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ABSTRACT
As the task of predicting a personalized ranking on a set of items,

item recommendation has become an important way to address

information overload. Optimizing ranking loss aligns better with

the ultimate goal of item recommendation, so many ranking-based

methods were proposed for item recommendation, such as collabo-

rative filtering with Bayesian Personalized Ranking (BPR) loss, and

Weighted Approximate-Rank Pairwise (WARP) loss. However, the

ranking-based methods can not consistently beat regression-based

models with the gravity regularizer. The key challenge in ranking-

based optimization is difficult to fully use the limited number of

negative samples, particularly when they are not so informative.

To this end, we propose a new ranking loss based on importance

sampling so that more informative negative samples can be better

used. We then design a series of negative samplers from simple

to complex, whose informativeness of negative samples is from

less to more. With these samplers, the loss function is easy to use

and can be optimized by popular solvers. The proposed algorithms

are evaluated with five real-world datasets of varying size and dif-

ficulty. The results show that they consistently outperform the

state-of-the-art item recommendation algorithms, and the relative

improvements with respect to NDCG@50 are more than 19.2% on

average. Moreover, the loss function is verified to make better use

of negative samples and to require fewer negative samples when

they are more informative.
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1 INTRODUCTION
With rapid development of IT technology, information in the net-

work grows explosively. When making decisions in daily life, peo-

ple often have to access large mounts of information. For example,

there are tens of thousands of movies in Netflix, millions of books in
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Douban, and billions of webpage collection in Del.icio.us. Therefore,

people encounter the problem of information overload. Recommen-

dation techniques are an important way to address information

overload by filtering unintended information. They have been evolv-

ing for more than 30 years and are widely used in E-commerces,

advertisements and many other scenarios. Many companies, such

as Amazon and Taobao, benefit a lot from recommendation tech-

niques. There are two tasks in recommendation – rating prediction

and item recommendation. Rating prediction is to estimate unseen

ratings based on user rating history while item recommendation

is to predict a personalized ranking on a set of items. Intuitively,

item recommendation is more directly correlated with information

filtering, and has become a central research topic, particular with

the advancement of deep recommendation models.

Item recommendation is commonly investigated for implicit

feedback, and faces with the one-class problem, where negative

and unlabeled positive examples are mixed together in unobserved

data. To address the one-class problem, two representative types

of algorithms are proposed for item recommendation from im-

plicit feedback. The one type is regression-based models, including

Weighted Regularized Matrix Factorization [9, 12, 18, 26] (WRMF)

and Sampling-based wALS [27]. The former idea is to treat all un-

observed entries as negative but to assign them lower weights

than positive samples. It has been proved that WRMF intrinsically

imposes the gravity (or implicit) regularizer, which penalizes the

non-zero predictions of all unobserved values [1, 14]. The latter

idea is to draw an approximately same size of negative examples

to positive ones, and also assign them lower weights. The lower

weight corresponds to lower confidence of unobserved entries be-

ing negative. The systematic study in [37] reveals that treating all

unobserved entries as negative performs better than subsampling

from them.

The other type is ranking-based models, including collaborative

filtering with Bayesian Personalized Ranking (BPR) loss [29] and

Weighted Approximate-Rank Pairwise (WARP) loss [15, 36]. BPR

optimizes AUC while WARP optimizes precision. Since AUC pe-

nalizes inconsistent pairs equally, BPR is usually inferior to WARP.

Moreover, the sampler of WARP always draws informative nega-

tive samples, the score of which should be larger than the positive

example minus one. The sampler is more effective than uniform

sampling in BPR, but much less efficient due to scanning more and

more candidates along the training course. The sampler in BPR

was also improved by oversampling informative pairs to speed up

convergence and improve accuracy [28].

Though optimizing ranking loss aligns better with the ultimate

goal of item recommendation, the ranking-based methods can not

consistently beat the regression-based models with the gravity

regularizer. The main reason is that the samplers usually draw

a limited number of negative samples for the sake of efficiency

https://doi.org/10.1145/3366423.3380187
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while more negative samples usually lead to better performance.

Therefore, the key challenge in the ranking-based optimization is

how to make better use of the limited number of negative samples.

To this end, we propose a new Personalized Ranking loss based

on Importance Sampling, PRIS for short, so that more informative

negative samples are assigned larger weights/importances. Since

more informative negative samples can contribute more to gradient

of the ranking loss function, the magnitude of gradient becomes

much larger so that training can be accelerated. We observe that

even using the uniform sampler, the model with the new ranking

loss can perform much better than BPR, as shown in Figure 3.

Following that, we develop a series of negative samplers from simple

to complex. The informativeness of negative samples drawn from

these samplers is from less to more. Whichever sampler is used,

the new loss function can be similarly optimized by any popular

solvers, such as SGD and ADAM.

The contributions in this paper are summarized as follows:

• We propose a new Personalized Ranking loss based on Impor-

tance Sampling, PRIS for short, which can assign larger weights

to more informative negative samples. This can ensure larger

magnitude of gradient along the training course, so as to speed

up convergence. The advantage of the new loss function can be

easily observed in Figure 3, by comparing PRIS of the uniform

sampler (PRIS-Uniform) with BPR.

• We develop four negatives samplers from simple to complex

based on rejection sampling, and for the first time systematically

investigate efficiency of negative sampling, reporting average

sampling times to draw a negative sample. Two complex negative

samplers need to learn their own parameters, incurring extra

time overhead to sampling. To reduce time cost, we propose

a joint learning framework by simultaneously learning model

parameters and sampler parameters.

• Weevaluate the proposed algorithmswith five real-world datasets

of varying size and difficulty. The experimental results show that

the proposed algorithms can consistently outperform the state-

of-the-art item recommendation algorithms, including BPR with

adaptive oversampling, WRMF and WARP. On average, the rel-

ative improvements with respect to NDCG@50 are over 19.2%.

Furthermore, when negative samples are more informative, the

model performs better and requires the fewer samples.

2 RELATEDWORK
We first review recent advance of item recommendation from im-

plicit feedback, and then survey recent important techniques for

negative sampling in deep learning community.

2.1 Item Recommendation from Implicit
Feedback

Item recommendation from implicit feedback dates back to about

10 years ago, when WRMF [12], OCCF [27] and BPR [29] were

invented. Since truly negative are mixed together with unlabeled

positive, these algorithms differ from each other in how to use

unobserved values and whether to use ranking loss. WRMF treated

all unobserved entries as negative but assigned them lower con-

fidence of being negative. Instead of using all unobserved values,

OCCF only subsampled some from them. Later, OCCF was im-

proved in [26] by also considering all unobserved values. These

algorithms used weighted regression loss for parameter learning.

