better solution, as suggested in [15].

4.4 Extension with Side Information

Users and items usually have auxiliary information, which
can significantly improve recommendation performance,
particularly in cold-start cases. The modeling capacity of
each binary dimension is finite and so much smaller than a
real dimension, so many real-valued models for auxiliary
information may be not suitable for binary ones. In our
preliminary paper, a regression-based model was proposed,
to propagate information from auxiliary information to bi-
nary codes. In particular, if item’s auxiliary information is
available, the following constraint is added into Eq (6),

Ra=_ vy — Uyl (20)
J

where y; € R/ is a feature vector of an item j and U is
a regression coefficient, or called a mapping matrix, from
y; to 1;. Due to data heterogeneity and limited modeling
capacity, it is difficult for 9); to sufficiently encode auxil-
iary information of items. Therefore, this method may not
work very well. This is also verified in the experiments.
Moreover, the coefficient for the constraint needs to be fine-
tuned in the validation set. Motivated by collaborative topic
regression [39], we propose a novel parameter-free model,
called DMF-AUX, for incorporating auxiliary information.
Due to the symmetry between user and item, below we only
consider how to incorporate items’ auxiliary information.
Particularly, in addition to binary code );, each item is also
encoded with g; due to its auxiliary information. The final
representation is then t; + q; according to [39]. This is in
contrast to the regression-based model only with item code
1;. In this case, the preference estimation #;; can still be
efficiently computed based on the following equation,
ry= ol ra)=lelell W] ey
Since v, + q; € {—2,0,+2}*, is not binary any more,
we can not use the parameter learning of CTR [39], which
learns v; = 1; + q; and q; alternatively. To this end, we
propose the following objective function in the DMF-AUX
model® to learn 1); and g; separately,

1 2
L=1lm >, (T‘ij—g(@r(l/fﬁ-q]')))
(i,5)€Q
1
0 Y (587 +a) +e X IWg; —y,l? D
(4,5) ¢ J

s.t. ¢, ;,q; € {£1}F and WITW =TI,

where € approaching oo indicates that the model is
hyperparameter-free and that g; is only determined by its
auxiliary information. The coefficient 3 keeps the preference
estimation 7;; in the same range as before. The last term is
motivated by SVD of the feature matrix Y. Without binary
constraints, the optimal W* and Q* can be yielded by

3. For brevity, we ignore the balanced and decorrelation constraints
and focus on the squared loss function.

7

SVD [40]. Essentially, the learning of q; seamlessly inte-
grates SVD with a well-known hashing methods - ITQ [41].
The column-orthogonal W plays roles in reducing the di-
mension and balancing the variance.

Its optimization is not identical to Eq (3), but the up-
dating rule of ¢; is quite similar as long as introducing
; = 1(;+q;). Below we elaborate to derive the updating
rule of 1);. First we only keep the terms dependent on ;,

L= Y (0T Tty — (g — 50T a)oT )+

i€lU;

1 1
PO (GO b0 s+ 5 bl ay)
i¢U;
This is equivalent to
AL; =] Hjap; — 247 (2®7r; — H;q;), (23)

where H; = (1 — p)@?i’j + p®T®. Therefore, minimiz-
ing this objective function can also be solved by binary
quadratic programming using aforementioned algorithms.

Since € — o0, the learning of Q and W is independent
to the rating data, and particularly rewritten as follows:

: T2 T
Weﬂ{fﬂ{r&lg{ﬂ}wk Y —QW" |5, st W W =1, (24)
The optimization is prior to the learning of ® and ¥,
and achieved by taking turns updating Q and W until
convergence.

Given W fixed, each column of @ can be updated
independently to each other. Particularly, the optimal d-th
column g(g4) is only determined by

min
qeayE{£1}n
where wg) is the d-th column of W. Here the balanced
constraint 17'Q is additionally imposed, to ensure each bit
be as informative as possible. In this case, the optimum
q(y) = sign(Yw(g) — median(Yw(qg))).

