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Abstract

We study an optimal investment and risk control problem for an insurer under stochastic
factor. The insurer allocates his wealth across a riskless bond and a risky asset whose drift
and volatility depend on a factor process. The risk process is modeled by a jump-diffusion
with state-dependent jump measure. By maximizing the expected power utility of the terminal
wealth, we characterize the optimal strategy of investment and risk control, analyze classical
solutions of HJB PDE and prove the verification theorem.
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1 Introduction

Since the seminal work of Merton [11], portfolio optimization problems have been the subject of
considerable investigation. The recent development focuses on the optimal investment problem with
stochastic volatility, see e.g. Fouque, et al. [6]. The stochastic volatility model directly relaxes the
log-normal assumptions on the price process dynamics which is able to capture empirically observed
features of price processes and has been successfully used in several contexts, including stochastic
interest rates, see e.g. Brennan and Xia [3], and stochastic volatility, see e.g. Zariphopoulou [20]
for a related survey.

The paper considers an optimal investment and risk control problem for an insurer under
stochastic factor. The stochastic factor models the evolution of macroeconomic variables such
as interest rates, broad share price indices or measures of economic activity or growth. For the case
without stochastic factor, Zou and Cadenillas [22] study an optimal investment and risk control
for an insurer by selecting the insurance policies. This work is also related to the optimal rein-
surance which is raised by the case where the insurer wants to control the reinsurance payout. It
has been extensively studied by [9] and [18] in the (jump) diffusion market. Zhuo, et al. [21] take
the regime-switching risk into the optimal reinsurance. Peng and Wang [15] consider the optimal
strategy of investment and risk control for an insurer who has some inside information on the insur-
ance business. Further, for the general Lévy market model without risk control, Nutz [13] studies
power utility maximization for exponential Lévy models with portfolio constraints. For the random
utility, Nutz [12] studies utility maximization for power utility random fields with and without in-
termediate consumption in a general semimartingale model with closed portfolio constraints. For
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the random coefficient driven optimal investment without risk control, Benth, et al. [2] and Delong
and Klüppelberg [5] deal with the Merton’s case in a Black-Scholes market where the volatility is
described as a pure-jump OU process. In our model, an insurer allocates his wealth across a riskless
bond and a risky asset where drift and volatility of its price dynamics depend on a diffusion factor.
The risk process is described as a general jump-diffusion with state-dependent jump measure. We
also allow the correlation among the risky asset price, risk control process and stochastic factor.
Differently from the works reviewed above, the appearance of stochastic factor in the model leads
that HJB PDE is a fully nonlinear PDE. We then analyze classical solutions to thus equation via
a power transformation and then the original HJB PDE can be transformed to a linear one. Since
the coefficients of our equation on unbounded domain R only satisfy local conditions, they are un-
bounded, have unbounded derivatives and don’t satisfy linear growth constraint. Hence standard
existence and uniqueness results (see e.g. Chapter 6 of Friedman [7] and Section 2.9 of Krylov [10])
do not apply here. Becherer and Schweizer [1] (see Proposition 2.3) and Health and Schweizer [8]
(see Theorem 1 and Lemma 2) provide new sufficient conditions for guaranteeing the existence and
uniqueness of global classical solutions of the PDE under some type of local conditions. We then
apply the above technique to analyze the global classical solution of the transformed equation.

The rest of the paper is organized as follows. Section 2 formulates the model. Section 3
derives the HJB PDE. Section 4 characterizes the optimal strategies for investment and risk control.
Section 5 analyzes the classical solution of HJB PDE and proves the verification theorem. Section 6
presents a numerical analysis.

2 The Model

We fix T > 0 to be the finite target horizon and consider a complete filtered probability space
(Ω,G,G,P). This space also supports a 3-dimensional Brownian motion (Wt, Ŵt, W̄t) for t ∈ [0, T ]
and an independent Poisson random measure N(du, dt) on U × [0, T ]. Here U is a topological space
and the reference filtration G = (Gt)t∈[0,T ] is given by the augmented natural filtration generated
jointly by Brownian motion and Poisson random measure.

We next describe the market model considered in this paper which consists of four blocks:
the stochastic factor model, the riskless-bond, the price processes of risky asset and a risk control
model.

Stochastic factor. They are used to model the evolution of macroeconomic variables such as interest
rates, price indices, and measures of economic activity or growth. These factors influence both the
drift and the volatility of the risky asset price processes. The single stochastic factor process is
described as a real-valued diffusion process which satisfies the SDE given by

dYt = b(Yt)dt+ a(Yt)

(
ρ1dWt +

√
1− ρ2

1dŴt

)
, Y0 = y ∈ R. (1)

Here ρ1 ∈ (−1, 1) is the correlation coefficient. The condition satisfied by coefficients (a(y), b(y))
will be imposed in the assumption (H1) below so that the SDE (1) admits a unique strong solution.

