- Supervised learning




Supervised learning
N

Formal setup

@ Input data space X
e Output (label, target) space Y
@ Unknown function f: A — )V

@ We are given a set of labeled examples (x;,v;), i =1,..., N, with
x; € X,y €.
@ Finite ) = classification

@ Continuous Y = regression



Classification (4-2%)
=

7 We are given a set of N observations {(x, y,)}.—=1 N
- Need to map x e X'to a label y €)

1 Examples:

digits recognition;

1239
O34 y=1{0,...,9}

prediction from microarray data;
Y = {desease present/absent}




- Decision Trees
N Yar
A' N X‘

Section 18.3




Learning decision trees

Problem: decide whether to wait for a table at a restaurant,
based on the following attributes (& %)
Alternate (7| #y3EFF) :is there an alternative restaurant nearby?
Bar: is there a comfortable bar area to wait in?
Fri/Sat: is today Friday or Saturday?
Hungry: are we hungry?
Patrons (il %) : number of people in the restaurant (None, Some, Full)
Price: price range ($, $3, $3$9)
Raining: is it raining outside?
Reservation (%) :have we made a reservation?
Type: kind of restaurant (French, Italian, Thai, Burger)
WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)



Attribute-based representations

Examples described by atiribute values (571 ) (Boolean, discrete, continuous)

E.g., situations where | will /won't wait for a table:

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | Wait
X, T | F F T |Some| $$% F T |French| 0-10 T
Xy T | F F T Full $ F F | Thai |30-60 F
X3 F| T F F | Some| § F F | Burger| 0-10 T
X4 T | F T T Full $ F F | Thai |10-30 T
X5 T | F T F Full | $$% F T |French| =60 F
X, F| T | F | T |Some| $% T T | ltalian | 0-10 T
X7 F| T F F | None $ T F | Burger| 0-10 F
Xs F| F | F | T |Some|l $% T | T | Thai | 0-10 T
Xy F| T T F Full $ T F | Burger| =60 F
X1 T| T T T Full | $$% F T | Italian | 10-30 F
X F | F F F | None| § F F | Thai | 0-10 F
X9 T| T T T Full $ F F | Burger | 30-60 T

Classification (7775)  of examples is positive (T) or negative (F)




Decision trees

One possible representation for hypotheses

E.g., here is the “true” tree for deciding whether to wait:

Patrons?

None

WaitEstimate?

Alternate? Hungry?
VWS No Yes
Reservation? Fri/Sat? Alternate?
No Yes No Yes No Yes
Bar? Raining?
Yes No Yes

m o



Decision Tree Learning

Tid Attrib1 Attrib2 Attrib3 Class
1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 89K Yes

9 No Medium 75K No

10 No Small 90K Yes
Tid Attrib1 Attrib2 Attrib3 Class
11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K

15 No Large 67K

Learn
Model

I ™
Apply Decision
Model

Tree



(

Expressiveness (3% 3% fit 77)
==

Decision trees can express any function of the input attributes.

E.g., for Boolean functions, truth table row — path to leaf (& WEE R EFATH N THF

W — & BR)
A
A B AxorB Y\
F F -
F T T 5 s
T E T F /N T F/N\T
T T F

Trivially, there is a consistent decision tree for any training set with one path to leaf for each
example (unless f nondeterministic in x) but it probably won't generalize to new
examples

Prefer to find more compact decision trees



Decision tree learning
.

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose "most significant” attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all examples have the same classification then return the classification

else if attributes is empty then return MODE(ezamples)
else
best — CHOOSE-ATTRIBUTE( attributes, examples)
tree<— a new decision tree with root test best
for each value v; of best do
examples; +— {elements of ezamples with best = v;}
subtree «— D'TL(examples;, attributes — best, MODE( examples))
add a branch to free with label v; and subtree subtree

return ftree




Choosing an attribute

ldea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"

000000 000000
000000 000000
Patrons? Type?
NG%NUII FrencW\Nrger
0000 00 O © 00 o0
0 0000 O @ 00 o0

Patrons? is a better choice



Using information theory (12 E. %)

To implement Choose—-Attribute in the DTL
algorithm

Information Content 1’;? & (Entropy Ji ):

I(P(vy), Z —P(v;) log, P(v;)

For a training set containing p positive examples and n

negative examples:

n n N
I, )=———log, ——- log,
p+n p+n p+n p+n  p+n p+n




)

Information gain (1Z & 3 %5

A chosen attribute A divides the training set E into subsets E, ...,
E,, according to their values for A, where A has v distinct values.

remainder(A) = Zpu+”.|( b n

= p+n " p.+n p +n

Information Gain (IG) or reduction in entropy from the attribute
fest:

IG(A) = 1 (—"— "y _remainder(A)
p+n p+n

Choose the attribute with the largest |G




Information gain

For the training set, p=n=6,1(6/12,6/12) = 1 bit

Consider the attributes Patrons and Type (and others too):

4
12
2,11 4 22
12 2 2 12 4 4

2 6 2 4 .
IG(Patrons) =1-[— 1 (0 D) +—1(1,0)+— I (=,—-)] =.541bits
( ) [12() ()12(66)]

2
12

4,2

IG(Type) =1 |(3,%)+ )+ 4,%)]=Obits

Patrons has the highest IG of all attributes and so is chosen by the DTL

algorithm as the root



Example contd.
T

Decision tree learned from the 12 examples:

Patrons?