They were systemically compared in [37], concluding that treating

all unobserved entries as negative performed better. Following that,

an implicit/gravity regularizer was decomposed in the loss function

of WRMF according to [1] and revealed to play an important role in

item recommendation from implicit feedback. Then the regularizer

was imposed to the item recommendation models with side infor-

mation [14, 18, 19]. Note that the regurlarizer penalizes non-zero

predictions of unobserved values via a quadratic function, so that

parameter learning can be very efficient.

Similar to OCCF, BPR also subsampled unobserved entries as neg-

ative via uniform sampling, but utilized the sigmoid-based ranking

loss for parameter learning. By observing small gradient magnitude

resulting from uniform sampling, adaptive and context-dependent

sampling was proposed in [28] to speed up convergence and im-

prove accuracy. Due to the non-linear loss, BPR can not efficiently

learn the parameters when all unobserved entries are considered

negative. The situation can be changed in RankALS [31] by replac-

ing the sigmoid-based ranking loss with the quadratic ranking loss.

RankALS was further improved by imposing a ranking-based im-

plicit regularizer [3], by penalizing the large difference of prediction

between any two unobserved values. Since BPR optimized AUC,

which treats all inconsistent pairs equally, BPR may not be best suit-

able for the top-k item recommendation. Therefore, the Weighted

Approximate-Rank Pairwise (WARP) loss was proposed to optimize

the precision [15, 36]. WARP also used uniform sampling with re-

jection to draw more informative negative samples, the score of

which should be larger than that of the positive example minus one.

WARP was also used for collaborative metric learning [11], leading

to the state-of-the-art item recommendation method.

2.2 Techniques of Negative Sampling
In many natural language applications, it is very computational

expensive to represent an output distribution over the choice of a

word based on the softmax function. To address the efficiency, many

approximate algorithms were proposed. For example, hierarchical

softmax [24] and lightRNN [16] decomposed the probabilities, and

Contrastive Divergence [10] approximated the gradient based on

MCMC. As an alternative, negative sampling is also widely used in

reducing the computational cost of training the models. For exam-

ple, Noise-Contrastive Estimation [8] performed non-linear logistic

regression to discriminate between the observed data and some

artificially generated noise, and was successfully applied for lan-

guage modeling by considering the unigram distribution of training

data as the noise distribution [23]. The noise distribution plays an

important role for approximation accuracy, and many recent work

were proposed for improving the noise distribution. Generative

Adversarial Networks [5, 34] directly learned the noise distribu-

tion via the generator networks. Self-Contrast Estimator [6] copied

the model and used it as the noise distribution after every step of

learning. However, when applied for recommendation algorithms,

these two methods suffer from high computational cost for sam-

pling from the noise distribution. To improve sampling efficiency,

the self-adversarial negative sampling [30] draws negative samples
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from the uniform distribution but treats the sampling probability as

their weights. Dynamic negative sampling[38] also draws a set of

negative samples from the uniform distribution and then picks the

item with the largest prediction score. Kernel-based sampling [2]

drew samples proportionally to a quadratic kernel, making it fast

to compute the partition function in the kernel space and to sample

entries in a divide and conquer way.

3 PRELIMINARIES
Let U be the set of M users and I = {o1, · · · ,oN } the set of N
items. The model is assumed to train from user-item interaction

history, i.e., S = {(u, i) ∈ U ×V|user u interacts with item i}. Let

Iu denote positive items with which useru interacts, andUi denote

the users who interact with the item i .

3.1 Bayesian Personalized Ranking
BPR is a pairwise ranking optimization framework for one-class

collaborative filtering. The objective function of BPR is formulated

as follows:

L = −
∑
(u ,i)∈S

∑
j<Iu

lnσ (x̂ui j ) + λ∥Θ∥
2, (1)

where σ (x) = 1

1+e−x is a sigmoid function and λ∥Θ∥2 is a regular-
ization term. σ (x̂ui j ) is modeled as the probability that a user u
prefers item i to item j. Minimizing L makes the score of positive

items larger than negative items. Note that lnσ (x) is a differentiable
surrogate function of the Heaviside function, so BPR approximately

optimizes the ranking statistic AUC (Area under the ROC curve).

Since I\Iu is overly large, it is not efficient to cycle through all of

them. Therefore, learning BPR is typically based on Stochastic Gra-

dient Descent (SGD), which uniformly samples an item j from the

set and performs an update for the triple. However, such SGD learn-

ing algorithms are very slow to converge, particularly when item

popularity has a tailed distribution [28]. This is because when BPR

is better trained, positive item i can be easily distinguished from

a uniformly-sampled item j (i.e., σ (x̂ui j ) → 1), so that the triple

contributes little to gradient, i.e., (1−σ (x̂ui j ))
∂x̂ui j
∂Θ → 0. Given the

gradient of small magnitude, the overall update to the parameter

Θ is very small. To address this issue, several advanced samplers

were proposed in [28] for speeding up convergence. However, the

recommendation quality is not improved a lot by user-dependent

(or context-dependent) samplers, and the static samplers even lead

to performance degradation.

4 PERSONALIZED RANKING VIA
IMPORTANCE SAMPLING

In this paper, we propose a new framework for personalized ranking,

to address the problem in BPR. Direct optimization in the frame-

work is very time-consuming, so we derive a new loss function

based on importance sampling. Since the proposal distribution is

very important for importance sampling, we introduce four nega-

tive samplers with varying complexity, and then study sampling

efficiency and learning efficiency of samplers. We finally propose

a joint learning framework for both the model and samplers, to

reduce extra overhead of learning sampler parameters.

4.1 The New Loss Function
One important problem in BPR lies in ignorance of negative con-

fidence, so that all negative items are treated equally. In the new

framework, we first model the confidence as a probability of items

being negative. Recall that σ (x̂ui j ) denotes the probability that a

user u prefers item i to item j. Thus a smaller x̂ui j corresponds to
lower likelihood that the user u prefers item i to item j, implying

higher probability of item j being negative. Therefore, in this paper,

we model the negative probability of unobserved items as follows:

P(j |u, i) =
exp(−x̂ui j )∑

j′∈I\Iu exp(−x̂ui j′)
. (2)

By considering this probability as the confidence/weight of negative

item j, we formulate the new framework in the following way.