Riskless bond. Let r(Yt) be the time-t stochastic interest rate where r(y), y ∈ R, is a positive and

bounded C1-function. Then the time-t price of the riskless bond is given by Bt = e
∫ t
0 r(Ys)ds for

t ∈ [0, T ].

Price processes. The price processes of the risky asset (e.g. stock) is denoted by S = (St)t∈[0,T ]

whose dynamics is described as

dSt = St{µ(Yt)dt+ σ(Yt)dWt}, S0 > 0, (2)

where µ(y) and σ(y) > 0 are C1-functions. The excess-stock-return is given by θ(y) := µ(y)− r(y)

for y ∈ R, and hence the market price of risk is θ̄(y) := θ(y)
σ(y) for y ∈ R. The additional conditions

satisfied by the above coefficients will be given in the assumption (H2) below.
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Risk control process. The risk model for claims is described as an extensive Cramér-Lundberg
model, in which the claim (risk) per policy C = (Ct)t∈[0,T ] is given by the following dynamics

dCt = φ(Yt)

(
ρ2dWt +

√
1− ρ2

2dW̄t

)
+

∫
U
g(Yt, u)N(du, dt), (3)

where ρ2 ∈ (−1, 1) is the correlation coefficient, φ(y) > 0 is a C1-function, and g(y, u) is a strictly
positive C1-function of jump sizes in y ∈ R for all u ∈ U . Here the compensator of Poisson random
measure N(du, dt) is given by ν(Yt, du)dt where ν(y, du) is a sigma-finite Borel measure on U for

each y ∈ R, which is also C1 in y. Further it satisfies E[
∫ T

0 g2(Yt, u)ν(Yt, du)] < +∞ so that the
above stochastic integral w.r.t. Poisson measure is well-defined (see also Bo, et al. [4]). Let ηt the
G-adapted total outstanding number of policies (liabilities) at time t. Thus by extending the model
without stochastic factor in Zou and Cadenillas [22], the total risk of the insurer can be describe as

dRηt = ηt− {c(Yt)dt+ dCt} . (4)

Here c(y) > 0 is the premium rate which is also C1 in y ∈ R. In addition, we assume that the
average premium per liability for the insurer is p(Yt). Then pc(y) := p(y) − c(y) is the excess
premium per unit of liability for y ∈ R, and hence the excess premium per unit of liability and
per unit of risk is given by p̄c(y) := pc(y)

φ(y) . The further conditions satisfied by p̄c(y) will be given

in the assumption (H2) below. In terms of the above proposed models, we impose the following
assumptions on the coefficients of models:

(H1) For the stochastic factor, b(y) is Lipschitz continuous and a(y) > 0 is bounded Lipschitz
continuous.

(H2) For the risky asset and risk control process, (θ̄(y), p̄c(y)) are C1 and bounded.

Assumption (H1) on (a(y), b(y)) imply that SDE (1) admits a unique strong solution using Theorem
V.38 in [17]. The condition (H2) can guarantee that the coefficient of linear term in Eq. (24) in
Section 5 is bounded from above when we analyze the global classical solution of the HJB PDE. We
next present an example to illustrate the richness of our model and how it can recover specifications
considered in the literature as special cases.

Example 2.1. The proposed framework is rich enough to incorporate several stochastic factor
models considered in the literature. The stochastic factor process is chosen to be of the OU type:

dYt = (α− βYt)dt+ a

(
ρ1dWt +

√
1− ρ2

1dŴt

)
, Y0 ∈ R.

Here α ∈ R and β, a > 0 are constants. Thus the assumption (H1) is satisfied. The price dynamics
of the risky asset is given by

dSt = µStdt+
√
ϑ1(Yt)StdWt, S0 > 0,

where the return rate µ ∈ R, and the volatility ϑ1(y) is positive and C1. For the risk control
model, we assume the premium rate c > 0 and the average premium per liability p > 0. For the
constant interest rate r > 0, we have that the excesses of return and average premium per liability
are θ = µ− r and pc = p− c. We consider a Poisson random measure whose compensator is given
by ν(y, du) = j(y)δ1(du) for u ∈ U = R \ {0} where the amplitude function j(y) is positive and C1.
Then the risk control model is given by

dRηt = ηt−

{
cdt+

√
ϑ2(y)

(
ρ2dWt +

√
1− ρ2

2dW̄t

)
+

∫
U
g(Yt, u)N(du, dt)

}
.

Here the volatility ϑ2(y) is positive and C1. We next consider two choices for the volatility function
ϑi, previously considered in the literature (see e.g. Example 5 in [16]). Under both choices, we can
show that the coefficients of the model satisfy the above assumption (H2):
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(I) Uniformly elliptic Scott volatility, i.e. ϑi(y) = εi + eγiy for γi, εi > 0. Then the market price

of risk is θ̄(y) = θ√
ε1+eγ1y

and hence |θ̄(y)| ≤ |θ|√
ε1

for all y ∈ R. Similarly we also have

p̄c(y) = pc√
ε2+eγ2y

and |p̄c(y)| ≤ |pc|√
ε2

for all y ∈ R.