Given Q fixed, the objective function with respect to W

can be reformulated as follows,

min QWY — Y[ = |[W — YT Q|[f + const,

gy — Ywa | st.17q@q =0, (25)

| 6)
st W W =1

which is the same as projection of Y@ onto the Stiefel
manifold as discussed before.

4.5 Complexity Analysis

The overall optimization procedure with detailed time com-
plexity is shown in Algorithm 3. In the algorithm, we
first initialize ®, ¥ via the initialization algorithm of DMF
as discussed in Section 4.3 (Line 1-2) and W via the k
right singular vectors of Y (Line 3-4). In the iteration,
we first update user binary codes (Line 6-11) and then
item binary codes (Line 12-16) via block coordinate de-
scent. In this article, Y is assumed a sparse matrix, so
the major cost of partial decomposition based on Krylov
subspace methods is from a matrix-vector multiplication of
Y. This cost is denoted T;,y+. The cost of learning @Q is
O(kT it + (n+ f)k?) [42]. The overall cost of learning ®
and W is O((m + n)k3Pk#iter + |Qk?), where k; is the
block size and #iter is the number of iterations in BCD
until convergence. In practice, #iter = 1 works well.



Algorithm 3: DMF-AUX

Input: Rating matrix R, item feature Y, bit length k,
regularization coefficient p.
Output: &, ¥, Q
1 & U < DMF (R, k, p); // O(|Q|k + (m + n)k?)
&, U « sign(®*), sign(¥*);

2
3~~~y W SVD(Y k), // OKT s + (f +n)k?)
4 repeat

5 | ford={1,---,k}do

6 | q(a)  Solve Eq (25); /) O(Toit)
7 W < Solve Eq (26); /! OKT s + fk2)
8 until Convergent;

9 repeat

0 | T=1(T+Q);

11 | Prepcompute U7 W; // O(nk?)
12 | fori={1,---,m}do

13 A (1= p)OlW, + p0TF; // O(|L;|k?)
15 ¢; + BCD(A;, b)); /] O(k¥>kftiter)
16 | Precompute &7 ®; // O(mk?)
17 forj={1,--- ,n} do

18 H; — (1-p)®7®; +p2"®; // O(|U;|k*)
19 g; < 2®]r; — H;q;; // O(|Uj|k + k?)
20 W; « BCD(H:, g)); /] Ok kiter)

21 until Convergent;

5 Two-STAGE RECOMMENDER SYSTEM

Several hashing-based recommendation algorithms were
proposed [15], [16], [17], but its practical value for real-
world recommender systems is not sufficiently discussed.
The knowledge these literatures deliver is that these algo-
rithms can improve the efficiency at the expense of recom-
mendation performance. However, if the recommendation
performance degrades a lot, these algorithms may be not
useful in practice. Deviation from evaluation of real-world
recommender systems makes the reported results about
small recommendation performance degradation untrusted.
Therefore, we propose a two-stage recommender system,
consisting of a hashing-based item-recalling stage and a
fine-ranking stage. The framework is demonstrated in Fig. 3.

In the first stage, hashing-based recommendation algo-
rithms will be trained on the input rating matrix, the auxil-
iary information of users and items. These algorithms will
output user binary codes and item binary codes. Given each
user’s binary code, we can estimate his coarse preference
for all unrated items based on the extract/approximated
top-K nearest neighbor (NN) search. Since preferences are
estimated as hamming distance between binary codes, its
computation can be very efficient via bit-wise operations.
And preferences are integer-valued and bounded, so the
full ranking of all unrated items with respect to each user
is also very efficient. Furthermore, the extract knn search
can be accelerated by multi-index hashing [10], whose time
complexity can be sublinear. The returned items by the item-
recalling stage are considered item candidate, in which the
user may be interested. Note that the number of candidate
items is much smaller than unrated items.