L = −
∑
(u ,i)∈S

∑
j ∈I\Iu

P(j |u, i) lnσ (x̂ui j ) + λ∥Θ∥
2. (3)

Therefore, the framework pays more attention to unobserved items

with higher negative probability. Due to a large size of unobserved

items, it is not efficient to cycle through all of them to perform a

update. Because of high-cost computation of negative probability,

it is also not efficient to approximate the loss by directly sampling

a fixed size of items from negative probability. Instead, by consider-

ing the second summation L(u, i) =
∑
j ∈I\Iu P(j |u, i) lnσ (x̂ui j ) as

expectation with respect to the negative probability, we derive the

loss approximation based on importance sampling. In particular, as-

suming that the proposal distributionQ(j |u, i) is easy to sample and

L items are sampled from this distribution, the second summation

L(u, i) is approximated by

L(u, i) ≈
1

L

L∑
l=1

P(jl |u, i)

Q(jl |u, i)
lnσ (x̂ui jl ), jl ∼ Q(j |u, i). (4)

Since it is also time-consuming to compute the normalization con-

stant of P(j |u, i), it should also be approximated by the L samples.

In particular,

ZP =
∑

j ∈I\Iu

exp(−x̂ui j ) ≈ ZQ
1

L

L∑
l=1

exp(−x̂ui jl −ln Q̃(jl |u, i)) (5)

where Q̃(jl |u, i) is the unnormalized probability of Q(jl |u, i), such
that ZQ =

∑
j ∈I\Iu Q̃(jl |u, i) is a normalization constant. Letting

wl =
exp(−x̂ui jl −ln Q̃ (jl |u ,i))∑
k exp(−x̂ui jk −ln Q̃ (jk |u ,i))

denote the weight of sample jl , the

approximate loss is then formulated as follows:

L ≈ −
∑
(u ,i)∈S

L∑
l=1

wl lnσ (x̂ui jl ) + λ∥Θ∥
2
, jl ∼ Q(j |u, i). (6)

If the proposal distribution Q is the exact P , wl =
1

L and the ap-

proximation is reduced back to the BPR loss. Otherwise, the sample

weight can compensate the deviation between P and Q to some

extent. Therefore, even static samplers can be likely to speed up

convergence and improve the recommendation quality.
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4.2 Negative Samplers
The new framework for personalized ranking is approximated by

importance sampling. Given the fixed number of samples, the qual-

ity of negative samplers determines approximation accuracy. In

this part, we investigate the design of negative samplers and study

sampling efficiency. Before discussing complex samplers, we first

revisit the static samplers and specialize the sample weights.

Belowwe consider the simplest case of modeling x̂ui j , i.e., x̂ui j =
x̂ui − x̂uj , where x̂ui denotes prediction score of user u for item i .
Then the negative probability of a unobserved item j is modeled as

P(j |u, i) =
exp x̂uj∑

j′∈I\Iu exp(x̂uj′ )
, which is independent of positive item

i . In other words, unobserved items with higher prediction scores

are more likely to be negative. Note that unobserved items with the

top-k highest scores are also recommended to users, any algorithms

which resort to deterministic selection rather than stochastic sam-

pling may suffer from the false negative issue. The approximation in

stochastic sampling further alleviates the issue according to Table 3.

4.2.1 Uniform Sampling. Uniform sampling over unobserved items

is based on the simplest uniform proposal, which is defined as

QU (j |u, i) =

{
0, if j ∈ Iu

1

N−Nu
, otherwise

(7)

where Nu = |Iu | denotes the number of items with which user u
interacts. Directly sampling items from this proposal is easy but not

memory-efficient or computation-efficient, due to the maintenance

of the set I\Iu for each user. Therefore, Algorithm 1 is usually

used in practice. We will show that the algorithm is equivalent

to rejection sampling [25], where the proposal distribution is a

uniform distribution over all items. The weight for sample jl in
Eq (6) is then defined as

wU
l =

exp(x̂ujl )∑L
t=1 exp(x̂ujt )

. (8)

Algorithm 1: Uniform Sampling

Input: Iu – positive items of user u
Output: Eu – list of negative items

1 Eu ← ∅;

2 for l ← 1 to L do
3 repeat
4 n ← randint(1,N ) ; // integer from 1 to N

5 j ← on ;

6 until j ∈ I\Iu ;
7 insert(Eu , j)

4.2.2 Popularity Sampling. If a user does not interact with a popu-

lar item, she may be truly uninterested in it since the item is highly

likely to be exposed to the user. When recommending items based

on popularity, it was reported that it performed much better than

random-based recommendation. Therefore, sampling from popu-

larity distribution should be beneficial. The popularity proposal is

defined as

QP (j |u, i) =

{
0, if j ∈ Iu

fj∑
j′∈I\Iu fj′

, otherwise.
(9)

where fi is (normalized) popularity of item i . Let ci be occurring

frequency of item i , fi can be set to ci , log(1+ ci ) and c
3/4

i [22]. It is

also time-consuming to directly sample items from this proposal

andmemory-consuming to store the proposal in advance. Therefore,

Algorithm 2 is also based on rejection sampling, whose proposal

distribution is popularity distribution over all items, i.e., PQ (i) =
fi/

∑
i fi . The weight for a sample jl is defined as

wP
l =

exp(x̂ujl − ln fjl )∑L
t=1 exp(x̂ujk − ln fjt )

. (10)

Algorithm 2: Popularity Sampling

Input: Iu , cumulative probability CQ [i] =
∑i
j=1 PQ (i)

Output: Eu – list of negative items

1 Eu ← ∅;

2 for l ← 1 to L do
3 repeat
4 r ← rand() ; // uniform dist. over [0, 1)

5 n ← bisect(CQ , r ); // binary search with r,

such that CQ [n + 1] > r and CQ [n] <= r

6 j ← on ;

7 until j ∈ I\Iu ;
8 insert(Eu , j)

Before introducing next samplers, we try to generalize from the

above samplers. In particular, first defining PQ (j |u, i) as an upper

envelope of the unnormalized version Q̃(j |u, i), we can then define

Q(j |u, i) as follows:

Q(j |u, i) =

{
0, if j ∈ Iu

PQ (j |u ,i)∑
j′∈I\Iu PQ (j′ |u ,i)

, otherwise

(11)

In order to efficiently sample items from Q(j |u, i), we can apply the

following theorem.