(II) Uniformly elliptic Stein-Stein volatility, i.e. ϑi(y) = εi + γi|y|2 for γi, εi > 0. In this case we

still have that |θ̄(y)| ≤ |θ|√
ε1

and |p̄c(y)| ≤ |pc|√
ε2

for all y ∈ R.

3 Dynamic Optimization for an Insurer

This section formulates the optimal portfolio problem of the insurer with risk control and derives
the HJB PDE. Recall that the average premium per liability for the insurer is p(Yt), and ηt the
G-adapted total outstanding number of policies (liabilities) at time t introduced in the above
section. Then the revenue from selling insurance policies over the time period of (t, t+ dt) is given
by p(Yt)ηtdt. Denote by φt the time-t amount of the money invested in the risky asset. Then the
surplus process of the insurer is given by, for t ∈ [0, T ], Xt = φtSt+

(
Xt−φt

)
Bt+

∫ t
0 p(Ys)ηsds−R

η
t .

Let πt be the fraction of wealth invested in the risky asset at time t, and `t be the ratio of liabilities
over surplus at time t, i.e. (φt, ηt) = Xπ,`

t (πt, `t). Here Xπ,`
t represents the time-t surplus level with

strategies π = (πt)t∈[0,T ] and ` = (`t)t∈[0,T ]. Using the self-financing trading strategy, we have from

Eq. (2) and Eq. (4) that the dynamics of Xπ,` = (Xπ,`
t )t∈[0,T ] is given by

dXπ,`
t

Xπ,`
t−

= πt
dSt
St

+ (1− πt)
dBt
Bt

+ p(Yt)`tdt− dR`t

=
{
r(Yt) + πtθ(Yt) + pc(Yt)`t

}
dt+

{
πtσ(Yt)− ρ2`tφ(Yt)

}
dWt

−
√

1− ρ2
2`tφ(Yt)dW̄t − `t−

∫
U
g(Yt, u)N(du, dt). (5)

Here R`t satisfies that

dR`t = `t−

{
c(Yt)dt+ φ(Yt)

(
ρ2dWt +

√
1− ρ2

2dW̄t

)
+

∫
U
g(Yt, u)N(du, dt)

}
. (6)

We next define the admissible control strategies considered in the paper which is given by

Definition 3.1. Let t ∈ [0, T ]. The t-admissible control set At is a class of G-adapted strategies

(πs, `s) with s ∈ [t, T ] so that SDE (5) admits a unique positive solution Xπ,`
s for s ∈ [t, T ] if

Xπ,`
t = x ∈ R+.

For (t, x, y) ∈ [0, T ] × R+ × R, and the admissible strategy (π, `) ∈ Ãt, define the objective

functional by Jπ,`(t, x, y) := E[U(Xπ,`
T )
∣∣Xπ,`

t = x, Yt = y]. Here the utility function is given by
power utility, i.e. U(x) = 1

γx
γ , x > 0, where γ ∈ (0, 1) is the risk-aversion parameter. Thus for

(t, x, y) ∈ [0, T ]× R+ × R, the value function is then given by

V (t, x, y) := sup
(π,`)∈At

Jπ,`(t, x, y). (7)

If V (t, x, y) is C1,2,2, using the dynamical programming principle, the HJB PDE is then given by,
on (t, x, y) ∈ [0, T )× R+ × R,

0 =
∂V (t, x, y)

∂t
+

1

2
a2(y)

∂2V (t, x, y)

∂y2
+ b(y)

∂V (t, x, y)

∂y

+ sup
(π,`)∈R2

{
∂V (t, x, y)

∂x
x
[
r(y) + πθ(y) + pc(y)`

]
+ ρ1

∂2V (t, x, y)

∂x∂y
xa(y)

[
πσ(y)− ρ2`φ(y)

]
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+
1

2

∂2V (t, x, y)

∂x2
x2
[(
πσ(y)− ρ2`φ(y)

)2
+ (1− ρ2

2)`2φ2(y)
]

(8)

+

∫
U

[
V
(
t, x
(
1− `g(y, u)

)
, y
)
− V (t, x, y)

]
ν(y, du)

}
with terminal condition V (T, x, y) = U(x) for all (x, y) ∈ R+ × R. Consider the decomposition
V (t, x, y) = U(x)B(t, y) where B(t, y) ∈ C1,2 is a positive function which solves the following
equation: on (t, y) ∈ [0, T )× R,

0 =
∂B(t, y)

∂t
+
a2(y)

2

∂2B(t, y)

∂y2
+ b(y)

∂B(t, y)

∂y
+B(t, y) sup

(π,`)∈R2

H
(
π, `; y,

∂B(t, y)

∂y
B−1(t, y)

)
(9)

with the terminal condition B(T, y) = 1 for all y ∈ R. Here for (π, `) ∈ R2 and (y, ϕ) ∈ R×R, the
Hamiltonian H(π, `; y, ϕ) is

H(π, `; y, ϕ) := γ
{
r(y) + πθ(y) + pc(y)`

}
+ ρ1γa(y)

[
πσ(y)− ρ2`φ(y)

]
ϕ (10)

+
1

2
γ(γ − 1)

{(
πσ(y)− ρ2`φ(y)

)2
+ (1− ρ2

2)`2φ2(y)
}

+

∫
U

{(
1− `g(y, u)

)γ − 1
}
ν(y, du).

