Supervised learning

Supervised learning

Formal setup

- Input data space \mathcal{X}
- Output (label, target) space \mathcal{Y}
- Unknown function $f: \mathcal{X} \rightarrow \mathcal{Y}$
- We are given a set of labeled examples $\left(\mathrm{x}_{i}, y_{i}\right), i=1, \ldots, N$, with $\mathbf{x}_{i} \in \mathcal{X}, y_{i} \in \mathcal{Y}$.
- Finite $\mathcal{Y} \Rightarrow$ classification
- Continuous $\mathcal{Y} \Rightarrow$ regression

Classification (分类)

\square We are given a set of N observations $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1 . . N}$
\square Need to map $x \in \mathcal{X}$ to a label $y \in \mathcal{Y}$
\square Examples:

digits recognition; $\mathcal{Y}=\{0, \ldots, 9\}$
prediction from microarray data; $\mathcal{Y}=\{$ desease present $/$ absent $\}$

Decision Trees
 决策树

Section 18.3

Learning decision trees

Problem：decide whether to wait for a table at a restaurant， based on the following attributes（属性）：
1．Alternate（别的选择）：is there an alternative restaurant nearby？
2．Bar：is there a comfortable bar area to wait in？
3．Fri／Sat：is today Friday or Saturday？
4．Hungry：are we hungry？
5．Patrons（顾客）：number of people in the restaurant（None，Some，Full）
6．Price：price range（ $\$ \mathbf{\$} \$ \mathbf{\$} \$ \$$ ）
7．Raining：is it raining outside？
8．Reservation（预约）：have we made a reservation？
9．Type：kind of restaurant（French，Italian，Thai，Burger）
10．WaitEstimate：estimated waiting time（0－10，10－30，30－60，＞60）

Attribute－based representations

Examples described by attribute values（属性）（Boolean，discrete，continuous）
E．g．，situations where I will／won＇t wait for a table：

Example	Target										
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_{1}	T	F	F	T	Some	$\$ \$ \$$	F	T	French	$0-10$	T
X_{2}	T	F	F	T	Full	$\$$	F	F	Thai	$30-60$	F
X_{3}	F	T	F	F	Some	$\$$	F	F	Burger	$0-10$	T
X_{4}	T	F	T	T	Full	$\$$	F	F	Thai	$10-30$	T
X_{5}	T	F	T	F	Full	$\$ \$ \$$	F	T	French	>60	F
X_{6}	F	T	F	T	Some	$\$ \$$	T	T	Italian	$0-10$	T
X_{7}	F	T	F	F	None	$\$$	T	F	Burger	$0-10$	F
X_{8}	F	F	F	T	Some	$\$ \$$	T	T	Thai	$0-10$	T
X_{9}	F	T	T	F	Full	$\$$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	$\$ \$ \$$	F	T	Italian	$10-30$	F
X_{11}	F	F	F	F	None	$\$$	F	F	Thai	$0-10$	F
X_{12}	T	T	T	T	Full	$\$$	F	F	Burger	$30-60$	T

Classification（分类）of examples is positive（ T ）or negative（ F ）

Decision trees

One possible representation for hypotheses
E.g., here is the "true" tree for deciding whether to wait:

Decision Tree Learning

Tid	Attrib1		Attrib2	Attrib3
1	Class			
1	Yes	Large	125 K	No
2	No	Medium	100 K	No
3	No	Small	70 K	No
4	Yes	Medium	120 K	No
5	No	Large	95 K	Yes
6	No	Medium	60 K	No
7	Yes	Large	220 K	No
8	No	Small	85 K	Yes
9	No	Medium	75 K	No
10	No	Small	90 K	Yes

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55 K	$?$
12	Yes	Medium	80 K	$?$
13	Yes	Large	110 K	$?$
14	No	Small	95 K	$?$
15	No	Large	67 K	$?$

Expressiveness（表达能力）

Decision trees can express any function of the input attributes．
E．g．，for Boolean functions，truth table row \rightarrow path to leaf（函数真值表的每行对应于树中的一条路径）：