Theorem 4.1. Sampling from Q(j |u, i) in Eq (11) is equivalent to
rejection sampling with the proposal distribution PQ (j |u, i).

Proof. According to rejection sampling, we first sample j ∼

PQ (j |u, i) and then sample u ∼ U(0, 1). If u >
Q̃ (j |u ,i)
PQ (j |u ,i)

, the sample

is rejected, otherwise it is accepted. If j ∈ Iu , Q̃(j |u, i) = 0 so that

the sample is rejected with probability one; otherwise, Q̃(j |u, i) =
PQ (j |u, i) so that it is accepted with probability one. We then follow

the rejection sampling theorem [25] for completing proof. □

Based on the theorem, we can derive the probability of accep-

tance and expected times of sampling.

Corollary 4.2. The probability of acceptance is P(accept) =
1 − PQ (Iu |u, i), where PQ (Iu |u, i) =

∑
j ∈Iu PQ (j |u, i).

Corollary 4.3. Let Xu be a random variable of sampling times
in rejection sampling. Then Xu follows the geometric distribution, s.t.
P(Xu = n) = P(accept)(1 − P(accept))n−1, and E[Xu ] = 1

P (accept ) .

Based on this corollary, we can deduce that the time complexity

of uniform sampling isO( LN
N−Nu

). Thus uniform sampling is very ef-

ficient. The time complexity of popularity sampling is O(
L log(N )
1−PQ (Iu )

),

highly depending on the popularity of user’s positive items.
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4.2.3 Cluster-Uniform Sampling. The aforementioned samplers

are static, user-independent, so the probability of each unobserved

item being negative is the same with respect to all users. Note

that importance sampling depends crucially how well the proposal

distributionmatches the desired distribution. To obtain the proposal

distribution closer to P(j |u, i), we cluster items into several groups

based on item representation in the most recent model, such that

each group of unobserved items shares the same probability of being

negative. Consequently, the sampling procedure is decomposed into

two steps. The first is to sample a group and the second is to sample

an item within a group. Let vi be representation vector of item i
and V a matrix form of representation of all items. These items

are clustered into K groups based on K-means clustering. The k-th
group is represented by a center ck . Let y denote a cluster label

vector, such that yi ∈ {1, · · · ,K} indicates which group the item

i belongs to. Let Ik denote items belonging to the k-th group.

Each vi is then approximated by cyi . Subsequently, the proposal
distribution is defined as

QCU (j |u, i) =


0, if j ∈ Iu

exp(x̂uyj )∑
j′∈I\Iu exp(x̂uyj′ )

, otherwise.
(12)

where x̂uyj predicts the preference score of user u for the group to

which item j belongs. The weight for a sample jl is

wCU
l =

exp(x̂ujl − x̂uyjl )∑L
t=1 exp(x̂ujt − x̂uyjt )

. (13)

There are two ways to sample from this proposal distribution. The

one directly follows Theorem 4.1, but once the sample is rejected,

the method requires to re-sample a group. This may lead to compu-

tational issue, since sampling a group costs more than sampling an

item within the group. The other is based on the following theorem,

which places rejection sampling into the second step. The procedure

is shown in Algorithm 3, where each of L samples only requires to

sample one group. LetXCU
u be a random variable of sampling times,

then the mean sampling times E[XCU
u ] =

∑
k N k

exp(x̂uk )∑
k (N k−N k

u ) exp(x̂uk )
. The

time complexity of Algorithm 3 is O(E[XCU
u ]L + L logK + KT ),

where T is the time cost of the predict function. Here, we do not

take the cost of clustering into consideration.

Theorem 4.4. Sampling from QCU (j |u, i) is equivalent to first

sampling a groupk with probability P(k |u, i) = (N k−N k
u ) exp(x̂uk )∑

k′ (N k′−N k′
u ) exp(x̂uk′ )

and then uniformly sample an item within the group k with rejection.
Here Nk is the number of items in the group k and Nu

k is the number
of positive items of user u within the group k .

Proof.

exp(x̂uyj )∑
j′∈I\Iu exp(x̂uyj′ )

=
(N yi −N yi

u ) exp(x̂uyj )∑
k (N k−N k

u ) exp(x̂uk )
1

N yi −N yi
u

. The

first part corresponds to the probability P(yj |u, i). The second part

is the probability P(j |u,yj ) to uniformly sample the item j from
all unobserved items within the group yj , which can be efficiently

implemented via rejection sampling. □

4.2.4 Cluster-Popularity Sampling. As just discussed, uniform sam-

pling within groups can be improved by popularity sampling, which

Algorithm 3: Cluster-Uniform Sampling

Input: Iu , and clustering centers and labels

Output: Eu – list of negative items

1 Eu ← ∅;

2 for k ← 1 to K do
3 score ← predict(u,k);

4 prob[k] ← (N k − N k
u ) exp(score);

5 prob ← normalize(prob) ;

6 cumprob ← cdf(prob) ; // Cumulative probability

7 for l ← 1 to L do
8 k ← bisect(cumprob, rand());

9 repeat
10 n ← randint(1,N k − N k

u );

11 j ← okn ; // The n-th item in group k

12 until j ∈ Ik\Iku ;// Iku = Iu ∩ I
k

13 insert(Eu , j)

leads to cluster-popularity sampling. In particular, we define the

proposal distribution of cluster-popularity sampling as follows:

QCP (j |u, i) =


0, if j ∈ Iu

exp(x̂uyj +ln PQ (j))∑
j′∈I\Iu exp(x̂uyj′+ln PQ (j

′))
, otherwise

(14)

Similar to Theorem 4.4, we can easily prove Theorem 4.5 to ef-

ficiently sample items from this distribution. Algorithm 4 shows

the overall procedure. Let XCP
u be a random variable of sampling

times, E[XCP
u ] =

∑
k PQ (Ik ) exp(x̂uk )∑

k (PQ (Ik )−PQ (Iku )) exp(x̂uk )
. The time complexity

of sampling is O(E[XCP
u ]L log(N /K) + L logK + KT ), where we

assume the number of items in each group approximately equals

N /K . The weight of sample jl is

wCP
l =

exp(x̂ujl − x̂uyl − ln fjl )∑L
t=1 exp(x̂ujt − x̂uyjt − ln fjt )

. (15)

Theorem 4.5. Sampling from QCP (j |u, i) is equivalent to first

sampling a groupk with probability P(k |u, i) = PQ (Ik \Iku ) exp(x̂uk )∑
k′ PQ (Ik

′
\Ik

′
u ) exp(x̂uk′ )

and then sample an item j within the groupk with probability P(j |u,k) =

δ (yj = k)
PQ (j)

PQ (Ik \Iku )
, where PQ (I

k\Iku ) =
∑
j ∈Ik \Iku

PQ (j) =

PQ (I
k ) − PQ (I

k
u ).