< User Info. Rating Matrix Item Info. <

Y Y
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Complex RS

Y

:
Score function
Lromtocery

A A

Item-Recalling
Supjuey-aui4

Top-K NN Search P Scoring and Ranking

A 4

Item Candidate Recommended Items

Fig. 3. The framework of the two-stage recommender system

In the second stage, many complex recommendation
algorithms will be also trained on input rating matrix, the
auxiliary information of users and items. Currently, we
assume the second stage algorithms are trained indepen-
dently to the first stage algorithms. Guiding the training
of the second-stage model with the first-stage model is
left for future work. These complex recommendation can
be Factorization Machine [43], Collaborative Topic Regres-
sion [39], Neural Factorization Machine [44], Collaborative
Knowledge Embedding [45] and Variational Autoencoders
[46]. In these models, user parameters are usually interacted
with items’ and even dot product will be replaced some
non-linear functions, so the estimation of preference may be
highly time-consuming. Therefore, it is often the case that
only a small part of randomly-drawn items are considered
as item candidate [44]. This is not very reasonable from the
perspectives of real-world recommender systems. Instead,
it is much more reasonable that these complex algorithms,
outputting a scoring function after training, score and rank
the candidate items returned by the item-recall stage. Since
the number of candidate items is much smaller than unrated
items, time cost of this step has been dramatically reduced.

Therefore, the proposed two-stage recommender system
also addresses the efficiency issues of recommendation of
complex models, at the same time of better understanding
the benefit of hash-based recommender systems in real-
world scenarios. This plays an important role in incor-
porating more complex recommendation algorithms into
practical recommender systems.

6 EXPERIMENTS
6.1 Datasets

The evaluation of discrete matrix factorization is conducted
on 4 explicit feedback datasets and 4 implicit feedback
datasets. The 4 explicit feedback datasets are also converted
into implicit feedback by treating ratings of higher than each



user’s average score as “like” preference. Table 1 summa-
rizes statistics of these datasets. The datasets vary in the
numbers of items and ratings. The Yelp dataset includes
users’ ratings for points of interest. The Amazon dataset is
a subset of customers’ ratings for Amazon books [47]. The
Netflix dataset is from the well-known Netflix Prize. The
rating scores of these three datasets are integers from 1 to
5. The MovieLens dataset is from the classic MovieLens10M
dataset. The rating scores are from 0.5 to 5 with 0.5 gran-
ularity. Following convention of evaluating CF algorithms,
we filter these 4 datasets such that users rated at least 20
items that were rated by at least 20 users. The first implicit
dataset is CiteULike [48], where articles are collected by
users into their reference libraries. The Gowalla dataset in-
cludes users’ check-ins at locations. Because of low density,
it is less strictly filtered such that users check-in at least 10
locations which were checked in by 10 users. The LastFM
and EchoNest dataset are based on users’ play count of
songs. Following [49], we include songs a user listened to
at least 5 times as positive feedback.

When evaluating the extension of discrete matrix factor-
ization, we only choose the Amazon dataset and the Yelp
dataset, where most items are associated to a set of textual
reviews. For each item, we aggregate all textual reviews,
filter stop words and represent them by bag of words. We
follow [39] to use tf-idf for picking up the top 8,000 distinct
words into the vocabulary. To better show the effect of
auxiliary information, we only remove users and items with
fewer than 10 items. Table 2 summaries data statistics.

For each user, we randomly sample his 80% ratings as
training set and the rest 20% as testing test. We fit a model
to the training set and evaluate it in the test set. We repeat
5 random splits and report the averaged recommendation
performance metrics.