It can be also verified that if B(t, y) solves Eq. (9), then V (t, x, y) = U(x)B(t, y) is the solution of
HJB PDE (8).

4 Optimal Strategies

This section focuses on the characterization of the optimal strategies of investment and risk control
of the insurer. By Theorem 11.2.3., pag. 232 in Oksendal [14], it suffices to consider the Markov
control in our case. Recall the Hamiltonian given by (10). Then the first-order condition of the
Hamiltonian w.r.t. π gives that, for (π, `) ∈ R2 and (y, ϕ) ∈ R× R,

∂H(π, `; y, ϕ)

∂π
= γθ(y) + γ(γ − 1)

(
σ2(y)π − ρ2`σ(y)φ(y)

)
+ ρ1γσ(y)a(y)ϕ = 0. (11)

The solution of the above first-order condition equation admits, for (y, ϕ) ∈ R× R and ` ∈ R,

π∗(y, ϕ, `) =
ρ2φ(y)

σ(y)
`− ρ1a(y)

(γ − 1)σ(y)
ϕ− θ(y)

(γ − 1)σ2(y)
. (12)

Observe that the above π∗ also depends on the strategy ` ∈ R which corresponds to the ratio of
liabilities over surplus. On the other hand, the first-order condition of the Hamiltonian w.r.t. `
gives that, for (π, `) ∈ R2 and (y, ϕ) ∈ R× R,

∂H(π, `; y, ϕ)

∂`
= γpc(y)− γ(γ − 1)ρ2σ(y)φ(y)π + γ(γ − 1)φ2(y)`− ρ1ρ2γa(y)φ(y)ϕ

− γ
∫
U

(
1− `g(y, u)

)γ−1
g(y, u)ν(y, du) = 0. (13)

Plugging π∗ given by (12) into Eq. (13) yields that

pc(y) + (γ − 1)φ2(y)`− ρ1ρ2a(y)φ(y)ϕ−
∫
U

(
1− `g(y, u)

)γ−1
g(y, u)ν(y, du)

− (γ − 1)ρ2σ(y)φ(y)

(
ρ2φ(y)

σ(y)
`− ρ1a(y)

(γ − 1)σ(y)
ϕ− θ(y)

(γ − 1)σ2(y)

)
= 0.

Notice that it holds that

ρ2σ(y)φ(y)
ρ2φ(y)

σ(y)
` = ρ2

2φ
2(y)`, and ρ2σ(y)φ(y)

ρ1a(y)

(γ − 1)σ(y)
ϕ = ρ1ρ2φ(y)a(y)ϕ.
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Figure 1: The function `→ Φ(`; y) for fixed y ∈ R.

Then the first-order condition equation (13) continues that

Φ(`; y) = 0. (14)

Here Φ(`; y) is defined as, for ` ∈ R and y ∈ R,

Φ(`; y) := (γ − 1)(1− ρ2
2)φ2(y)`+ pc(y) +

ρ2φ(y)θ(y)

σ(y)
−
∫
U

(
1− `g(y, u)

)γ−1
g(y, u)ν(y, du). (15)

We next analyze the root of Eq. (14) in the unknown variable ` for fixed y ∈ R. Notice that
the root of Eq. (14) corresponds to the optimal ratio of liabilities over surplus. In order to make it
admissible, the root denoted by `∗ = `∗(y) is required to satisfy the admissible condition given by

1− `∗g(y, u) > 0, for all (y, u) ∈ R× U . (16)

In fact, the condition (16) can guarantee that the surplus process Xπ,` still keep positive after
a (negative) jump raised by the Poisson measure in the risk control process, see also (5). The
following lemma presents the result on the root `∗ = `∗(y) for y ∈ R, which is given by

Lemma 4.1. Let y ∈ R be fixed. There exists a unique root `∗ = `∗(y) satisfying the admissible
condition (16) of Eq. (14). Moreover, as a function of y ∈ R, the root `∗ = `∗(y) is C1 and for
y ∈ R, it is nonnegative if and only if the following condition holds

pc(y) + ρ2φ(y)θ̄(y)−
∫
U
g(y, u)ν(y, du) ≥ 0. (17)

Proof. Notice that γ < 1 and ρ2 ∈ (−1, 1). Then we have from (15) that for y ∈ R fixed,
`−→ Φ(`; y) is C1 and decreasing on ` ∈ R. For (y, u) ∈ R× U fixed, the admissible condition (16)
is equivalent to requiring that the root `∗ < 1

g(y,u) . Then
∫
U (1− `g(y, u))γ−1g(y, u)ν(y, du) ↑ +∞,

and (1 − ρ2
2)φ2(y)` ↑ (1−ρ2

2)φ2(y)
g(y,u) as ` ↑ 1

g(y,u) . This yields that Φ(`; y) ↓ −∞ as ` ↓ 1
g(y,u) . On the

other hand, as ` ↓ −∞, it holds that
∫
U (1−`g(y, u))γ−1g(y, u)ν(y, du) ↓ 0, and (1−ρ2

