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Abstract

In multi-task learning, multiple related tasks are consid-
ered simultaneously, with the goal to improve the gener-
alization performance by utilizing the intrinsic sharing
of information across tasks. This paper presents a multi-
task learning approach by modeling the task-feature re-
lationships. Specifically, instead of assuming that sim-
ilar tasks have similar weights on all the features, we
start with the motivation that the tasks should be re-
lated in terms of subsets of features, which implies a
co-cluster structure. We design a novel regularization
term to capture this task-feature co-cluster structure. A
proximal algorithm is adopted to solve the optimization
problem. Convincing experimental results demonstrate
the effectiveness of the proposed algorithm and justify
the idea of exploiting the task-feature relationships.

Introduction
Multi-task learning (Caruana 1997) has emerged as a
promising discipline with empirical success and theoreti-
cal justification in the past decades. In multi-task learning, a
number of related tasks are considered simultaneously, with
the goal to improve the generalization performance by uti-
lizing the intrinsic sharing of information across tasks.

In most of the existing work on multi-task learning, a key
assumption is that there is some certain structure of how the
tasks are related to each other, which includes hidden units
in neural networks (Caruana 1997), a common prior in hi-
erarchical Bayesian models (Bakker and Heskes 2003), an
underlying model shared across tasks (Evgeniou and Pon-
til 2004), a low-dimensional subspace in tasks (Argyriou,
Evgeniou, and Pontil 2007) or a low rank structure of the
parameters (Ji and Ye 2009).

The above methods are restricted in the sense that they
assume all the tasks are close to each other, or share a com-
mon underlying representation, which may not be the case in
real problems. When this assumption does not hold, outlier
tasks can impair the overall generalization predictive perfor-
mance, or negative information transfer would occur among
dissimilar tasks.

To address this issue, various methods have further been
proposed along different directions. For example, task clus-
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tering approaches (Thrun and O’Sullivan 1996; Jacob, Bach,
and Vert 2008; Kang, Grauman, and Sha 2011) assume that
tasks are clustered into groups and tasks within a group are
similar to each other, while robust multi-task learning (Chen,
Zhou, and Ye 2011; Gong, Ye, and Zhang 2012) groups rele-
vant tasks such that they share a common representation and
identifies irrelevant or outlier tasks. On the other hand, the
multi-task relationship learning approach (Zhang and Yeung
2010) is able to model negative task correlations in addition
to positive task relationships, which is a generalization of
the regularization methods in multi-task learning.

In this paper, we consider the multi-task learning problem
with the assumption that tasks can be clustered into different
groups which are not known a priori. With this task cluster-
ing structure, the problem of negative information transfer
among dissimilar and outlier tasks can be avoided. There-
fore a natural advantage of the task clustering approaches is
the improved robustness when learning from multiple tasks.
Existing task clustering methods include the clustered multi-
task learning formulation (Jacob, Bach, and Vert 2008) that
enforces the grouping structure with a regularization term;
and the mixed integer programming approach (Kang, Grau-
man, and Sha 2011) that incorporates the integer cluster
indicators into the multi-task feature learning framework;
while in an earlier piece of work (Thrun and O’Sullivan
1996), task similarities are measured by how well the model
for one task performs in the other task.

The task clustering methods discussed above consider the
grouping structure at a general task-level, which assumes
that tasks within a group are close to each other on all the
features. This assumption could be restrictive in practice.
For example, in a document classification problem, different
tasks may be relevant to different sets of words; or in a rec-
ommender system, two users with similar tastes on one fea-
ture subset may have totally different preference on another
subset. To address the above issue, in recent work of (Zhong
and Kwok 2012) an additional regularization term on task
clusters regarding each feature is introduced, which essen-
tially results in clustering of tasks in a feature-by-feature
manner. However, this method only considers features in-
dividually and neglects the relationship between features.
On the other hand, recent work on feature grouping (Shen
and Huang 2010; Yang, Yuan, and Lai 2012) exploits rela-
tionships of features in the learning procedure, which moti-
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vates us to incorporate feature grouping with task clustering
in multi-task learning.

To model the task-feature relationship, we follow a more
intuitive co-clustering methodology in this paper, where in-
stead of assuming that similar tasks have similar weights
on all the features, the tasks should be related in terms
of subsets of features. Co-clustering works in two-way by
clustering rows and columns simultaneously, and is pre-
ferred especially when there is association between the rows
and columns (Li and Ding 2006). Various co-clustering
methods (Ding et al. 2006) have been proposed with suc-
cessful applications in text classification (Dhillon 2001;
Dhillon, Mallela, and Modha 2003) and recommender sys-
tems (Xu et al. 2012). As far as we know, this is the first
piece of work that incorporates co-clustering in multi-task
learning.

