Bayesian networks
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Frequentist vs. Bayesian

ZEW vs. T

Frequentist (W% = X 3% ) : probability is the long-run
expected frequency of occurrence. P(A) = n/N, where n is the
number of times event A occurs in N opportunities.
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Bayesian: degree of belief. It is a measure of the plausibility ({2
XM ) of an event given incomplete knowledge.



Probability

Probability is a rigorous formalism for uncertain knowledge
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Joint probability distribution specifies probability of every atomic event
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Queries can be answered by summing over atomic events
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For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools



Independence/Conditional Independence

A and B are independent iff
P(A|B)=P(A) orP(B|A)=P(B) orP(A, B)=P(A)P(B)

A is conditionally independent of B given C:
P(A| B, C)=P(A | ()
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Conditional independence is our most basic and robust form of
knowledge about uncertain environments.



Probability Theory

Probability theory can be expressed in terms of two simple equations
—Sum Rule  CIIyERLIND

« probability of a variable is obtained by marginalizing (iZ1Zx{k) or
summing out other variables

p(a)="Y p(a,b)

— Product Rule  (feyE#i )
e joint probability expressed in terms of conditionals

p(a,b) = p(bla)p(a)

All probabilistic inference and learning amounts to repeated application of
sum and product rule



Outline

e Graphical models 3 )
e Bayesian networks

— Syntax (IEVE)

— Semantics (iF X))

* Inference (#£%5) in Bayesian networks




What are Graphical Models?

They are diagrammatic (& k%) representations
of probability distributions

— marriage between probability theory and
graph theory

e Also called probabilistic graphical models
e They augment analysis instead of using pure

algebra (fXF0D



What is a Graph?

e Consists of nodes (also called vertices) and links (also
called edges or arcs)

i

I

* |n a probabilistic graphical model

— each node represents a random variable (or group of
random variables)

— Links express probabilistic relationships between variables



Graphical Models in CS

 Natural tool for handling uncertainty (AN %€
) and complexity (& Z4:)
— which occur throughout applied mathematics and
engineering
e Fundamental to the idea of a graphical model
is the notion of modularity (FE3e4:)

— a complex system is built by combining simpler
parts.



Why are Graphical Models useful

* Probability theory provides the glue whereby

— the parts are combined, ensuring that the system as a
whole is consistent

— providing ways to interface models to data.

 Graph theoretic side provides:

— Intuitively appealing interface
* by which humans can model highly-interacting sets of variables

— Data structure

e that lends itself naturally to designing efficient general-purpose
CEH P algorithms



Graphical models: Unifying Framework

* View classical multivariate (Z7Z=[1]) probabilistic systems
as instances of a common underlying formalism (GE=)

— mixture models (VR &MY ) | factor analysis ([XIF43#7) , hidden
Markov models, Kalman filters (/K= JE A% | etc.

— Encountered in systems engineering, information theory, pattern
recognition and statistical mechanics

e Advantages of View:

— Specialized techniques in one field can be transferred between
communities and exploited

— Provides natural framework for designing new systems



Role of Graphical Models in
Machine Learning
1. Simple way to visualize (FE%4t)

structure of probabilistic model

2. Insights into properties of model
Conditional independence properties by inspecting
graph
3. Complex computations

required to perform inference and learning
expressed as graphical manipulations



Directed graphical models

— Directionality associated with

arrows

Bayesian networks

— Express causal relationships

(K HRIZ) between

random variables

More popular in Al and

statistics

a

Graph Directionality

<

Undirected graphical
models

— links without arrows

Markov random fields

CEy 7RBERBEN L)

— Better suited to express soft
constraints between variables

More popular in Vision and
physics




Bayesian networks

—ApfR R, BIPACRIRE A, ] 3R A i TR A4 A
9}%? bﬂ%ﬂi@) - N AT A WA A F i — o

YO

Syntax:
a set of nodes, one per variable
a directed (51A]) , acyclic (o) graph (link = "direct influences")
a conditional distribution for each node given its parents:
P (X, | Parents (X)) — A HACTHT RO % S 5200

In the simplest case, conditional distribution represented as a
conditional probablllty table 251 HE % 2% (CPT) giving the
distribution over X; for each combination of parent values



Example

Topology (#i4M25#)) of network encodes conditional
independence assertions:

CEDECD

Weather is independent of the other variables
Toothache and Catch are conditionally independent given Cavity