Trivially，there is a consistent decision tree for any training set with one path to leaf for each example（unless f nondeterministic in x ）but it probably won＇t generalize to new examples

Prefer to find more compact decision trees

Decision tree learning

Aim: find a small tree consistent with the training examples Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a decision tree
    if examples is empty then return default
    else if all examples have the same classification then return the classification
    else if attributes is empty then return Mode(examples)
    else
    best \leftarrow Choose-AtTribute(attributes, examples)
    tree}\leftarrowa\mp@code{new decision tree with root test best
    for each value }\mp@subsup{v}{i}{}\mathrm{ of best do
        examples
        subtree }\leftarrow\textrm{DTL}(\mp@subsup{\mathrm{ examples }}{i}{},\mathrm{ ,attributes - best, MODE(examples))
        add a branch to tree with label vi and subtree subtree
    return tree
```


Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice

Using information theory（信息论）

To implement Choose－Attribute in the DTL algorithm
Information Content 信息量（Entropy熵）：

$$
I\left(P\left(v_{1}\right), \ldots, P\left(v_{n}\right)\right)=\sum_{i=1}^{n}-P\left(v_{i}\right) \log _{2} P\left(v_{i}\right)
$$

For a training set containing p positive examples and n negative examples：

$$
I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)=-\frac{p}{p+n} \log _{2} \frac{p}{p+n}-\frac{n}{p+n} \log _{2} \frac{n}{p+n}
$$

Information gain（信息增益）

A chosen attribute A divides the training set E into subsets E_{1}, \ldots ， E_{v} according to their values for A ，where A has v distinct values．

$$
\operatorname{remainder}(A)=\sum_{i=1}^{v} \frac{p_{i}+n_{i}}{p+n} I\left(\frac{p_{i}}{p_{i}+n_{i}}, \frac{n_{i}}{p_{i}+n_{i}}\right)
$$

Information Gain（IG）or reduction in entropy from the attribute test：

$$
I G(A)=I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)-\operatorname{remainder}(A)
$$

Choose the attribute with the largest IG

informotion goin

For the training set, $p=n=6, I(6 / 12,6 / 12)=1$ bit

Consider the attributes Patrons and Type (and others too):

$$
I G(\text { Patrons })=1-\left[\frac{2}{12} I(0,1)+\frac{4}{12} I(1,0)+\frac{6}{12} I\left(\frac{2}{6}, \frac{4}{6}\right)\right]=.541 \text { bits }
$$

$$
I G(\text { Type })=1-\left[\frac{2}{12} I\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{2}{12} I\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{4}{12} I\left(\frac{2}{4}, \frac{2}{4}\right)+\frac{4}{12} I\left(\frac{2}{4}, \frac{2}{4}\right)\right]=0 \text { bits }
$$

Patrons has the highest IG of all attributes and so is chosen by the DTL algorithm as the root

Example contd.

Decision tree learned from the 12 examples:

Substantially simpler than "true" tree---a more complex hypothesis isn't justified by small amount of data

Performance measurement

How do we know that $h \approx f$ ？
1．Use theorems of computational／statistical learning theory
2．Try h on a new test set（测试集）of examples
（use same distribution over example space as training set）
Learning curve（学习曲线）＝\％correct on test set as a function of training
set size

Comments on decision tree based classification

Advantages:
\square Inexpensive to construct
\square Extremely fast at classifying unknown records
\square Easy to interpret for small-sized trees
\square Accuracy is comparable to other classification techniques for many simple data sets

Example: C4.5
\square Simple depth-first construction.
\square Uses Information Gain

K nearest neighbor classifier最近邻模型