6.2 Evaluation Metrics

The recommendation performance is assessed by how well
rated items in the test set are ranked among all unrated
items in the training set. We exploit three widely-used
metrics in ranking evaluation: Area under ROC curve
(AUCQC) [50], Recall [28], [39] and NDCG [18]. AUC measures
the probability that a randomly “liked” (i.e. rating larger
than user’s average score) items in the test set ranks above
a randomly chosen “disliked” items. Recall at cutoff K,
denoted as Recall@K, is the fraction of “liked” items in the
top-K ranking list over the total number of “liked” items
in the test set. NDCG at cutoff K, denoted as NDCG@K,
rewards method that ranks “liked” items at the top of the
top-K ranking list. The “liked” items ranked at low positions
of ranking list contribute less than “liked” items at top
positions. In contrast to NDCG, no discount factors are
used in AUC and Recall so that items in the ranking list
are treated equally. AUC and Recall differ in the length of
ranking list, and AUC consider the ranking list of all unrated
items in the training set.

We also report the NDCG computed only on the rated
items in the testing set. This metric was used in previ-
ous studies on binary representation of recommender sys-
tems [15], [16], [17], but does not consider the real world
case scenario in which all unrated items in the training set
should be ranked [29].

6.3 Parameter Settings

The code length of binary representation is set 64 by default.
The parameters (p, o, [5) are tuned by held-out validation,
ie, 10% of the training split. p (< 1) is tuned within
{1076,1075,--- ,1071,1}, both o and 3 are tuned within
{104,103, --- ,10',10%}. The number of iteration is set
to 20. The algorithms are implemented via MATLAB with
MEX C++ and released in a open-source framework of a
MATLAB-based recommender system®.

6.4 Baselines of Comparison

We compare discrete matrix factorization with the following

baselines.

« DCF [17], the state-of-the-art regression-based method
without auxiliary information and also directly tackles a
discrete optimization problem via cyclic coordinate de-
scent, subject to the decorrelated and balanced constraints.
The parameters o and 3 for the decorrelated and balanced
constraints are tuned within {107%,1072,--- [ 10%,102}.

o BCCEF [15], is a binary code learning method for collab-
orative filtering. It solves a relaxed matrix factorization
but imposes a balanced regularization for latent factors
instead of the fy-norm regularization. It then uses the
ITQ method [41] to derive the binary codes for users and
items. The coefficient for the balanced regularization is
tuned within {0.01, 0.03,0.05,0.07,0.09} according to the
results of their sensitive analysis.

o PPH [16], is a preference preserving hashing based matrix
factorization. Different from BCCF, PPH imposes constant
feature norm constraints so that users’ preferences can
be well approximated by similarities, since the authors
argued that quantization would loss the magnitude infor-
mation of latent factors. PPH then quantizes each latent
factor into k-bit phrase codes and 2-bit magnitude codes.
The coefficient for the constant feature norm is tuned
within {0.01,0.5,1,2,4,8,16}.

« CH [14], Collaborative Hashing is also a heuristic method
for learning binary codes. CH first solves matrix factor-
ization on the full-matrix, by treating all unrated items
as zero-rated. Following [17], we also implement CH as
argming v |[R — UVT|%4, st. UTU = mI,, VTV =
nly. CH then quantizes the U and V based on the sign
function.

The comparison with real-valued matrix factorization will

be studied when evaluating the two-stage recommender

system. The source codes of these baselines and the two-
stage recommender system are also released in the github
repository.

We then compare the extension of discrete matrix fac-
torization for auxiliary information, denoted as DMF-AUX,
with the following baselines.

« DCMF, the extension of DMF in our preliminary
work [20] based on the regression-based modeling. In
this work, we assumes binary codes are determined by
ratings and auxiliary information jointly. The parameter
Ao for modeling item textual features is tuned within
{0,1,10,50,100,500,1000}. It is worth noting that this
parameter in the DCMF initialization algorithm should be

4. https:/ / github.com/DefuLian/recsys
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TABLE 1
Statistics of 8 datasets for evaluating discrete matrix factorization.