2)φ2(y)` ↓ −∞.
Hence as ` ↓ −∞, we obtain Φ(`; y) ↑ +∞. This concludes that there is a unique root lying in
(−∞, 1

g(y,u)) of Eq. (14). See Fig. 1 for a further illustration. In terms of the above analysis, for

y ∈ R, the root `∗ = `∗(y) is nonnegative if and only if Φ(0; y) ≥ 0, i.e. for y ∈ R, Φ(0; y) =

pc(y) + ρ2φ(y)θ(y)
σ(y) −

∫
U g(y, u)ν(y, du) ≥ 0 (see also Fig. 1). The C1-property of the root y−→ `∗(y)

follows from the C1-property of `−→ Φ(`; y) for y ∈ R and the implicit function theorem. Thus we
complete the proof of the lemma. 2

Now using (12) and Lemma 4.1, we have the following solutions to the first-order condition
system of the Hamiltonian w.r.t. (π, `), which is given by, for (y, ϕ) ∈ R× R,

π∗(y, ϕ) = π∗(y, ϕ, `∗(y)) = ρ2φ(y)
σ(y) `

∗(y)− ρ1a(y)
(γ−1)σ(y)ϕ−

θ(y)
(γ−1)σ2(y)

;

`∗ = `∗(y) is the unique root obtained in Lemma 4.1.

(18)
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We here emphasize that the variable ϕ ∈ R corresponds to the proportion of the gradient of the
solution and the solution of the HJB PDE. We next prove that (π∗, `∗) = (π∗(y, ϕ), `∗(y)) for
(y, ϕ) ∈ R×R given by (18) is in fact the optimum. The proof of the following lemma is standard
and hence we omit it.

Lemma 4.2. Let (y, ϕ) ∈ R × R and the condition (17) hold. For (π, `) ∈ R × R+ satisfying the
admissible condition (16), then the Hessian matrix of H(π, `; y, ϕ) is negative definite.

5 HJB PDE and Verification Theorem

In this section, we analyze existence and uniqueness of the global classical solution of HJB PDE
(9) and then we will prove the corresponding verification theorem.

Recall the optimal strategy (π∗, `∗) given by (18). Plugging it into (9) and we have the following
updated HJB PDE given by, on (t, y) ∈ [0, T )× R,

0 =
∂B(t, y)

∂t
+

1

2
a2(y)

∂2B(t, y)

∂y2
+

(
b(y)− ρ1γ

γ − 1

a(y)θ(y)

σ(y)

)
∂B(t, y)

∂y
− ρ2

1γ

2(γ − 1)
a2(y)

(
∂B(t,y)
∂y

)2

B(t, y)

+ γB(t, y)

(
r(y) + pc(y)`∗(y) +

ρ2φ(y)θ(y)

σ(y)
`∗(y)− θ2(y)

2(γ − 1)σ2(y)
+
γ − 1

2
(1− ρ2

2)φ2(y)|`∗(y)|2
)

+B(t, y)

∫
U

{
(1− `∗(y)g(y, u))γ − 1

}
ν(y, du), (19)

while the terminal condition is given by B(T, y) = 1 for all y ∈ R. We have that

Theorem 5.1. Under the condition (17), and let assumptions (H1) and (H2) hold. Then there
exists a unique positive and bounded classical solution of Eq. (19).

Proof. As in Zariphopoulou [19], introduce the transform given by

B(t, y) = F δ(t, y), (t, y) ∈ [0, T ]× R. (20)

Here δ ∈ R is a free parameter which needs to be determined later and Eq. (19) gives that F (t, y)
satisfies

0 = δF δ−1(t, y)
∂F (t, y)

∂t
+ F δ−2(t, y)

(
∂F (t, y)

∂y

)2(δ(δ − 1)

2
− ρ2

1γδ
2

2(γ − 1)

)
a2(y)

+
δ

2
F δ−1(t, y)a2(y)

∂2F (t, y)

∂y2
+ δF δ−1(t, y)ζ(y)

∂F (t, y)

∂y
+ ψ(y)F δ(t, y), (21)

where, for y ∈ R, the coefficients

ζ(y) := b(y)− ρ1γ

γ − 1

a(y)θ(y)

σ(y)
= b(y)− ρ1γ

γ − 1
a(y)θ̄(y),

ψ(y) := γ

(
r(y)− θ̄2(y)

2(γ − 1)
+ κ(y)`∗(y) +

γ − 1

2
(1− ρ2

2)φ2(y)|`∗(y)|2
)

(22)

+

∫
U

{
(1− `∗(y)g(y, u))γ − 1

}
ν(y, du).