Example

I‘m at work, neighbor John calls to say my alarm is ringing, but neighbor Mary
doesn’t call. Sometimes it‘s set off by minor earthquakes. Is there a

burglar (&) ?
Variables: Burglary (A Z77%7) , Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal ([KH) " knowledge:
— A burglar can set the alarm off
— An earthquake can set the alarm off
— The alarm can cause Mary to call
— The alarm can cause John to call
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Compactness (SEPE)

A CPT for Boolean X; with k Boolean parents has 2% rows for the combinations of
parent values
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Each row requires one number p for X; = true
(the number for X; = false is just 1-p) @ﬁ@

If each variable has no more than k parents, the complete network requires O(n - 2¥)
numbers

l.e., grows linearly with n, vs. O(2") for the full joint distribution

For burglary net, 1 +1+4 + 2 + 2 = 10 numbers (vs. 2>-1 = 31)



Global semantics (& J/HiE X))

The full joint distribution is defined as the product of the local
conditional distributions:
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®
“Global” semantics defines the full joint distribution }E\L
as the product of the local conditional distributions: @ @

P(xy,...,x,) = 1I'_ P(x;|parents(X;))

e.g., P(j AmAaAN-bA—e)



Global semantics (5

/

= O

The full joint distribution is defined as the product of the local

conditional distributions:
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“Global” semantics defines the full joint distribution m
as the product of the local conditional distributions: @ @

P(xy,...,x,) = LI_  P(x|parents(X;))
eg., PGAmANaA=bN—e)

= (j]a)P(m]a) (alﬂb ﬂe)P(ﬂb)P(ﬂe)
= 0.9 x0.7x0.0 0.999 x 0.998
~ 0. U()()G



Local semantics

Local semantics: each node is conditionally independent of its
nondescendants (FE/54X) given its parents
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Theorem: Local semantics < global semantics



Causal Chains

e A basic configuration
X: Low pressure

Z: Traffic
P(z,y,z) = P(z)P(ylz) P(z|y)

— Is X independent of Z given Y?

P(z,y,2) _ P(z)P(ylz)P(z|y)
P(x,y) P(x)P(y|x)

= P(z|y) Yes!

P(z|lz,y) =

— Evidence along the chain “blocks” the influence



Common Cause

* Another basic configuration: two
effects of the same cause

— Are X and Z independent?

— Are X and Z independent given Y?
P(z,y, z) . P(y)P(z|ly)P(zly) v Project due

P(z|lx,y) = =
P(z,y) P(y)P(fcly) X: Newsgroup
busy
= P(zly) Yes! Z: Lab full

— Observing the cause blocks influence
between effects.



Common Effect

e Last configuration: two causes of one
effect (v-structures)

— Are X and Z independent?

e Yes: remember the ballgame and the rain
causing traffic, no correlation?

— Are X and Z independent given Y?
 No: remember that seeing traffic put the rain

and the ballgame in competition? X: Raining
— This is backwards from the other cases Z: Ballgame
Y: Traffic

* Observing the effect enables influence between
causes.



Constructing Bayesian networks

Need a method such that a series of locally testable assertions of conditional
independence guarantees the required global semantics

e A EALAR R R S A AT 8 R RS IR IIE 4 J 1 AR AT

1. Choose an ordering of variables X, ... X,

2.Fori=1ton
add X; to the network
select parents from X,, ... ,X.; such that
P (X; | Parents(X)) = P (X; | Xy, - X;.)

This choice of parents guarantees the global semantics:

P(Xy,...X,) = [[P(Xi|X1,...Xi-1)  (chain rule)

1=1

H P(X;|Parents(X;))  (by construction)

=1



Constructing Bayesian networks
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Example

Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?



Example

Suppose we choose the ordering M, J, A, B, E

P(J | M)=P(J)? No
P(A|J,M)=P(A|J)?P(A|J, M)=P(A)?



Example

Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)? No
PA|J,M)=P(A|J))?P(A|J,M)=P(A)? No
P(B | A, J, M)=P(B | A)?

P(B | A, J, M) = P(B)?



Example

Suppose we choose the ordering M, J, A, B, E

D,
=
(narm)
P(J | M) =P(J)? No
PA|J,M)=P(A|J))?P(A]J,M)=P(A)? No
P(B| A, J,M)=P(B | A)? Yes
P(B | A, J, M) = P(B)? No

P(E|B,A,J,M)=P(E | A)?
P(E|B,A,J,M)=P(E | A, B)?