Section 20.4

Learning Framework

Focus of this part

\square Binary classification (e.g., predicting spam or not spam):

\square Regression (e.g., predicting housing price):

Classification

Classification

$=$ learning from data with finite discrete labels. Dominant
problem in Machine Learning

Linear Classifiers

Binary classification can be viewed as the task of separating classes in feature space（特征空间）：

Roadmap

Linear
Prediction

Linear Classifiers

$$
h(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)
$$

\square Need to find w (direction) and b (location) of the boundary
\square Want to minimize the expected zero/one loss (损失) for classifier $h: \mathcal{X} \rightarrow \mathcal{Y}$, which is

$$
L(h(\mathbf{x}), y)= \begin{cases}0 & \text { if } h(\mathbf{x})=y \\ 1 & \text { if } h(\mathbf{x}) \neq y\end{cases}
$$

Linear Classifiers \rightarrow Loss Minimization

Ideally we want to find a classifier

$$
\begin{aligned}
& h(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{\mathbf{\top}} \mathbf{x}+\mathbf{b}\right) \text { to minimize the } 0 / 1 \text { loss } \\
& \quad \min _{\mathbf{w}, b} \sum_{i} L_{0 / 1}\left(h\left(\mathbf{x}_{i}\right), y_{i}\right)
\end{aligned}
$$

Unfortunately, this is a hard problem..

Alternate loss functions:

$$
\begin{aligned}
L_{2}(h(\mathbf{x}), y) & =\left(y-\mathbf{w}^{\top} \mathbf{x}-b\right)^{2}=\left(1-y\left(\mathbf{w}^{\top} \mathbf{x}+b\right)\right)^{2} \\
L_{1}(h(\mathbf{x}), y) & =\left|y-\mathbf{w}^{\top} \mathbf{x}-b\right|=\left|1-y\left(\mathbf{w}^{\top} \mathbf{x}+b\right)\right| \\
L_{\text {hinge }}(h(\mathbf{x}), y) & =\left(1-y\left(\mathbf{w}^{\top} \mathbf{x}+b\right)\right)_{+}
\end{aligned}
$$

Learning as Optimization

Parameter Learning

Least Squares Classification

Least squares loss function:

$$
L_{2}(h(\mathbf{x}), y)=\left(y-\mathbf{w}^{\top} \mathbf{x}-b\right)^{2}
$$

The goal:
to learn a classifier $h(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{\boldsymbol{\top}} \mathbf{x}+b\right)$ to minimize the least squares loss

$$
\begin{aligned}
\text { Loss } & =\min _{\mathbf{W}, b} \sum_{i} L_{2}\left(h\left(\mathbf{x}_{i}\right), y_{i}\right) \\
& =\min _{\mathbf{W}, b} \sum_{i}\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}-b\right)^{2}
\end{aligned}
$$

Solving Least Squares Classification

Let

$$
\begin{gathered}
\mathbf{X}=\left[\begin{array}{cccc}
1 & x_{11} & \cdots & x_{1 d} \\
\vdots & & \vdots & \\
1 & x_{N 1} & \cdots & x_{N d}
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{c}
b \\
\vdots \\
w_{d}
\end{array}\right] \\
\text { Loss }=\min _{\mathbf{w}} \sum_{i}(\mathbf{y}-X \mathbf{w})_{i}^{2} \\
=\min _{\mathbf{w}}(X \mathbf{w}-\mathbf{y})^{\top}(X \mathbf{w}-\mathbf{y})
\end{gathered}
$$

Solving for w

$$
\begin{aligned}
\frac{\partial \operatorname{Loss}}{\partial \mathbf{w}}=2(X \mathbf{w}-\mathbf{y})^{\top} X & =0 \\
X^{\top} X \mathbf{w}-X^{\top} \mathbf{y} & =0 \\
\mathbf{w}^{*} & =\left(X^{\top} X\right)^{-1} X^{\top} \mathbf{y}
\end{aligned}
$$

Note: $d(\mathbf{A x}+\mathbf{b})^{T} \mathbf{C}(\mathbf{D x}+\mathbf{e})=\left((\mathbf{A x}+\mathbf{b})^{T} \mathbf{C D}+(\mathbf{D x}+\mathbf{e})^{T} \mathbf{C}^{T} \mathbf{A}\right) d \mathbf{x}$ $d(\mathbf{A x}+\mathbf{b})^{T}(\mathbf{A x}+\mathbf{b})=\left(2(\mathbf{A x}+\mathbf{b})^{T} \mathbf{A}\right) d \mathbf{x}$
$\begin{aligned} & \square X^{+}=\left(X^{\top} X\right)^{-1} X^{\top} \text { is called the Moore-Penrose pseudoinverse (伪逆) } \\ & \text { of } \mathrm{X}\end{aligned}$
\square Least squares classification in Matlab