4.3 A Joint Framework
Although cluster-basedmethods can samplemore informative items

from unobserved ones, they require clustering items prior to nega-

tive sampling. The overhead can not be ignored particularly when

the number of items is large. Moreover, the preference score x̂ui is
often modeled by inner product or MLP with user representation

and item representation as inputs. Therefore, such score functions

may be not a valid metric, due to violation of minimality, triangle

inequality and non-negativity. This may lead to clustering items

with similar preference scores into different groups [11]. To this

end, we propose a joint framework to simultaneously learn model
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Algorithm 4: Cluster-Popularity Sampling

Input: Iu , clustering centers and labels, item popularity

Output: Eu – list of negative items

// user-independent part, to be precomputed

1 for k ← 1 to K do
2 PQ (I

k ) ←
∑
j ∈Ik PQ (j);

3 foreach j ∈ Ik do
4 PkQ [j] ← PQ (j)/PQ (I

k );

5 CkQ ← cdf(PkQ ) ;

6 Eu ← ∅; // below are user-dependent

7 for k ← 1 to K do
8 PQ (I

k
u ) ←

∑
j ∈Iku

PQ (j);

9 score ← predict(u,k);

10 prob[k] ← (PQ (I
k ) − PQ (I

k
u )) exp(score);

11 prob ← normalize(prob) ;

12 cumprob ← cdf(prob) ;

13 for l ← 1 to L do
14 k ← bisect(cumprob, rand());

15 repeat
16 n ← bisect(CkQ , rand());

17 j ← okn ; // The n-th item in group k

18 until j ∈ Ik\Iku ;

19 insert(Eu , j)

parameters and clustering parameters. The overall framework is

illustrated in Figure 1, where three negative items are used and

each item are clustered into one of three groups.

The key part is how to formulate clustering so that items with

similar preference scores are clustered into the same group. To be

generic, we assume similarity between item representationvi and

cluster center ck is measured by sim(vi ,ck ) =
1

2
vTi Wck +w

T
I vi +

wT
Cck . Here we do not use Euclidean distance for measuring simi-

larity, since it may not the true measurement or even the similarity

is not based on a valid metric at all. We let the algorithm directly

learn the similarity function. Actually, this similarity function is

closely related to several well-known metrics. Given the similarity

function, the cluster assignment of item i is achieved by assigning

it to the most similar cluster center,

yi = argmax

k
sim(vi ,ck ). (16)

Then cyi is an approximation of vi and can be fed into preference

modeling together with user representation to predict an approxi-

mate preference score r̂uyi . The preference scores for the positive
item and negative items are then fed into the loss function in Eq (6),

forming the lossLC for learning cluster parameters. Finally,LC+L

is optimized for joint learning.

However, the max operator is non-differentiable so that the back-

propagation algorithm cannot be applied for computing gradients.

Below we derive the continuous relaxation to approximate the gra-

dient of the argmax operator. In particular, by representing each

cluster index with an one-hot vector, i.e., bi = one_hot(yi ), the
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Figure 1: The joint learning framework formodel with three
negative samples and clustering with three centers.

argmax operator is then approximated by tempering Softmax:

bi [k] ≈ ˆbi [k] =
exp(sim(vi ,ck )/T )∑
k ′ exp(sim(vi ,ck ′)/T )

(17)

where T is a temperature parameter, controlling the degree of

approximation. When T → 0, the approximation becomes ex-

act. Similar techniques have been applied in the Gumbe-Softmax

trick [13, 20]. Given the approximation
ˆbi of one-hot representa-

tion of yi , we have cyi = Cbi ≈ C ˆbi , where C = [c1, · · · ,cK ] is a

center matrix. Note that C ˆbi =
∑
k ck ˆbi [k] can also be explained

as a weighted sum of center vectors.

Due to importance of the temperature T for approximation, it

should be carefully set or scheduled. If T is too large,
ˆbi is close

to the uniform distribution, being far from the one-hot vector. If

T is too small, not only the gradient vanishes but also
ˆbi is quite

sensitive to the similarity. One practical strategy is to start with a

high temperature, to ensure large gradient for parameter update at

the beginning, and then cool it gradually with the training course,

so that
ˆbi is closer and closer to the desired one-hot vector.

5 EXPERIMENT
Wefirst compare the proposed algorithmswith competing baselines,

including the state-of-the-art algorithm. Following that, we study

the effect of different sampling strategies on the recommendation

accuracy. We finally perform sensitivity analysis with respect to

the number of negative sampled items, embedding dimension, and

the number of clusters.

5.1 Datasets
As showed in Table 1, five publicly available real-world datasets

are used for evaluating the proposed algorithm. The datasets vary

in difficulty of item recommendation, which may be indicated by

the numbers of items and ratings, the density and concentration.

The Amazon dataset is a subset of customers’ ratings for Amazon

books [21]. The rating scores are integers from 1 to 5, and books

with scores higher than 4 are considered positive. The MovieLens

dataset is from the classic MovieLens10M dataset. The rating scores

are from 0.5 to 5 with 0.5 granularity, and movies with scores higher

than 4 are considered positive. The CiteULike dataset collects users’

personalized libraries of articles, the Gowalla dataset includes users’
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Table 1: Dataset Statistics. Concentration indicates rating
percentage on the top 5% most popular items.

#users #items #rating density concentration

CiteULike 7,947 25,975 134,860 6.53e-04 31.56%

Gowalla 29,858 40,988 1,027,464 8.40e-04 29.15%

Amazon 130,380 128,939 2,415,650 1.44e-04 32.98%

Movielens 60,655 8,939 2,105,971 3.88e-03 61.98%

Echonest 217,966 60,654 4,422,471 3.35e-04 45.63%

check-ins at locations, and the Echonest dataset records users’ play

count of songs. In the Echonest dataset, we follow [11] to include

songs to which a user listened at least 5 times as positive feedback.