MNone m Full

Substantially simpler than “true” tree---a more complex
hypothesis isn’t justified by small amount of data



Performance measurement

How do we know that h = f 2

Use theorems of computational/statistical learning theory

Try h on a new test set (ll1{52)  of examples

(use same distribution over example space as training set)

Learning curve ("2 > [1ZE) = % correct on test set as a function of training

1.
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Comments on decision tree based
classification

Advantages:
Inexpensive to construct
Extremely fast at classifying unknown records
Easy to interpret for small-sized trees

Accuracy is comparable to other classification
techniques for many simple data sets

Example: C4.5
Simple depth-first construction.

Uses Information Gain



K nearest neighbor classifier

Section 20.4



Linear predlc’rlons




Learning Framework

Learner

T
Model /
Feature
. —
Dirain extraction . HEICTEC: —_— f
Y

Learning




Focus of this part

Binary classification (e.g., predicting spam or not
spam):

T —| | —c {1 41}

Regression (e.g., predicting housing price):




Classification
=N

Classification

= learning from data with finite discrete labels. Dominant
problem in Machine Learning

o O O 0O

/C)///

®® ®@
6 @

Y



Linear Classifiers

Binary classification can be viewed as the task of

separating classes in feature space CFFIEZF[H]) -

\"'4

™x+b=0

wix+b<0

Decide
otherwise

1 ifwx+b>0,
—1

.
y




Linear

Prediction

Loss
Minimization




Linear Classifiers

h(x) = sign(w'x + b)
Need to find w (direction) and b (location) of the
boundary

Want to minimize the expected zero/one loss (5 <)
for classifier h: X)), which is

{0 if h(x) = v.

L{h(x),y) = 1 if h(x) # v.



Linear Classifiers = Loss Minimization

|deally we want to find a classifier

h(x) = sign(w'x + b) to minimize the 0/1 loss

minw Z,,; Lo/l(h(xi)a Yi)

Unfortunately, this is a hard problem..

Alternate loss functions:
Lo(h(x),y) = (y—w'x—b)>=(1-y(w'x+10))?
Li(h(x),y) = |ly—w'x—0b|=]

Lhinge(h(x)v y) — (1 o y(WTX - b))_|_



Learning as Optimization
s

Parameter Learning

Obijective . Optimization
Function Algorithm




Least Squares Classification
i

Least squares loss function:
Ly(h(x),y) = (y — w'x — b)?
The goail:

to learn a classifier h(x) = sign(w'x + b) to minimize the least
squares loss

Loss = mmZLg

— %1})1 ‘ (yz — WTXi — b)z
()



Solving Least Squares Classification

Let

Loss

Wd




Solving for w

0Loss

—AXw—v)' X =
- (Xw —y) 0
X'Xw—-X"'y = 0
W* _ (XTX)—1XTy

Note: d(Ax+b)'C(Dx+e) =((Ax+b)'CD + (Dx+e)'CTA) dx
d(Ax+b)T(Ax+b) = (2(Ax+b)TA) dx

X+ = (XTX)—lXT is called the Moore-Penrose pseudoinverse ({# 1 )
of X

Least squares classification in Matlab

o

% X(1: ,) 1s the i-th example, y (1) 1s the i-th label
wLSQ = pinv([ones(size(X, 1), 1) X])*y;

Prediction for Xp

A * | ]. . T _I_T ].
e[ e[ L)



General linear classification

22 5
Basis (nonlinear) functions (2t 5 %% )

fxX, W) =b+wi¢1(x) + wada(x) + - - - + WPy (X)




Regression ( [H] IF)

I
Regression

= learning from continuously labeled data.

f(x)




Linear Regression

400 T hz)=w1-z+b
X

300 + X x X X
Price ($) 1 x X
in 1000’s 200

100 + X

0 } 5 4 4 i
0 500 1000 1500 2000 2500

Size in feet?

Loss = I&{%ZLQ(h(iEi); y;) Least Squares
= min Z(y@ —wy - x; — b)?

7



General Linear/Polynomial Regression

35|
400 7T
300 =+
Pri
ro00s 2 |
100 +
0

X

X

h(z) =wi -z +ws-x%+b
X s Be—*—x

Loss

500 1000 1500 2000 2500

Size in feet?