Here κ(y) := pc(y) + ρ2φ(y)θ(y)
σ(y) = pc(y) + ρ2φ(y)θ̄(y) for y ∈ R. We take the constant given by

δ =
1− γ

1− (1− ρ2
1)γ
∈ (0, 1). (23)
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Then it holds that δ(δ−1)
2 − ρ2

1γδ
2

2(γ−1) = 0. This yields that the transformed solution F (t, y) satisfies

that on (t, y) ∈ [0, T )× R,

0 =
∂F (t, y)

∂t
+

1

2
a2(y)

∂2F (t, y)

∂y2
+ ζ(y)

∂F (t, y)

∂y
+
ψ(y)

δ
F (t, y), (24)

while the terminal condition is given by F (T, y) = 1 for all y ∈ R. We next apply Proposition 2.3
of Becherer and Schweizer [1] to analyze the classical solution of Eq. (24). To this purpose, we first
consider the following SDE given by

dȲt = ζ(Ȳt)dt+ a(Ȳt)

(
ρ1dWt +

√
1− ρ2

1dŴt

)
, Ȳ0 = Y0 ∈ R, (25)

where ζ(y) is given in (22). We next prove that SDE (25) admits a unique strong solution Ȳ =
(Ȳt)t∈[0,T ] under assumptions (H1) and (H2). Recall that the stochastic factor Y = (Yt)t∈[0,T ]

satisfying SDE (1). We then define the change of measure by

dP̄
dP

∣∣∣
GT

= exp

{
−
∫ T

0

ρ1γ

γ − 1
θ̄(Ys)d

(
ρ1dWs +

√
1− ρ2

1dŴs

)
− 1

2

∫ T

0

(
ρ1γ

γ − 1
θ̄(Ys)

)2

ds

}
.

Notice that the assumption (H2) shows that θ̄(y) is bounded, and hence the probability measure
P̄ ∼ P is well defined. Moreover, under P̄, the process W̃t := ρ1dWt+

√
1− ρ2

1dŴt+
∫ t

0
ρ1γ
γ−1 θ̄(Ys)ds,

t ∈ [0, T ], is a Brownian motion. Thus we can rewrite SDE (1) as

dYt = ζ(Yt)dt+ a(Yt)dW̃t, Y0 ∈ R. (26)

This implies that SDE (26) admits a unique solution under P̄. Since P̄ ∼ P, we have that SDE (25)
has a unique strong solution under P. We next prove that the coefficient ψ(y), y ∈ R, given in
(22), is in fact bounded from above. To this purpose, for y ∈ R fixed, let us consider the following
function for ` ∈ R+,

ψ̄(y; `) := γ

(
r(y)− θ̄2(y)

2(γ − 1)
+ κ(y)`+

γ − 1

2
(1− ρ2

2)φ2(y)`2
)

+

∫
U

{
(1− `g(y, u))γ − 1

}
ν(y, du).

Notice that γ ∈ (0, 1) and the jump function g(y, u) is positive. Then for all (y, `) ∈ R× R+,

ψ̄(y; `) ≤ γ
κ2(y) + 2(1− γ)(1− ρ2

2)φ2(y)
(
r(y) + θ2(y)

2(1−γ)σ2(y)

)
2(1− γ)(1− ρ2

2)φ2(y)

= γ

(
r(y) +

p̄2
c(y)

2(1− γ)(1− ρ2
2)

+
θ̄2(y)

2(1− γ)(1− ρ2
2)

+
ρ2p̄c(y)θ̄(y)

(1− γ)(1− ρ2
2)

)
.

Since ρ2 ∈ (−1, 1), under (H2) and the condition (17), there exists a constant C ∈ R such that
ψ̄(y; `) ≤ C for all (y, `) ∈ R × R+. Notice that ψ(y) = ψ̄(y, `∗(y)) and `∗(y) ∈ R+ under the
condition (17). Then Lemma 4.1 yields that ψ(y), y ∈ R, is bounded from above. Let Dn = (−n, n)
for n ∈ N. Also notice that δ ∈ (0, 1), and the terminal condition F (T, y) = 1 for all y ∈ R, which
is smooth and bounded. Then the coefficients of PDE (24) with (Dn)n∈N given above satisfy the
local conditions in Proposition 2.3 of [1]. Hence PDE (24) admits a unique classical solution F (t, y)

on (t, y) ∈ [0, T ] × R. Further F (t, y) = E[e
∫ T
t

ψ(Ȳs)
δ

ds
∣∣Ȳt = y] for (t, y) ∈ [0, T ] × R. Since ψ(y)

δ ,
y ∈ R, is bounded from above, F (t, y) is bounded and positive for all (t, y) ∈ [0, T ]×R. Using (20)
and notice that δ ∈ (0, 1), we have that B(t, y) = F δ(t, y) is the unique bounded classical solution
to Eq. (19). Thus we complete the proof of the theorem. 2