To ensure each user can be tested, we filter these datasets such

that users rated at least 5 items. Note that the concentration in the

Gowalla dataset is the smallest. This is because users often issue

fake check-ins at nearby locations without any restriction.

For each user, we randomly sample his 80% ratings into a training

set and the rest 20% into a testing test. 10% ratings of the training

set are used for validation. We build recommendation models in

the training set and evaluate them in the test set.

5.2 Metrics
The performance of recommendation is assessed by how well posi-

tive items in the test set are ranked.We use twowidely-used metrics

of ranking evaluation: Recall [12, 32] and NDCG [35]. Recall at a

cutoff k, denoted as Recall@k, is the fraction of positive items in

the top-k ranking list over the total number of positive items in

the test set. NDCG at a cutoff k, denoted as NDCG@k, rewards

method that ranks positive items in the first few positions of the

top-k ranking list. The positive items ranked at low positions of

ranking list contribute less than positive items at the top positions.

The cutoff k in Recall and NDCG is set to 50 by default.

5.3 Parameter Settings
We implement the proposed algorithms PRIS in Keras with the

Tensorflow backend, and optimize them with the Adam algorithm.

Here we do not consider feature modeling, since it is not related to

investigating effect of the new loss and samplers. The dimension

of user embedding and item embedding is set to 32 by default. The

batch size is fixed to 128 and the learning rate is fixed to 0.001

when evaluating PRIS in all datasets. The coefficient of activity reg-

ularization is tuned over {2, 1, 0.5} in the validation set. Therefore,

the proposed algorithm is easy-to-use and fast for hyperparame-

ter tuning. It is also possible to set a much larger batch size for

speeding up the training, but it may require to use a learning rate

schedule, which starts with a larger value and decays gradually

with a specific strategy like exponential or step decay until a much

smaller preset value. The number of negative item to sample is

set to 5 and the number of clusters in the cluster-based sampler is

set to 100. Regarding the popularity-based sampler, we choose the

popularity function as fi = log(1+ci ), where ci denotes occurrence
frequency of item i . This function has been observed to work better

than another two options. The potential reason is that it is more

likely for the adopted function to sample the long-tail items.

5.4 Baselines
We compare the proposed PRIS framework with the following

baselines, whose embedding size is also set to 32.

• BPR [29], is a pioneer work of personalized ranking in recom-

mender system. It uses pairwise logit loss, randomly samples a

negative item and applies stochastic gradient descent (SGD) for

optimization. It will be adapted to multiple negative items and to

use mini-batch SGD for training. The number of negative items is

set to 5, the regularization coefficient are tuned within {2, 1, 0.5}.

• AOBPR [28], improves BPR with adaptive oversampling. Follow-

ing their settings, we set learning rate 0.05, epochs 256 and λ for

the geometric distribution 500, and tune regularization coefficient

within {0.005, 0.01, 0.02}. We use implementation in Librec
1
[7].

• WRMF [12, 27], weighted regularized matrix factorization, is de-

signed for recommendation based on implicit feedback. It treats

the data as indication of positive and negative preference associ-

ated with vastly varying confidence levels. This method has been

considered as the state-of-the-art recommendation method for

implicit feedback. The confidence level α for negative preference

is tuned in the validation set within {1, 5, 10, 20, 50, 100, 200, 500}.

The regularization coefficient is fixed to 0.01.

• WARP [36], uses the Weighted Approximate-Rank Pairwise loss

function for collaborative filtering, which can perform better

than WRMF in some datasets. The WARP loss is based on a rank-

ing error function and extended to the online learning scenario.

Given a positive item, it samples all items uniformly until a neg-

ative item is found. Based on the trials of sampling, the rank of

the positive item can be estimated. We use the implementation

in lightfm [15]
2
, where the maximal trial of sampling are set to

50 for efficiency. The regularization coefficient and the learning

rate is tuned in the validation set within {0.05, 0.01, 0.005, 0.001}

and {10−3, 10−4, 10−5, 10−6}, respectively.

• Self-Adversarial (SA) [30], is a recently proposed method for

negative sampling based on the most recent recommendation

model. This can be considered a special case of the proposed PRIS

with the uniform sampling strategy, where back-propagation is

not applied for sample weights.

• CML [11], Collaborative Metric Learning, learns a joint met-

ric space to encode users’ preference as well as user-user and

item-item similarity. It also uses the WARP loss function for opti-

mization. We use the authors’ released code
3
and use the default

parameters in the source code. The number of negative items in

the sampler function is set to 20.

5.5 Comparison with Baselines
Table 2 shows the comparison results of PRIS (of the best sampler)

with baselines. From them, we have the following key findings.

• Finding 1 – The proposed algorithm consistently outperforms all
baselines in all five datasets. On average, the relative performance

improvements are as least 19%with respect to NDCG@50 and 12%

with respect to Recall@50. The relative improvements to WRMF

are 23% on average with respect to NDCG@50 while the relative

improvements to WARP can be up to 39%. In spite of the smallest

1
https://www.librec.net/

2
https://github.com/lyst/lightfm

3
https://github.com/changun/CollMetric
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performance lift compared to CML, the comparison with CML

is not fair. This is because CML scans more items for negative

sampling and it is based on Euclidean embedding instead of inner-

product embedding. CML has been observed to outperform the

inner-product based algorithm –WARP. This superiority can also

be verified in the five datasets excluding Gowalla. Adapting the

proposed algorithm to Euclidean embedding is a very promising

future work. Moreover, it is also possible to improve sampling

efficiency of CML and rank estimation of positive preferences

based on the proposed samplers.

• Finding 2 – Either of WRMF and WARP can not consistently beat
the other; both of them show their own distinct strengths.WARP

shows better performance thanWRMF in the datasets with lower

concentration yet higher density. The best-performing dataset of

WARP is Gowalla, in which the concentration is the lowest. This

may be because it is much easier to sample negative items in

the Gowalla dataset even when the model is trained a lot. There-

fore, the concentration can be an indicator about which one of

them is better. It is intuitive to deduce that the concentration is

also correlated with the performance of popularity based recom-

mendation. The results show that Recall@50 in the CiteULike,

Gowalla, Amazon, MovieLens and Echonest dataset is 0.0609,

0.0493, 0.0240, 0.2921 and 0.0843 respectively. The recall in the

Gowalla dataset is the second lowest, not the lowest because of

the second highest density. This analysis may provide some clues

for improving recommendation, such as ensemble of them.