Datasets Yelp Amazon  MovieLens Netflix CiteULike = Gowalla Lastfm EchoNest
#users 18,454 35,736 69,838 429,584 7,947 29,858 357,847 766,882
#items 14,670 38,121 8,939 17,764 25,975 40,988 156,122 260,417
#ratings 869,126 1,960,674 9,983,739 99,884,887 134,860 1,027,464 16,893,651 7,261,443
Density ~ 3.21e-03  1.44e-03 1.60e-02 1.31e-02 6.53e-04 8.40e-04 3.02e-04 3.64e-05
TABLE 2 plays the same important role in the rating-regression loss.

Statistics of the Yelp and Amazon datasets for evaluating the extension
of discrete matrix factorization.

Datasets  #users  #items  #ratings  Density Feature size
Yelp 77,277 45,638 2,103,895  0.06% 51,056,602
Amazon 158,650 128939 4,701,968  0.02% 127,755,615

re-tuned, since loss value in the rating-based part may
change a lot from real-valued latent factors to binary
codes.

« DMF+DH, this is a straightforward baseline, which learns
item Document Hash (DH) codes and binary codes in
DMF independently. Then each item is represented by
direct addition between document hash code and item
binary code. The difference from DMF-AUX lies in the
optimization algorithm.

« DMF, without auxiliary information considered.

Also, the comparison with a real-valued method, i.e., collab-

orative topic regression [39] will be studied when evaluating

the two-stage recommender system at the presence of aux-
iliary information of items.

6.5 Results and Analysis
6.5.1 Comparison with the State of the Art

Table 3 shows the recommendation performance, including
NDCG@100, Recall@100, and AUC, as well as NDCG-RI
(NDCG on the rated items only) of DMF and competing
baselines on explicit feedback. We have the following key
observations.

First, the proposed DMF algorithm consistently and
significantly outperforms the state of the art with respect
to Recall@100 and NDCG@100. The improvements in the
denser datasets such as MovieLens and Netflix are higher
than 300%. DMF is also significantly better than the state of
the art with respect to AUC in all datasets except Yelp. In
contrast, though DCF shows better recommendation per-
formance with respect to NDCG-RI, the differences from
other algorithms are marginal. Therefore, biasing the objec-
tive function with the interaction regularization may loose
performance of ranking rated items only but result in the
superior performance of DMF of ranking all unrated items
in the training set to baselines. Of course, the superior
performance of DMF is also induced by the balanced and
decorrelated constrains.

Second, CH shows good recommendation performance
compared to BCCF and PPH, and sometimes even better
than DCF. One important potential reason is the considera-
tion of all unrated items as zero-rated. This is similar to DMF
by setting p = 1, meaning that the interaction regularization

Another possible reason is that CH incorporates the de-
correlated constraints for learning relaxed latent factors of
users and items.

Table 4 shows the recommendation performance includ-
ing NDCG@100, Recall@100 and AUC of DMF and com-
peting baselines in the 8 implicit feedback datasets. Note
that there is no rating in implicit feedback, so that NDCG-
RI can not be computed any more. These results can not
be compared against that of explicit feedback, since the
testing set is not of the same size. DMF has two versions, de-
noted as DMF-1 with logistic loss and DMF-s with squared
loss, respectively. From this table, we observe that DMF-s
outperforms the state of the art significantly with respect
to NDCG@100 and Recall@100 in all 8 datasets. However,
DMF-1 only shows better performance than baselines in
some datasets, such as Movielens, Netflix and LastFM.
This, on one hand, shows the effectiveness of the proposed
algorithm based on Majorization-Minimization, on the other
hand, reveals that DMF-1 easily suffers from sparsity issues.
This also implies the difficulty of learning binary representa-
tion in case of non-squared loss functions. The exploration of
non-squared loss function will be reserved for future work.
Similar to results in explicit feedback, CH still shows good
performance, mainly induced by the consideration of all
items in the loss function instead of only “liked” items.