```
% X(i: ,) is the i-th example, y(i) is the i-th label
wLSQ = pinv([ones(size(X, 1), 1) X])*y;
```

\square Prediction for \mathbf{x}_{0}

$$
\hat{y}=\operatorname{sign}\left(\mathbf{w}^{* \top}\left[\begin{array}{c}
1 \\
\mathbf{x}_{0}
\end{array}\right]\right)=\operatorname{sign}\left(\mathbf{y}^{\top} X^{+^{\top}}\left[\begin{array}{c}
1 \\
\mathbf{x}_{0}
\end{array}\right]\right)
$$

General linear classification

Basis（nonlinear）functions（基函数）

$$
f(\mathbf{x}, \mathbf{w})=b+w_{1} \phi_{1}(\mathbf{x})+w_{2} \phi_{2}(\mathbf{x})+\cdots+w_{m} \phi_{m}(\mathbf{x})
$$

Regression (回归)

Regression

$=$ learning from continuously labeled data.

Linear Regression

$$
\begin{aligned}
\text { Price (\$) } \\
\text { in } 1000 \text { 's }
\end{aligned}
$$

General Linear/Polynomial Regression

$$
\begin{aligned}
\text { Price (\$) } \\
\text { in } 1000 \text { 's }
\end{aligned}
$$

Model complexity and overfitting

E．g．，curve fitting（曲线拟合）：

Model complexity and overfitting

E．g．，curve fitting（曲线拟合）：

$$
f(x)=w_{1} \cdot x+b
$$

Underfitting
High Bias

Model complexity and overfitting

E．g．，curve fitting（曲线拟合）：

Model complexity and overfitting

E．g．，curve fitting（曲线拟合）：

$$
\begin{aligned}
f(x)= & w_{1} \cdot x+w_{2} \cdot x^{2}+w_{3} \cdot x^{3}+w_{4} \cdot x^{4}+w_{5} \cdot x^{5}+b \\
& f(x) \\
& \text { Overfitting }
\end{aligned}
$$

(x)

High Variance

Model complexity and overfitting

E．g．，curve fitting（曲线拟合）：

$$
\underset{\sim}{f(x)=w_{1} \cdot x+w_{2} \cdot x^{2}+\ldots+w_{n} \cdot x^{n}+b}
$$

Model complexity and overfitting

E．g．，curve fitting（曲线拟合）：

Ockham＇s razor（奥卡姆剃刀原则）：maximize a combination of consistency and simplicity优先选择与数据一致的最简单的假设

Prediction Errors

－Training errors（apparent errors）—训练误差
\square Errors committed on the training set
\square Test errors — 测试误差
\square Errors committed on the test set
\square Generalization errors —泛化误差
\square Expected error of a model over random selection of records from same distribution（未知记录上的期望误差）

Model complexity and overfitting

Underfitting: when model is too simple, both training and test errors are large
Overfitting: when model is too complex, training error is small but test error is large

Incorporating Model Complexity

\square Rationale: Ockham's Razor
\square Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
\square A complex model has a greater chance of being fitted accidentally by errors in data
\square Therefore, one should include model complexity when evaluating a model

Regularization（规范化）

Intuition：small values for parameters
－＂Simpler＂hypothesis
\square Less prone to overfitting

$$
L_{p}-n o r m:\|v\|_{p}=\left(\sum_{i}\left|v_{i}\right|^{p}\right)^{1 / p}
$$

$$
\begin{aligned}
& \qquad \mathbf{w}^{*}=\arg \min _{\mathbf{W}} \operatorname{Loss}+\lambda \cdot \operatorname{penalty}(\mathbf{w}) \\
& \text { L2 regularization } \mathbf{w}^{*}=\arg \min _{\mathbf{W}} \operatorname{Loss}+\lambda\|\mathbf{w}\|^{2} \\
& \text { L1 regularization } \mathbf{w}^{*}=\arg \min _{\mathbf{W}} \text { Loss }+\frac{\lambda|\mathbf{w}|}{\substack{\text { Regularization } \\