• Finding 3 – It is almost impossible for BPR to show comparable
performance to WRMF. This finding was also revealed in many

existing literatures [17, 32, 33]. The main reason lies in the effec-

tiveness of negative sampling. At the very beginning of training,

the estimated scores of positive samples are close to negative

samples, so the parameters can be significantly updated and the

loss is dramatically reduced. After BPR is better trained, positive

samples can be easily differentiated from the randomly sampled

negative samples, so the gradient approaches zero and the pa-

rameters are almost not updated.

• Finding 4 – Weighting negative samples with preference scores
addresses small gradient magnitude of BPR to some extent. This
is based on the observation that SA outperforms BPR. SA and

BPR use the same number of negative samples but distinguish

from each other about whether weighting negative samples. In

particular, SA places more emphasis on negative itemswith larger

preference scores. Since the negative items with larger scores

contribute more to gradient, imposing higher weight on them

leads to much larger gradient than BPR.

• Finding 5 – Effectiveness of negative sampler is important for per-
sonalized ranking. SA uniformly samples items from unobserved

ones, so the gradient vanish problem still exists. This problem

can be addressed by PRIS since it is accompanied by a more effec-

tive negative sampler, which can sample higher-scored negative

items with larger probability. Therefore, PRIS can keep ensuring

a large gradient along the progress of training. This explains the

reason why PRIS outperforms SA and motivates us to develop

more advanced sampler in future work. This can also be deduced

by the superiority of AOBPR to BPR in most cases. However,

even with effective samplers, AOBPR can not show comparable

performance to PRIS due to the absence of importance weighting.

5.6 Study of Sampling Strategies
Following the comparison with baselines, we compare the effective-

ness of different sampling strategies, whose results are reported in

Table 3. From this table, we can reveal the following findings.

• Finding 1 – The popularity-based sampler works surprisingly well.
The relative improvements to the uniform sampler are 8.67%,

4.03%, 11.48%, 5.41% and 7.51% with respect to NDCG@50 in the

five datasets. This indicates that popular items with which a user

does not interact are more likely to be negative. It is worth men-

tioning that the probability mass on the few most popular items

should not be too large. Otherwise each time only the few most

popular items are sampled, so the model may either under-fit or

suffer from the false-negative problem. The improvement in the

Gowalla dataset is the smallest. This may lie in the smallest con-

centration, so that popular items (except the few most popular

ones) are least distinguishable from long-tail items compared to

other datasets. It was reported in [28] the popularity-based sam-

pler didn’t lead to competitive quality. This finding can imply the

advantage of the new ranking loss, which compensates deviation

between the negative probability and the popularity distribution.

• Finding 2 – Drawing negative samples based on the negative prob-
ability leads to large improvements. This is reasonable, and con-

sistent with our intuition, since these negative items can help

to produce larger gradient for parameter update. However, com-

puting preference scores for all items is very time-consuming

particularly when there are a large number of items, so that it

is seldom used in practice. This is also the reason that the re-

sults in two datasets with the most items are not reported. It

is worth mentioning that “stochastic sampling” is a sufficient

condition to ensure the improvement. If stochastic sampling is

substituted with deterministic selection, the performance would

dramatically deteriorate. This is because it severely suffers from

the false-negative problem, where high-scored items are also

likely to be positive (positive in the test set) rather than negative.

• Finding 3 – Approximate sampling can be comparable and some-
times superior to exact sampling; approximate sampling alleviates
the false-negative issue. This is observed by comparing the exact

sampler with cluster-based samplers. If items in each cluster are

sampled based on the popularity rather than uniformly, the rec-

ommendation performance further improves. This is evidenced

by comparing CP with CU in the table. One one hand, this implies

that approximating item embedding with centers suffers from

information loss. It is necessary to design advanced samplers

in future work for reducing the information loss; on the other

hand, item popularity can provide extra information to center

approximation, compensating some of information loss.

• Finding 4 – Learning-based clustering shows comparable recom-
mendation performance to K-means but dramatically reduces clus-
tering overhead.Note that preference score of each item in cluster-

based samplers is approximated by the center of item representa-

tion. Therefore, the samplers should be much more efficient than

the exact sampler. However, the results reported in Figure 2 show

that CU costs more time than Exact in the CiteULike dataset. This

lies in clustering overhead in each iteration. The overhead can

be reduced by incremental clustering, or lowering clustering fre-

quency. Learning-based clustering can be considered incremental



Personalized Ranking with Importance Sampling WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 2: Comparison with baselines in the five datasets with respect to NDCG@50 and Recall@50.

CiteULike Gowalla Amazon MovieLens Echonest

NDCG@50 IMP(%) NDCG@50 IMP(%) NDCG@50 IMP(%) NDCG@50 IMP(%) NDCG@50 IMP(%) AVG_IMP

WRMF 0.1239 22.22 0.1329 29.34 0.0631 34.66 0.2958 7.71 0.1187 24.22 23.63

CML 0.1293 17.12 0.1245 38.06 0.0742 14.52 0.2606 22.26 0.1413 4.38 19.27

WARP 0.0878 72.58 0.1555 10.58 0.0560 51.75 0.2432 30.98 0.1111 32.76 39.73

BPR 0.1269 19.30 0.1216 41.37 0.0499 70.18 0.2460 29.49 0.0940 56.84 43.44

AOBPR 0.0990 52.90 0.1385 24.17 0.0563 50.80 0.2623 21.45 0.1040 41.86 38.23

SA 0.1328 14.07 0.1400 22.80 0.0629 35.03 0.2973 7.17 0.1196 23.28 20.47

PRIS 0.1514 - 0.1719 - 0.0849 - 0.3186 - 0.1475 - -

Recall@50 IMP(%) Recall@50 IMP(%) Recall@50 IMP(%) Recall@50 IMP(%) Recall@50 IMP(%) AVG_IMP

WRMF 0.2710 15.46 0.2242 25.64 0.1445 24.53 0.5047 5.72 0.2219 16.92 17.65

CML 0.2775 12.77 0.2337 20.50 0.1593 12.94 0.4772 11.81 0.2530 2.58 12.12

WARP 0.1912 63.69 0.2650 6.29 0.1217 47.79 0.4440 20.17 0.2007 29.29 33.45

BPR 0.2772 12.89 0.2048 37.51 0.1171 53.65 0.4425 20.56 0.1829 41.90 33.30

AOBPR 0.2208 41.75 0.2369 18.90 0.1303 38.09 0.4780 11.63 0.2063 25.79 27.23

SA 0.2872 8.94 0.2355 19.58 0.1423 26.45 0.5145 3.70 0.2259 14.88 14.71

PRIS 0.3129 - 0.2816 - 0.1799 - 0.5335 - 0.2595 - -

clustering, where centers are dynamically updated together with

model parameters. Figure 2 shows the efficiency is indeed dramat-

ically promoted. Interestingly, the recommendation performance

is comparable or even sometimes better, showing the effective-

ness of learning-based clustering.
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Figure 2: The running time of PRIS with different samplers
in the CiteULike and Gowalla dataset.