6.5.2 Sensitivity Analysis - |

After illustrating the superior recommendation performance
of DMF, we then conduct sensitivity analysis with respect to
optimization algorithms, code length k, coefficients o and
B for balanced and decorrelated constraints respectively.
The results of optimization algorithms are shown in Fig. 4.
We can see that on three denser datasets, the BCD-based
optimization algorithm shows better recommendation per-
formance with respect to Recall’. The improvements with
respect to Recall@100 are up to 9.8%, 5.1%, 7.7% in the Yelp,
Movielens, Netflix dataset respectively. With the increase
of coordinate block size, the loss function is reduced more
and more, as shown in Fig. 1 and Fig. 2. Recall becomes
better in the Yelp dataset, but worse in the MovieLens and
Netflix datasets. This is mainly because the loss function
is not based on the ranking metric — Recall. However, this
implies that we can choose a smaller size of coordinate
blocks for optimization and a lower-precision SDR solver
for BQP. The other results of sensitivity analysis are shown
Fig. 5. With the increase of code length from 16 to 256, the
recommendation performance gradually improves in all of
the four datasets and more rapidly in the sparser datasets.

5. Only Recall is reported since the retrieval of the top-K potentially
preferred items is the most concerned.



TABLE 3
Comparison with the State of the Art on Explicit Feedback Datasets.

11

\ NDCG-RI NDCG@100 Recall@100 AUC \ DDCG-RI NDCG@100 Recall@100 AUC
| Yelp Amazon
PPH | 0.945640.0004 0.0117+0.0005 0.03284+0.0010 0.675140.0023 | 0.9671+0.0002 0.0088+0.0002 0.021840.0004 0.6949+0.0011
BCCF | 0.947240.0003 0.0265+0.0003 0.075740.0010  0.8541+0.0008 | 0.9630+0.0002 0.04684+0.0003 0.1015+0.0005 0.8139+0.0007
DCF | 0.948440.0003 0.0220+0.0004 0.06354+0.0015 0.772540.0046 | 0.9686+0.0001 0.021640.0005 0.0518+0.0015 0.8248+0.0020
CH | 0.9304+0.0003 0.048440.0011 0.132040.0023 0.7737+0.0015 | 0.959040.0002 0.0632+0.0005 0.1394+0.0011 0.8339+40.0010
DMF | 0.942340.0002 0.0733+0.0007 0.1656+0.0021 0.737540.0011 | 0.967340.0002 0.0920+0.0006 0.20154+0.0012 0.8850+0.0004
| MovieLens Netflix
PPH | 0.953440.0002 0.0367+0.0004 0.0735+0.0008 0.740940.0019 | 0.9529+0.0001 0.02354+0.0001 0.039740.0003 0.7190+0.0011
BCCF | 0.94754+0.0002 0.0725+0.0002 0.116940.0002 0.7476+0.0003 | 0.9473+0.0001 0.056440.0001 0.0752+0.0002 0.7003+0.0002
DCF | 0.9620+0.0001 0.0944+0.0011 0.178040.0010 0.823740.0005 | 0.9630+0.0000 0.066140.0006 0.1093+0.0008 0.8225+0.0005
CH | 0.9302+0.0001 0.0854+0.0012 0.1463+0.0017 0.6836+0.0013 | 0.93784+0.0002 0.0729+0.0013 0.1011+0.0020 0.6724+40.0017
DMF | 0.95764+0.0001 0.2999+0.0011 0.4984+0.0005 0.902540.0005 | 0.957140.0000 0.2274+0.0004 0.33394+0.0007 0.8562+0.0003
TABLE 4
Comparison with the State of the Art on Implicit Feedback Datasets.
\ NDCG@100 Recall@100 \ NDCG@100 Recall@100 NDCG@100 Recall@100 \ NDCG@100 Recall@100
| Yelp Amazon MovieLens Netflix
PPH | 0.0197+0.0011 0.055840.0024 | 0.0133£0.0007 0.0342+0.0019 | 0.041240.0058 0.0940+0.0118 | 0.0345+0.0076  0.0569+0.0119
BCCF | 0.0316+0.0002 0.08854-0.0014 | 0.0461+£0.0008 0.1021+0.0013 | 0.052040.0002 0.0857+0.0004 | 0.0290+0.0000 0.03704-0.0001
DCF | 0.0558+0.0006 0.157740.0017 | 0.0588-+0.0003 0.1385+0.0005 | 0.054540.0013 0.1154+0.0026 | 0.0046+0.0001 0.00834-0.0001
CH 0.0353+0.0005 0.0969+0.0017 | 0.052840.0005 0.1160-£0.0009 | 0.0652+0.0010 0.11544-0.0025 | 0.0620+0.0012 0.0866+0.0017
DMF-1 | 0.052440.0006 0.1299+0.0013 | 0.052240.0002 0.11874+0.0005 | 0.2136+0.0008 0.380740.0016 | 0.1631£0.0001 0.258340.0002
DMF-s | 0.0930+0.0010 0.2467+40.0021 | 0.1004+0.0006 0.2255+0.0010 | 0.284040.0011 0.5203+0.0014 | 0.2265+0.0016  0.3629+40.0029
| CiteULike Gowalla LastFM EchoNest
PPH | 0.0514+0.0013 0.13504-0.0023 | 0.0201£0.0012 0.0536+0.0031 | 0.016740.0010 0.0362=+0.0027 | 0.0051+0.0005 0.01694-0.0024
BCCF | 0.0570+0.0009 0.155940.0022 | 0.0834+£0.0008 0.1968+0.0015 | 0.046440.0001 0.0868+0.0002 | 0.0333+0.0001 0.07744-0.0002
DCF | 0.0707+0.0015 0.18544-0.0029 | 0.0898+0.0016 0.2234+0.0036 | 0.043440.0028 0.0895+0.0055 | 0.0159+0.0005 0.046240.0013
CH 0.0345+0.0011  0.10324+0.0022 | 0.056340.0008 0.1365+0.0019 | 0.0257+0.0002 0.05064-0.0003 | 0.0074=+0.0003  0.0224+0.0008
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Fig. 4. Sensitive analysis of the DMF model in the four datasets.