In this paper, we propose a multi-task learning approach
that models a common representation across tasks as well as
the task-feature co-cluster structure. Specifically, we design
a novel regularization term to capture the co-cluster structure
which implies an implicit feature selection for each task. An
alternating algorithm is adopted to solve this optimization
problem. The proposed method is evaluated experimentally
in a synthetic setting as well as on real benchmark datasets
with convincing results.

The rest of the paper is organized as follows. We first for-
mulate the problem of multi-task learning with task-feature
co-clusters as a risk minimization problem with regulariza-
tion to enforce the co-cluster structure of the task-feature re-
lationships. The technique to optimize the model is then dis-
cussed. Next we present the experimental results to demon-
strate the effectiveness of the proposed approach, followed
by the conclusion.

Multi-Task Learning with Task-Feature
Co-Clusters (CoCMTL)

Suppose there are m tasks where the training set for the i-th
task is

Di = {Xi, Y i} : i = 1, 2, . . . ,m,

where Xi ∈ Rni×d is the input matrix for the i-th task with
ni instances and d features, while Y i ∈ Rni×1 is the corre-
sponding target vector. We consider learning a linear predic-
tive model for each task, where wi is the weight vector for
the i-th task. If we adopt the commonly used least squares
loss function, the empirical loss of the set of m linear clas-
sifiers given in W can then be written as

`(W ) =
m∑
i=1

‖Y i −Xiwi‖22 (1)

where W = [w1,w2, ...,wm] is the d × m weight ma-
trix. Following a decomposition scheme, W is divided into
two parts, W = P + Q, where P reflects global similari-
ties among tasks, while Q captures the task-feature relation-
ships.

Global Similarities
To capture the global similarities among tasks given P =
[p1,p2, ...,pm], it is natural to assume that the parame-

ter vectors pi, i ∈ 1, 2, . . . ,m are close to their mean. To
encourage that, the following penalty function can be de-
signed:

Ω1(P ) =
m∑
i=1

‖pi − 1

m

m∑
j=1

pj‖22 = tr(PLP>) (2)

where L = I − 1
m11>. Notice that Eq.(2) also represents

the variance of p1,p2, . . . ,pm.

Task-Feature Co-Clustering
Besides global similarities, we would like to include a sec-
ond regularization term Ω2(Q) that encodes a clustering of
tasks. Instead of assuming that similar tasks have similar
weights on all the features as in previous work (Figure 1,
left), we take the fact into consideration that two tasks can
be related only on a subset of features. That is, the cluster-
ing process should be conducted on tasks and features, or
columns and rows of the Q matrix simultaneously, and the
goal is to divide the tasks and features into k groups as il-
lustrated in (Figure 1, right). It is clear that the co-clustering
procedure produces subgroups of tasks and features, which
would lead to a block-structure in our framework.

Figure 1: Comparison between one-sided clustering and co-
clustering.

To model the task-feature relationships, we can intro-
duce a directed bipartite graph G = (U ,V, E) as shown
in (Figure 2, left), where U = {u1, u2, ..., ud} and V =
{v1, v2, ..., vm} correspond to the sets of feature vertices and
task vertices respectively, while E is the set of edges con-
necting the features with the tasks. The weight on the edge
Eij corresponds to the relevance of the i-th feature with the
j-th task and is encoded by Qij .

Figure 2: Left: directed bipartite graph of features and tasks;
Right: co-clusters of features and tasks.

In the bipartite graph, Qij > 0 corresponds to an edge
from the i-th feature to the j-th task and Qij < 0 corre-
sponds to an edge from the j-th task to the i-th feature. |Qij |
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encodes how strong the relationship between the i-th feature
and the j-th task is.

Before detailing the co-clustering procedure, we first re-
visit the one-sided clustering approach. Given Z ∈ Ra×b
where each column of Z represents a sample, according to
(Ding, He, and Simon 2005) the traditional K-means clus-
tering with spectral relaxation can be formulated as

min
H:H>H=I

{
tr(Z>Z)− tr((H>Z>ZH)

}
(3)

where H is a relaxation of the indicator matrix, denoting the
assignment of the b samples to k clusters.