= min z%: Lo(h(z;), y:) Least Squares




Model complexity and overfitting

I S,
E.g., curve fitting (HHZILS) -

f(x)

= X



Model complexity and overfitting

I T,
E.g., curve fitting (HHZILS) -

flx)=wy-z+b

f(x)

Underfitting
X High Bias




Model complexity and overfitting

I S,
E.g., curve fitting (HHZILS) -

flx)=wy -z +wy 2*+b

f(x)




Model complexity and overfitting

I S,
E.g., curve fitting (HHZILS) -

flx)=wy -z +wy - 2*+w3 25 +wy -zt +ws-2°+b

f(x)

Overfitting

High Variance




Model complexity and overfitting

I S,
E.g., curve fitting (HHZHL &) -

fx)=wi -z +wy-2°+...+w, " +b

f(x)




Model complexity and overfitting

I s,
E.g., curve fitting (HHZILS) -

f(x)

X
Ockham's razor (B K| 77 JE N|) : maximize a combination of consistency and simplicity

e 5 FodE — B e R



Prediction Errors

Training errors (apparent errors) — | % +% %

Errors committed on the training set

Test errors — M| X,1% £

Errors committed on the test set

Generalization errors — (2 /1% £

Expected error of a model over random selection of
records from same distribution (= #1103k _F B #] 2 %
#)



Model complexity and overfitting

> (N

A Test Error

/

\

W”Or

Model Complexity

Underfitting: when model is too simple, both training and test errors are large

Overfitting: when model is ftoo complex, training error is small but test error is large



Incorporating Model Complexity

Rationale: Ockham’s Razor

Given two models of similar generalization errors, one
should prefer the simpler model over the more complex
model

A complex model has a greater chance of being fitted
accidentally by errors in data

Therefore, one should include model complexity when
evaluating a model



Regularization (#, 3% 1)
I

Intuition: small values for parameters

o “Simpler” hypothesis . 1/p
o1 Less prone to overfitting et [l = (Zilvil )

w" = arg m“irn Loss + A - penalty(w)
2 reguiarizarion WS = argmin Loss + Al|lw|?
L1 regularization w* = arg m“irn
Regularization
1 Solving L2-regularized LS parameter
min(Xw —y)? + A w|?

W

Solution?



Regularization
=

w* = arg n%n Loss + X - penalty(w)
= arg le;\irn Loss + AR,
Ry =) lwil?
When A sufficiently large, equivalent to:

ENANER
NZANPAuD

qg=0.5 qg=1 q=2 q=4
Contours of the regularization term for various value of q




L-2 and L-1 regularization

1 L-2: easy to optimize, closed form solution

0 L-1: sparsity

wo A

(
p
o



More than two classes?
I

Given
0 N X d data matrix X
0 NX k label matrix Y
o N = # training instances
0 d = # features
0 k = # targets

Assume
nk<d




More than two classes

Learn:
parameters W (d X k) for a model fiy : X =Y
Objective min tr (XW - Y)(XW - Y)")

A convex quadratic, so just solve for a critical point:

d
= 92X"(XW-Y) = 0
i ( )
Thus X' XW = X'y

W = (X'X)"'x'y = X'y



Comments on

least squares classification
o

7 Not the best thing to do for classification

- But
Easy to train, closed form solution ( [ 3\ f#)

Ready to connect with many classical learning principles



Cross-validation (&% X #-1iF )

The basic idea: if a model overfits (is too sensitive to
data) it will be unstable. l.e. removal part of the data
will change the fit significantly.

We can hold out (FL ) part of the datq, fit the
model to the rest, and then test on the heldout set.



Cross-validation

@ [he improved holdout method: k-fold cross-validation

e Partition data into £ roughly equal parts;
e T[rain on all but j-th part, test on j-th part

|



Cross-validation

@ [he improved holdout method: k-fold cross-validation

e Partition data into k& roughly equal parts;
e [rain on all but j-th part, test on j-th part

L]



Cross-validation

@ [he improved holdout method: k-fold cross-validation

e Partition data into k roughly equal parts;
e [rain on all but j-th part, test on j-th part

L]



Cross-validation

@ [he improved holdout method: k-fold cross-validation

e Partition data into k£ roughly equal parts;
e T[rain on all but j-th part, test on j-th part

]



Learning Framework

Learner

T
Model /
Feature
. —
Dirain extraction . HEICTEC: —_— f
Y

Learning




Model /parameter learning paradigm

1 Choose a model class

NB, kNN, decision tree, loss/regularization combination
1 Model selection

Cross validation
71 Training

Optimization

11 Testing



Summary

Supervised learning

Classification
Naive Bayes model
Decision tree
Least squares classification
Regression

Least squares regression
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