\text { parameter }}} \\
& \square \text { Solving L2-regularized LS }
\end{aligned}
$$

$$
\min _{\mathbf{w}}(X \mathbf{w}-\mathbf{y})^{2}+\lambda\|\mathbf{w}\|^{2}
$$

Solution？

Regularization

$$
\begin{gathered}
\mathbf{w}^{*}=\arg \min _{\mathbf{W}} \operatorname{Loss}+\lambda \cdot \operatorname{penalty}(\mathbf{w}) \\
=\arg \min _{\mathbf{w}} \operatorname{Loss}+\lambda R_{q} \\
R_{q}=\sum_{i}\left|w_{i}\right|^{q}
\end{gathered}
$$

When λ sufficiently large, equivalent to:

$$
\min _{\mathbf{W}} \text { Loss subject to } \sum_{i}\left|w_{i}\right|^{q} \leq \eta
$$

Contours of the regularization term for various value of q

L-2 and L-1 regularization

\square L-2: easy to optimize, closed form solution
\square L-1: sparsity

More than two classes?

Given

- $N \times d$ data matrix X
- $N \times k$ label matrix Y
$\square N=\#$ training instances
$\square d=\#$ features
- $k=\#$ targets

Assume
$\square k<d$

	\square
	\square
	Y

More than two classes

\square Learn:

- parameters $W(d \times k)$ for a model $f_{W}: X \rightarrow Y$
\square Objective $\min _{W} \operatorname{tr}\left((X W-Y)(X W-Y)^{\top}\right)$
\square A convex quadratic, so just solve for a critical point:

$$
\frac{d}{d W}=2 X^{\top}(X W-Y)=0
$$

\square Thus $X^{\top} X W=X^{\top} Y$

$$
W=\left(X^{\top} X\right)^{-1} X^{\top} Y=X^{\dagger} Y
$$

Comments on

least squares classification

\square Not the best thing to do for classification
\square But
－Easy to train，closed form solution（闭式解）
\square Ready to connect with many classical learning principles

Cross－validation（交叉验证）

\square The basic idea：if a model overfits（is too sensitive to data）it will be unstable．l．e．removal part of the data will change the fit significantly．
\square We can hold out（取出）part of the data，fit the model to the rest，and then test on the heldout set．

Cross-validation

- The improved holdout method: k-fold cross-validation
- Partition data into k roughly equal parts;
- Train on all but j-th part, test on j-th part

Cross-validation

- The improved holdout method: k-fold cross-validation
- Partition data into k roughly equal parts;
- Train on all but j-th part, test on j-th part

Cross-validation

- The improved holdout method: k-fold cross-validation
- Partition data into k roughly equal parts;
- Train on all but j-th part, test on j-th part

Cross-validation

- The improved holdout method: k-fold cross-validation
- Partition data into k roughly equal parts;
- Train on all but j-th part, test on j-th part
x_{1}

Learning Framework

Model/parameter learning paradigm

\square Choose a model class
\square NB, kNN, decision tree, loss/regularization combination
\square Model selection
\square Cross validation
\square Training
\square Optimization
\square Testing

Summary

Supervised learning
\square Classification

- Naïve Bayes model
- Decision tree
- Least squares classification
\square Regression
- Least squares regression

作业
－试证明对于不含冲突数据（即特征向量完全相同但标记不同）的训练集，必存在与训练集一致（即训练误差为 0 ）的决策树。