In our co-clustering procedure, we first define the data

matrix as Z =

(
0 Q
Q> 0

)
, where the first d columns

index the features while the last m columns correspond to
the tasks, then the clustering procedure on Q’s rows and
columns can be achieved naturally. Here we redefine H =(
F
G

)
which indicates k clusters among both features and

tasks, similarly we have F>F = I and G>G = I . The
problem (3) can then be further rewritten as

min
F :F>F=I,

G:G>G=I

{
2‖Q‖2F − tr(F>QQ>F )− tr(G>Q>QG)

}
(4)

In fact, the similarity matrix can be computed by Z>Z =(
QQ> 0

0 Q>Q

)
, in which the matrices QQ> and Q>Q

are similar to the bibliographic coupling matrix and co-
citation matrix in the field of bibliometrics (Satuluri and
Parthasarathy 2011). Specifically, QQ> and Q>Q encode
the feature similarities and task similarities respectively,
based on which we can group similar features and tasks to-
gether and achieve co-clustering (Figure 2, right).

Theorem 1. For any given matrix Q ∈ Rd×m, any ma-
trices F ∈ Rd×k, G ∈ Rm×kand any nonnegative inte-
ger k, k ≤ min(d,m), Problem (4) reaches its minimum
value at F = (u1, . . . ,uk), G = (v1, . . . ,vk), where ui
and vi are the i-th left and right singular vectors of Q re-
spectively. The minimum value is 2

∑min(d,m)
i=k+1 σ2

i (Q), where
σ1(Q) ≥ σ2(Q) ≥ · · · ≥ σmin(d,m)(Q) ≥ 0 are the singu-
lar values of Q.

Proof. Suppose the singular value decomposition of Q is:
Q = UΣV >, the singular value decomposition of QQ> can
be written as QQ> = UΣV > · V ΣU> = UΣ2U>, which
essentially implies σi(QQ>) = σ2

i (Q). On the other hand,
given σi(FF>) = σi(F

>F ), it holds that σi(FF>) = 1
for i = 1, 2, . . . , k while the remaining singular values are

equal to 0. Therefore

tr(F>QQ>F ) ≤
min(d,m)∑
i=1

σi(QQ
>)σi(FF

>)

=
k∑
i=1

σ2
i (Q) · 1 +

min(d,m)∑
i=k+1

σ2
i (Q) · 0

=
k∑
i=1

σ2
i (Q),

when F = U , we have tr(F>QQ>F ) =
∑k
i=1 σ

2
i (Q).

Similarly, we get tr(G>Q>QG) =
∑k
i=1 σ

2
i (Q) when

G = V . Then the problem (4) reaches its minimum value:

2‖Q‖2F − tr(F>QQ>F )− tr(G>Q>QG)

=2

{
‖Q‖2F −

k∑
i=1

σ2
i (Q)

}
= 2

min(d,m)∑
i=k+1

σ2
i (Q).

Based on the above analysis, we design the task-feature
co-clustering regularization term Ω2(Q) as

Ω2(Q) = ‖Q‖2K =

min(d,m)∑
i=k+1

σ2
i (Q).

Notice ‖Q‖2K is a continuous function of Q, and it changes
to zero if k ≥ rank(Q).

Based on the above discussion, we combine global simi-
larities and task-feature group-specific similarities, and the
model of multi-task learning with task-feature co-clusters
can be formulated as

min
W,P,Q

`(W ) + λ1Ω1(P ) + λ2Ω2(Q) (5)

where λ1 and λ2 control the tradeoff between global simi-
larities and group specific similarities.

Algorithm
In this section, we consider solving the CoCMTL formula-
tion in (5) with proximal methods. Proximal methods, which
can be regarded as a natural extension of gradient-based
techniques when the objective function consists of a non-
smooth convex part, have received significant success in var-
ious problems.

However, the regularization term Ω2(Q) in (5) is non-
convex which makes the traditional proximal method not di-
rectly applicable here. Fortunately, we are able to solve the
CoCMTL formulation with the Proximal Alternating Lin-
earized Minimization (PALM) scheme (Bolte, Sabach, and
Teboulle 2013) which is designed for a general class of prob-
lems with non-convex terms.