Example

Suppose we choose the ordering M, J, A, B, E

D
P(J | M) = P(J)? No
P(A|J,M)=P(A |J)?P(A|J,M)=P(A)? No
P(B| A, J,M)=P(B | A)? Yes
P(B | A, J, M) =P(B)? No
P(E| B,A,J, M)=P(E | A)? No

P(E| B, A, J,M)=P(E | A, B)? Yes



Example contd.

Burga

Earthquake

Deciding conditional independence is hard in noncausal (FE[X2E) directions
(Causal models and conditional independence seem hardwired for humans!)

Network is less compact: 1+ 2 +4 + 2 + 4 = 13 numbers needed



Causality?

e When Bayes’ nets reflect the true causal patterns:
— Often simpler (nodes have fewer parents)
— Often easier to think about
— Often easier to elicit from experts

 BNs need not actually be causal

— Sometimes no causal net exists over the domain (especially if variables
are missing)

— End up with arrows that reflect correlation, not causation

e What do the arrows really mean?
— Topology may happen to encode causal structure
— Topology really encodes conditional independence



Inference in Bayesian networks



Inference tasks

Simple queries: compute posterior probability P(X.|E=e)
e.g., P(NoGas|Gauge /il -7Z=empty, Lights=on, Starts=false)

Conjunctive queries (EEE 2] -
P(X, X | E=e) = P(X,| E=e)P(X,| X, E=e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for
P(outcome |action, evidence)



Inference by enumeration

Slightly intelligent way to sum out variables from the joint
without actually constructing its explicit representation

P(X|e) =aP(X,e) = O{Z@

{E DUy j 2 o m] LR K500 A S

JR SRR SRR 2
P(X1,...,Xn) = [[i=, P(X;|Parents(X;))
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Inference by enumeration

Slightly intelligent way to sum out variables from the joint
without actually constructing its explicit representation

Simple query on the burglary network:

i e

=P(B,j,m)/P(j,m)
= aP (D, j m) Q
—a 2. 2, P(B.e,a,j,m) @ @

Rewrite full joint entries using product of CPT entries:
P(BU m'

=« 2 2q P(B)P(e)P(alB.e)P(jla)P(mla)

— aP(B) X, Ple) 2” P rr\B.(,P jla)P(mla)

Recursive depth-first enumeration: O(n) space, O(d") time



Evaluation tree

P(a/b.e) P@ajb.e) P(a/bme)

P@albme)
.05 .94

P(jla) Pjma) T Pl P(jjma)
90 05 90 .05
O O Q O
ign Ja) 13(1111 /= a) ?gr}/a) Pg(lm /ma)
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Enumeration is inefficient: repeated computation
e.g., computes P’(j|a)P(m a) for each value of ¢



Inference by variable elimination

Variable elimination (ZZ= V8 JG) : carry out summations right-

to-left, storing intermediate results (factors: [x

recomputation

(B|j, m
— cx\Pi(VB_)/E,,.E\(i)’_JU (z\B ] Plila) P 771\(1)
B E ; M

= aP(B)X.P(e) 2P| (I\B e)P(jla)far(a)

= aP(B)>.P(e)2,P( a|B,e)frla)fila)

= aP(B)2.P(e)2..fala, b, f)f; a)fa)

= aP(B)2.P(e)f151:(b,€) (sum out A)

= aP(B)fgi (D) (sum out E)

™
F—-’
Prag
uy)
=
X
~~
eyl
P
N
=
)

) to avoid



Complexity of exact inference

Singly connected networks ¥ B2 18 [ 2% (or polytreesZ #):
— any two nodes are connected by at most one (undirected) path
— time and space cost of variable elimination are O(d*n)
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Multiply connected networksZ2 B [ 4%
— can reduce 3SAT to exact inference = NP-hard
— equivalent to counting 3SAT models = #P-complete

1. AvBvEC
2. CvDv 1A
3. BvCv-D




Example: Naive Bayes model

There is a single parent variable and a collection of
child variables whose values are conditionally
independent from one another given the parent.