5.7 Sensitivity w.r.t The Number of Negative
Samples

5.7.1 Settings. We vary the number of negative samples from 5

to 30 with a step 5, and report the results of PRIS-Joint with the

Cluster-Popularity-Joint sampler, PRIS-Uniform with the Uniform

sampler and BPR. The coefficient of activity regularization in these

three models has been separately fine-tuned within {2, 1, 0.5} while

other hyperparameters are fixed by default.

5.7.2 Findings – PRIS is highly effective at exploiting a limited
number of negative samples; when negative items are more infor-
mative, PRIS requires fewer samples. The results in the CiteULike

and Gowalla dataset are shown in Figure 3. PRIS-Joint slightly im-

proves when more negative items are provided. When supplying

a uniform sampler, PRIS-Uniform improves more than PRIS-Joint

with the growing number of negative items. On one hand, this

shows that more complex sampler makes PRIS depend on fewer

negative samples, indicating the superiority in terms of both opti-

mization efficiency and recommendation effectiveness. On the other

hand, without any advanced samplers, we can improve recommen-

dation performance by feeding more negative samples. However,

without weighting negative samples, BPR can not improve as much

as PRIS-Uniform with the increasing number of negative samples.

Therefore, even when many negative samples are considered, BPR

can not put more emphasis on informative negative samples. This

implies the proposed algorithm promotes the effectiveness of ex-

ploiting negative samples, by assigning larger weights to samples

with higher preference scores.
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Figure 3: The effect of the number of negative items.

5.8 Sensitivity w.r.t Embedding Dimension
5.8.1 Settings. We vary the dimension of user representation and

item representation in the set {8, 16, 32, 64, 128, 256} and also report

the results of PRIS-Joint, PRIS-Uniform and BPR. All the hyperpa-

rameters are fixed by default. Fine-tuning the coefficient of activity

regularization may improve the performance, but the relative posi-

tions and the trends in the figure are not altered.
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Table 3: The study of sampling strategies. “U”, “P”, “CU”, “CP” denotes the “Uniform”, “Popularity”, “Cluster-Uniform”,
“Cluster-Popularity” sampler, respectively. “CUJ” and “CPJ” are samplers which are learned jointly with the model. The “Ex-
act” sampler draws samples based on the negative probability P(j |u, i) in Eq (2).

NDCG@50 Recall@50

Sampler CiteULike Gowalla Amazon MovieLens Echonest CiteULike Gowalla Amazon MovieLens Echonest

U 0.1328 0.1400 0.0629 0.2973 0.1196 0.2872 0.2355 0.1423 0.5145 0.2259

P 0.1443 0.1457 0.0701 0.3133 0.1286 0.3033 0.2420 0.1554 0.5315 0.2401

CU 0.1413 0.1660 0.0776 0.3102 0.1362 0.2993 0.2746 0.1676 0.5284 0.2460

CP 0.1505 0.1706 0.0824 0.3162 0.1440 0.3159 0.2803 0.1760 0.5320 0.2567

CUJ 0.1507 0.1720 0.0824 0.3177 0.1476 0.3135 0.2822 0.1762 0.5330 0.2611

CPJ 0.1514 0.1719 0.0849 0.3186 0.1475 0.3129 0.2816 0.1799 0.5335 0.2595

Exact 0.1428 0.1695 - 0.3143 - 0.3017 0.2811 - 0.5339 -

5.8.2 Findings – Models with the medium size are more powerful
and better-performing, and are also better trained in the proposed
framework. The results are reported in Figure 4. When embedding

dimension increases, all of these three models begin a fairly steady

climb toward the peak performance at around 128 dim, and follow

by a slight drop. The performance gap between any two of them also

shows a growing trend. This observation implies that the proposed

framework also does better in training large models, particularly

when the complex samplers are applied.
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Figure 4: The effect of embedding dimension.

5.9 Sensitivity w.r.t the Number of Clusters
5.9.1 Settings. The number of clusters are varied from 50 to 300

with a step 50. The hyperparameters are not fine-tuned since the

overall trends are similar. The results of evaluation with the Cluster-

Popularity sampler in the CiteULike andGowalla dataset are showed

in Figure 5.

5.9.2 Findings – More clusters can make cluster-based samplers
better approximate the Exact sampler. Both figures show that the

recommendation performance increases by clustering items into

more groups. This may be because more clusters can provide more

accurate approximation of item representations. For the sake of

higher sampling efficiency, the number of clusters should not be

too large. This results in comparatively small improvements of

recommendation performance with the increase of cluster number.

This motivates us to seek the alternative schemes of approximation,

such as hierarchical clustering, to strike a better balance between

representation capacity and sampling efficiency.
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Figure 5: The effect of the number of clusters.

6 CONCLUSION AND FUTUREWORKS
In this paper, we proposed a new ranking loss function based on im-

portance sampling, which can put more emphasis on more informa-

tive negative samples. Therefore, the proposed algorithm addressed

the problem of small gradient magnitude in BPR, in case of not re-

sorting to any advanced samplers. We then designed four negative

samplers from simple to complex based on rejection sampling. The

static sampling using item popularity leads to more competitive

quality than uniform sampling, indicating the advantage of the

new ranking loss function compared to [28]. As informativeness

of negative samples grows, the recommendation performance also

improves and fewer negative samples are required. The extensive

experiments with five real-world datasets of varied size and diffi-

culty show that they can consistently beat the state-of-the-art item

recommendation algorithms.

Several topics can be investigated in future work. First, though

the cluster-based samplers perform better, the number of clusters

should not be large due to efficiency. One way is to design a tree-

based negative sampler. Alternative options include the methods

in [4, 28] based on a mixture of multinoulli distributions. Second,

it is also necessary to apply the proposed framework for metric

learning and deep recommendation algorithms.
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