The importance of interaction regularization can be shown
again in Fig. 5(b). This figure also shows that p € [1073,1)

as rating/preference matrix in recommender systems. This
direction will also be reserved for future work.

can lead to quite good recommendation performance and

p should be set to a smaller value in sparser datasets.
According to Fig. 5(c), we observe that balanced regular-
ization can take effect at deriving more informative binary
codes in the Yelp and Netflix datasets. And in the Yelp
dataset, the improvements of recommendation performance
can be up to 5%. However, the effect of the decorrelation
constraint looks marginal, except in the Netflix dataset. This
doesn’t mean that the decorrelation constraint is not useful
for deriving the compact binary codes, but implies such
a method may be not effective for very sparse data, such

6.5.3 Evaluating the Effect of Auxiliary Information

After studying DMF, we are then concerned with the effect
of auxiliary information. The results are shown in Fig. 6. It
is easily observed that the proposed DMF-AUX consistently
outperforms DMF in the both datasets, showing the effec-
tiveness of DMF-AUX for modeling auxiliary information.
However, DCMF only shows superior performance in the
Yelp dataset to DMEF, revealing the problems of DCMF for
modeling auxiliary information in case of data heterogeneity
and limited modeling capacity. Note that DCMF is proposed
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Fig. 7. Results of evaluating the two-stage model in the four datasets.

based on feature-aware matrix factorization [51], [52], so that
the methods being appropriate for real-valued algorithms
may not work well for binary-valued ones. Comparing
DMF-AUX with DCME, DME-AUX shows much better per-
formance than DCMEF in the Amazon dataset and the Yelp
dataset. The straightforward baseline, DMF+DH, is even
much worse than DMF, indicating simple aggregation of
multi-modal hash codes can not work well.