Proximal Method
Proximal Alternating Linearized Minimization (PALM) dis-
cussed in (Bolte, Sabach, and Teboulle 2013) solves a gen-
eral class of problems in the form below:

min
P,Q
{h(P,Q) + g(P ) + f(Q)} (6)
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where h(P,Q) is a convex function and g(P ) and f(Q)
are proper lower semi continuous. In our case, h(P,Q) =
`(W ) + λ1tr(PLP>), g(P ) = 0 and f(Q) = λ2‖Q‖2K .
Note that h(P,Q) is differentiable and jointly convex in P
and Q whereas f(Q) is non-smooth and non-convex. De-

note R =

(
P
Q

)
, consider a linear approximation of the

convex function h(R) at the previous estimate Rr−1 regu-
larized by a quadratic proximal term, the current value Rr
can be updated as the solution of the proximal problem:

Rr = arg min
R

h(Rr−1) +
γr
2
‖R−Rr−1‖2F

+ 〈R−Rr−1,5hR(Rr−1)〉 (7)

where γr is a positive real number and 〈A,B〉 = tr(A>B)
denotes the matrix inner product. 5hR(C) represents the
gradient of function h(R) with regard to R at point C. Next
one can add the regularization term f(Q) to (7), decouple P
andQ, remove the constant terms and then get the following
subproblems:

Pr = arg min
P

γr
2
‖P − CP (Pr−1)‖2F (8)

Qr = arg min
Q

γr
2
‖Q− CQ(Qr−1)‖2F + λ2‖Q‖2K (9)

where CP (Pr−1) = Pr−1 − 5hP (Rr−1)/γr and
CQ(Qr−1) = Qr−1 − 5hQ(Rr−1)/γr are both constants
of the previous solution points Pr−1 and Qr−1. Notice that
Pr can be easily obtained as Pr = CP (Pr−1). However, the
problem (9), which is also known as the proximal operator
for Q, involves a non-convex term. Next, we will discuss
how to compute this proximal operator, which is crucial for
solving CoCMTL.

Proximal Operator Computation
Here we design a simple but effective alternating method
following the similar scheme in (Hu, Zhang, and Ye
2012). Recall that ‖Q‖2K = tr(F>QQ>F ) where F =
(uk+1, . . . ,umin(d,m)). In the s-th iteration for solving the
subproblem (9), one can first compute Fs based on the sin-
gular value decomposition of the present point Q̃s−1, then
fix Fs and solve the following problem:

Q̃s = arg min
Q

γr
2
‖Q− CQ(Qr−1)‖2F+λ2tr(F>s QQ

>Fs).

Since both of the two terms are convex and differentiable re-
gardingQ, the solution Q̃s can be obtained by simply setting
the corresponding derivative to zero:

Q̃s = γr(γrI + 2λ2FsF
>
s )−1CQ(Qr−1). (10)

The iterative procedure will converge to the solution of the
subproblem (9).

In addition, when k = 0, (9) reduces to

Qr = arg min
Q

γr
2
‖Q− CQ(Qr−1)‖2F + λ2‖Q‖2F (11)

which provides an upper bound of the objective of prob-
lem (9). Therefore we can set the initial value Q̃0 to

Algorithm 1 Iterative algorithm for computing Qr
Input: X1, X2, ..., Xm, Y 1, Y 2, ..., Y m, λ1, λ2, Pr−1,
Qr−1, γr.
Output: Qr.
Initialize: Q̃0 = γr

γr+2λ2
CQ(Qr−1), s = 0;

repeat
s = s+ 1;
Obtain the smallest (min(d,m) − k) left singular vec-
tors of Q̃s−1 to get Fs;
Obtain Q̃s according to (10);

until convergence;
Qr = Q̃s;

γr
γr+2λ2

CQ(Qr−1) by solving problem (11). The iterative
procedure is summarized in Algorithm 1.

Moreover, PALM provides a scheme for step size estima-
tion, which iteratively increases γr until the inequality

h(Rr) ≤ h(Rr−1) +
γr
2
‖Rr −Rr−1‖2F

+ 〈Rr −Rr−1,5hR(Rr−1)〉
(12)

is not satisfied. Specifically, given a multiplicative factor
L > 1, γr is increased repeatedly by multiplying L until
(12) is not satisfied.

The proximal method for CoCMTL is summarized in Al-
gorithm 2. Convergence of the PALM scheme is analyzed
in (Bolte, Sabach, and Teboulle 2013) (Lemma 3), where
it is proved that the sequence (R1, . . . , Rr, Rr+1) is non-
increasing.