P(Xl = T1,... T)(ﬂ = In)
— P(Xl = ;'Ifl) P(){Q = :FQ‘X]_ — f{fl) s P(_Xn = iITn|){1 = ;'Ifl)



Naive Bayes model

P(Cause, Ef fecty, ..., Ef fect,) =P(Cause) [[[P(Ef fect; | Cause)

P(Cause|Ef fecty, ..., Ef fect,) = P(Effects, Cause) /P (Effects)
= aP(Cause, Effects) = aP(Cause)|[,P(E f fect; | Cause)

Total number of parameters (Z%{) s linearinn



Example: Spam detection

Imagine the problem of trying to automatically detect spam e-mail messages
(B HEH) . A simple approach to get started is to look only at the
“Subject:” headers in the e-mail messages and attempt to recognize spam

by checking some simple computable features (434F) . The two simple
features we will consider are:

Caps: Whether the subject header is entirely capitalized

Free: Whether the subject header contains the word “free', either in upper
case or lower case

e.g.: a message with the subject header “NEW MORTGAGE RATE” is likely
to be spam. Similarly, for “Money for Free", “FREE lunch", etc.



Example: Spam detection

The model is based on the following three random variables,
Caps, Free and Spam, each of which take on the values Y (for

Yes) or N (for No)

Caps =Y if and only if the subject of the message does not
contain lowercase letters

Free =Y if and only if the word ‘free' appears in the subject
(letter case is ignored)

Spam =Y if and only if the message is spam

P(Free, Caps, Spam)= P(Spam ) P(Caps|Spam) P(Free|Spam)



Example: Spam detection

e

P(Free, Caps, Spam)= P(Spam) P(Caps|Spam) P(Free|Spam)



Example: Spam detection

Free | Caps | Spam | # messages
Y Y Y 20
Y Y N 1
Y N Y 5
Y N N 0
N Y Y 20
N Y N 3
N N Y 2
N N N 49
Total: 100
Spam | P(Spam)
Y | 282042 _ (g 47
N % = 0.53
Caps Spam P(Caps|Spam) Free Spam P( Free| Spam)
ERAE o R
N Y 71+95132+49 ~ 0 1489 N X HD#HQ R 0' 46_8Ll
NN | DRI o015 NN | SR o8ty
1+0+3+449 — U - 1+0+3+49 ~— *




Example: Spam detection

P(Free =Y, Caps = N, Spam = N)
= P(Spam = N) P(Caps= N|Spam = N) P(Free =Y |Spam = N)
~ (.53 x 0.9245 x 0.0189
~ 0.0093



Example: Learning to classify text
documents (13.18)
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Example: Learning to classify text
documents

Category

The model consists of the prior probability P(Category) and the conditional
probabilities P(word i|Category)

e P(Category=c) is estimated as the fraction of all documents that are of
category c

e P(wordi=true|Category=c) is estimated as the fraction of documents of
category c that contain word i



Twenty Newsgroups

Given 1000 training documents from each group. Learn
to classify new documents according to which
newsgroup it came from

comp. graphics

comp. 0s. ms-windows. misc
comp. sys. ibm. pc. hardware
comp. sys. mac. hardware
comp. windows. X

rec. autos sci.crypt

rec. motorcycles sci.electronics
rec. sport. baseball sci.med

rec. sport. hockey sci. space

talk. politics. misc talk. religion. misc
misc. forsale talk. politics. guns alt.atheism
talk. politics. mideast|soc. religion. christian

Naive Bayes: 89% classification accuracy



Learning Curve for 20 Newsgroups
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Accuracy vs. Training set size (1/3 withheld for test)



Example: A Digit Recognizer

e [nput: pixel grids

e Output: a digit 0-9

QONP L



Naive Bayes for Digits

Simple version:
— One feature F; for each grid position <i,j>

— Possible feature values are on / off, based on whether intensity is
more or less than 0.5 in underlying image

— Each input maps to a feature vector, e.g.
’1 — (Fo,0 =0 Fp1 =0 Fpo=1 Fp3=1 Fpa=0 ...F1515 =0)

— Here: lots of features, each is binary

Naive Bayes model:
P(Y|Fpo...Fi515) x P(Y) || P(F; ;|Y)
o
What do we need to learn?



P(Y)
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Examples: CPTs
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Comments on Nalve Bayes

Makes probabilistic inference tractable by making a
strong assumption of conditional independence.

Tends to work fairly well despite this strong
assumption.

Experiments show it to be quite competitive with
other classification methods on standard
datasets.

Particularly popular for text categorization, e.g.
spam filtering.



Summary

Bayesian networks provide a natural representation
for (causally induced) conditional independence

Topology + CPTs = compact representation of joint
distribution

Generally easy for domain experts to construct

Exact inference by variable elimination:
— polytime on polytrees, NP-hard on general graphs
— space = time, very sensitive to topology

Naive Bayes model



e

e 14.3(3,b,c), 14.4, 14.7(a,b,c)
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