6.5.4 Evaluating the Two-Stage Recommender Systems

Evaluating the two-stage recommender system can help
us better understand how DMF can accelerate practical
recommender systems. In this evaluation, the first stage is
to exploit DMF for retrieving the top-K potentially preferred
items, and the second stage is to use real-valued MF with
interaction regularization [28], [29], [30] for fine-ranking.
Such a choice of the fine-ranking algorithm lies in its sim-
plicity and superiority compared to other more complex al-
gorithms. The results in the four datasets are shown in Fig. 7
when the number of recalled items varies. We can see that
when the number of recalled items is 600, the degradation
of NDCG@20 is 9.2% in the Yelp dataset and less than 3.8%

in the other datasets. There is usually larger degradation
of NDCG at the lower cutoffs. In spite of degradation of
recommendation performance, the recommendation can be
accelerated by more than 8 times, and even up to around
22 in the Amazon dataset with the largest number of items.
With the increasing number of recalled items, the degrada-
tion of recommendation performance will be smaller and
smaller, but the speedup ratio is decreasing. Therefore, we
usually need to strike a balance between efficiency and
effectiveness of recommender systems. Though the speedup
ratio is not so large, the efficiency can be further improved
based on fully C++ implementation and more advanced
algorithms like multi-index hashing as observed in [16].
When auxiliary information is available, the results of
evaluation are shown in Fig. 8, where the recalled items only
occupy smaller than 7%. Here collaborative topic regression
[39] is placed in the second stage of fine-ranking for recalled
items. For understanding the effect of auxiliary information,
both DMF and DMF-AUX are placed in the first-stage item-
recall algorithm. From this figure, we observe that, similar
to Section 6.5.3, auxiliary information can take significant
effect in retrieving the better top-K preferred items. This
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means the performance degradation resulting from quan-
tization can be further reduced by making use of auxiliary
information.

6.5.5 Sensitive Analysis — Il

We observe that speedup ratio in the datasets of more items
is usually larger, but it is unknown how the efficiency
and effectiveness of this two-stage recommender system
varies with the change of item size and code length. There-
fore, we conduct the sensitivity analysis in the two-stage
recommender system by placing DMF in the first stage
in the Amazon dataset, since the number of its items is
much larger and over 1 million without any filtering. The
evaluation results are shown in Fig. 9. We can easily observe
that with the increasing number of items, the speedup ratio
grows larger and larger. When item size is round 500K,
item recommendation can be 60+ times faster. However,
the recommendation performance degrades more, by up to
7%, 10% and 14% with respect to NDCG@20, NDCG@50
and NDCG@100. This again shows that DMF easily suffers
from sparsity issues. With the increase of code length, the
performance degradation begins a gradual drop toward a
nadir around k=128 and then stays at a very low value.
Online item recommendation speeds up more and more
with the increase of dimension since the computational cost
of dot product grows much faster than that of hamming
distance. Therefore, we can strike a balance between effi-
ciency and effectiveness by growing code length in addition
to incorporating auxiliary information as discussed in the
previous section. Moreover, we believe that discrete matrix
factorization and extension can be integrated with other
methods, such as popularity-based ranking and content-
based filtering, for recalling better potentially preferred
items.
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7 CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a general framework for dis-
crete matrix factorization and its extension. The framework
can optimize multiple loss functions, handle both explicit
and implicit feedback datasets, and incorporate auxiliary
information without hyperparameters. The evaluation on 8
real-world datasets showed that the proposed algorithms
outperformed the state of the art significantly and con-
sistently, and that item auxiliary information dramatically
improved the recommendation performance. Moreover, the
framework was optimized by a novel block coordinate
descent algorithm, so that the loss function was reduced
much more and the recommendation performance was
significantly improved. DMF was then treated as the first
stage of the proposed two-stage recommender system for
recalling the top-K potentially preferred items, and shown
its advantages for striking a balance between efficiency and
effectiveness of practical recommender systems.

Future work includes carefully designing optimization
algorithms for non-squared loss functions, investigating
how to deal with sparsity issues in recommender systems,
and extensively studying more first-stage algorithms and
their combination in the two-stage recommender systems.
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