We also have the following verification theorem:
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Theorem 5.2. Let the conditions of Theorem 5.1 hold. Then the value function is given by, for
(t, x, y) ∈ [0, T ]× R+ × R,

V (t, x, y) =
1

γ
xγ
{
E
[
e

1−(1−ρ21)γ

1−γ
∫ T
t ψ(Ȳs)ds

∣∣∣Ȳt = y

]} 1−γ
1−(1−ρ21)γ

, (27)

where Ȳ = (Ȳt)t∈[0,T ] is the unique strong solution to SDE (25). Moreover, the optimal strategies
corresponding to the fraction of wealth invested in the risky asset and the ratio of liabilities over
surplus is given by, for t ∈ [0, T ],

π∗t = π∗
(
Yt,

∂B(t, Yt)

∂y
B−1(t, Yt)

)
, and `∗t = `∗(Yt). (28)

Here (π∗(y, ϕ), `∗(y)), (y, ϕ) ∈ R×R, is the optimal feedback functions which are given by (18) and
Y = (Yt)t∈[0,T ] is the stochastic factor process described as (1).

Proof. It can be observed that our transformed HJB PDE (24) admits a same structure to the HJB
equation (3.11) considered in [19]. Under assumptions (H1) and (H2), it follows from Theorem
3.2 of [19] that, in order to prove the value function V (t, x, y) = 1

γx
γB(t, y) = 1

γx
γF δ(t, y) for

(t, x, y) ∈ [0, T ]×R+×R, it suffices to verify that F (t, y) is a unique viscosity solution to Eq. (24).

Theorem 5.1 has showed that F (t, y) = E
[
e
∫ T
t

ψ(Ȳs)
δ

ds|Ȳt = y
]

is the unique classical solution of
PDE (24) with the terminal condition F (T, y) = 1 for all y ∈ R. Then it implies that F (t, y) is
also a unique viscosity solution to Eq. (24). Plugging the constant δ given by (23) into V (t, x, y) =
1
γx

γF δ(t, y), we get (27). On the other hand, from Lemma 4.2, it follows that (π∗(y, ϕ), `∗(y)) with

(y, ϕ) ∈ R×R, given by (18), is the optimal feedback functions. Also notice that B(t, y) = F δ(t, y)
with δ ∈ (0, 1) given by (23) is the unique classical solution to our HJB equation (19). Then

using (18), under (H1) and (H2), it follows that both of π∗
(
y, ∂B(t,y)

∂y /B(t, y)
)

and `∗(y) are locally
bounded. In terms of Definition 3.1, we have that the optimal strategy given by (28) is admissible.
Thus we complete the proof of the verification theorem. 2

6 Numerical Analysis

Recall Example 2.1 and choose uniformly elliptic Scott volatility here, i.e. σ(y) =
√
ϑ1(y) =√

ε1 + eγ1y and φ(y) =
√
ϑ2(y) =

√
ε2 + eγ2y for y ∈ R. The condition (17) implies that for y ∈ R,

j(y)g(y, 1) ≤ pc + ρ2θ
√

ε2+eγ2y

ε1+eγ1y =: κ(y). Recall Φ(`; y) defined by (15). Then, for (`, y) ∈ R+ × R,

Φ(`; y) = κ(y) + (γ − 1)(1− ρ2
2)ϑ1(y)`− j(y)

(
1− `g(y, 1)

)γ−1
g(y, 1).

Consider the risk aversion parameter γ = 0.5. By solving Φ(`; y) = 0 in ` to obtain the the following
equation on the optimal ratio of liabilities over surplus given by

− 1

4
(1− ρ2

2)2ϑ2
1(y)g(y, 1)`3 +

(
1

4
(1− ρ2

2)2ϑ2
1(y) + κ(y)(1− ρ2

2)ϑ1(y)g(y, 1)

)
`2

−
(
κ2(y)g(y, 1) + κ(y)(1− ρ2

2)ϑ1(y)
)
`+ κ2(y)− j2(y)g2(y, 1) = 0. (29)

Further we introduce the following coefficients, for y ∈ R,

Ā(y) := −1

4
(1− ρ2

2)2ϑ2
1(y)g(y, 1), B̄(y) :=

1

4
(1− ρ2

2)2ϑ2
1(y) + κ(y)(1− ρ2

2)ϑ1(y)g(y, 1),

C̄(y) := −κ2(y)g(y, 1)− κ(y)(1− ρ2
2)ϑ1(y), D̄(y) := κ2(y)− j2(y)g2(y, 1).

Then Eq. (29) can be rewritten as the following cubic equation in ` for y ∈ R fixed

Ā(y)`3 + B̄(y)`2 + C̄(y)`+ D̄(y) = 0. (30)
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We next solve the above cubic equation by defining

∆(y) := 81Ā4(y)D̄2(y)− 54Ā3(y)B̄(y)C̄(y)D̄(y) + 12Ā3(y)C̄3(y) + 12Ā2(y)B̄3(y)D̄(y)

− 3Ā2(y)B̄2(y)C̄2(y).

Then the solution which matches the optimal ratio of liabilities over surplus is given by

`∗(y) =
1

6Ā(y)

(
−108Ā2(y)D̄(y) + 36Ā(y)B̄(y)C̄(y)− 8B̄3(y) + 12

√
∆(y)

) 1
3

(31)

+
1

6Ā(y)

(
−108Ā2(y)D̄(y) + 36Ā(y)B̄(y)C̄(y)− 8B̄3(y)− 12

√
∆(y)

) 1
3 − B̄(y)

3Ā(y)
.

This follows from Eq. (18) that the optimal strategy for the risky asset is given by, for (y, ϕ) ∈ R×R,

π∗(y, ϕ) =
ρ2φ(y)

σ(y)
`∗(y)− ρ1a(y)

(γ − 1)σ(y)
ϕ− θ(y)

(γ − 1)σ2(y)

= ρ2

√
ε2 + eγ2y

ε1 + eγ1y
`∗(y) +

2ρ1a√
ε1 + eγ1y

ϕ+
2θ

(ε1 + eγ1y)
. (32)

Then we have the time-t optimal strategy of investment and risk control is given by

(π∗t , `
∗
t ) =

(
π∗
(
Yt,

∂B(t, Yt)

∂y
B−1(t, Yt)

)
, `∗(Yt)

)
, t ∈ [0, T ].

Here B(t, y) = F δ(t, y), (t, y) ∈ [0, T ]× R, is the unique classical solution to PDE (19).

We next present a numerical analysis for the impact of market parameters on the optimal
policy (π∗(y, ϕ), `∗(y)) given by (32) and (31) above. We first analyze the impact of the volatility
level of the model on the optimal policy. Notice that in Example 2.1, the stochastic volatility
appears in both of the risky asset price and the risk model. The volatility functions are given by√
ϑ1(y) =

√
ε1 + eγ1y and

√
ϑ2(y) =

√
ε2 + eγ2y respectively. We take the parameters µ = 0.6,

r = 0.1, p = 0.7, c = 0.1, a = 0.01, ε1 = 0.2, ε2 = 0.3, γ1 = 0.02 and γ2 = 0.03. The left top figure
in Fig. 2 plots the the optimal policy with respect to the stochastic factor y. We notice that in the
setting of market parameters in the left top figure in Fig. 2, the parameters γi, i = 1, 2, are positive.
Hence the both of volatilities

√
ϑ1(y) and

√
ϑ2(y) are increasing in the stochastic factor y. This

implies that when the stochastic factor y becomes larger, the volatility risk would be larger. Then
it leads that the optimal strategy is decreasing w.r.t. the stochastic factor, which is also consistent
with the observation presented in Benth, et al. [2].

Using the common parameter values as in the left top figure in Fig. 2, we analyze the sensitivity
of the optimal strategy w.r.t. the correlation coefficient ρ1 ∈ (−1, 1) between the stochastic factor
and asset return. In terms of (31) and (32) for the optimal strategy, only the optimal fraction of
the risky asset π∗(y, ϕ) depends on the correlation coefficient ρ1 ∈ (−1, 1) which is linear in ρ1. The
graph of optimal policies w.r.t. different values of ρ1 is displayed in the right top figure in Fig. 2.

Further, we analyze the impact of the correlation coefficient ρ2 between the insurer’s risk and
asset return on the optimal strategy. We plot the graph of optimal strategy w.r.t. different values
of ρ2 in the left bottom figure in Fig. 2. From the left bottom figure in Fig. 2 with fixed value of
the stochastic factor, it can be seen that the optimal fraction strategy π∗(y, ϕ) in the risky asset is
increasing in ρ2. While for the optimal liability ratio `∗(y) with fixed value of the stochastic factor,
it is decreasing first and then it is increasing in ρ2. These observations are fully consistent with the
findings in Zou and Cadenillas [22] which considers the case without stochastic factor.

Finally we analyze the sensitivity of the optimal strategy w.r.t. the parameter j of jumps’ size.
We use the common parameter values in the left top figure in Fig. 2 with additional parameter
values ρ1 = 0.2, ρ2 = −0.1, and ϕ = 5. The right bottom figure in Fig. 2 shows that the optimal
liability ratio `∗(y) is decreasing w.r.t. the jumps’ size j. It can be explained that when the
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Figure 2: Left top panel: the dependence of the optimal policy on the stochastic factor y. Right top
panel: the dependence of the optimal policy on the correlation coefficient ρ1. Left bottom panel:
the dependence of the optimal policy on the correlation coefficient ρ2. Right bottom panel: the
dependence of the optimal policy on the jumps’ size j.

jumps’ size is larger, the risk exposure to the investor in the risk process would be larger. Then
it is natural to reduce the liability ratio for the insurer and in turn the insurer will increase the

investment fraction of the risky asset since ρ2

√
ε2+eγ2y

ε1+eγ1y `
∗ increases for the negative ρ2. This has

been displayed in the right bottom figure in Fig. 2.
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