Algorithm 2 Proximal algorithm for CoCMTL
1: Input: X1, X2, ..., Xm, Y 1, Y 2, ..., Y m, λ1, λ2.
2: Output: W .
3: Initialize: P0, Q0, γ0, L > 1, r = 1;
4: repeat
5: γr = γr−1;
6: while (12) is satisfied do
7: Pr = CP (Pr−1);
8: Compute Qr by Algorithm 1;
9: γr = γrL;

10: end while;
11: r = r + 1;
12: until convergence;
13: W = Pr +Qr;

Experiments
In this section, we evaluate the proposed approach of multi-
task learning with task-feature co-clusters (CoCMTL) in
comparison with single task learning methods as well as rep-
resentative multi-task learning algorithms. The experiments
are first conducted in a synthetic setting, and then on two
real-world data sets.
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Table 1: Performance of the various algorithms in terms of nMSE on the Synthetic data. Methods with the best and comparable
performance (measured by paired t-tests at 95% significance level) are bolded.

Training Ratio Ridge L21 Low Rank rMTL rMTFL Dirty Flex-Clus CMTL CoCMTL
10% 0.3620 0.4701 0.2654 0.2824 0.3608 0.4709 0.2213 0.2766 0.2306

S1 20% 0.2510 0.2280 0.1869 0.2341 0.2652 0.2353 0.1536 0.1758 0.1541
30% 0.1528 0.1521 0.1378 0.1542 0.1623 0.1465 0.1235 0.1338 0.1229

10% 0.3554 0.3563 0.1361 0.1577 0.3333 0.2414 0.1242 0.2157 0.1048
S2 20% 0.1946 0.2057 0.1442 0.1960 0.2729 0.1750 0.1174 0.1662 0.1031

30% 0.1426 0.1511 0.1267 0.1520 0.1737 0.1364 0.1097 0.1344 0.0991

10% 0.4231 0.5197 0.2139 0.2457 0.4239 0.5637 0.3218 0.3132 0.1688
S3 20% 0.2525 0.3218 0.2003 0.2705 0.3133 0.4963 0.2207 0.2332 0.1480

30% 0.1875 0.2152 0.1730 0.2061 0.2155 0.2437 0.1751 0.1868 0.1383

10% 0.4032 0.4980 0.1912 0.2186 0.3891 0.5004 0.3290 0.2929 0.1516
S4 20% 0.2280 0.2883 0.1806 0.2465 0.2859 0.4509 0.2094 0.2080 0.1320

30% 0.1675 0.1897 0.1529 0.1809 0.1900 0.2109 0.1587 0.1636 0.1223

Table 2: Performance of various algorithms in terms of nMSE, aMSE and rMSE on the School data. Methods with the best and
comparable performance (measured by paired t-tests at 95% significance level) are bolded.

Training Ratio Ridge L21 Low Rank rMTL rMTFL Dirty Flex-Clus CMTL CoCMTL
10% 1.1031 1.0931 0.9693 0.9603 1.3838 1.1421 0.8862 0.9914 0.8114

nMSE 20% 0.9178 0.9045 0.8435 0.8198 1.0310 0.9436 0.7891 0.8462 0.7688
30% 0.8511 0.8401 0.8002 0.7833 0.9103 0.8517 0.7634 0.8064 0.7515

10% 0.2891 0.2867 0.2541 0.2515 0.3618 0.2983 0.2315 0.2593 0.2118
aMSE 20% 0.2385 0.2368 0.2207 0.2147 0.2702 0.2470 0.2062 0.2214 0.2009

30% 0.2212 0.2197 0.2091 0.2049 0.2378 0.2225 0.1992 0.2107 0.1961

10% 11.5321 11.5141 11.2000 11.1984 12.1233 11.6401 10.9991 11.2680 10.7430
rMSE 20% 10.7318 10.7011 10.5427 10.4866 10.9928 10.8033 10.3986 10.5500 10.3110

30% 10.1831 10.1704 10.0663 10.0291 10.3338 10.1956 9.9767 10.0865 9.9221

Competing Algorithms and Measurement

In our experiments, we evaluate the proposed CoCMTL
approach with other multi-task algorithms. Representative
multi-task learning algorithms including the L21 formu-
lation (Argyriou, Evgeniou, and Pontil 2007), low rank
method (Ji and Ye 2009), robust multi-task learning (rMTL)
(Chen, Zhou, and Ye 2011), robust multi-task feature learn-
ing (rMTFL) (Gong, Ye, and Zhang 2012), dirty model
(Dirty) (Jalali, Ravikumar, and Sanghavi 2010) and con-
vex multi-task learning with flexible task Clusters (Flex-
Clus) (Zhong and Kwok 2012) are compared against. More-
over, least squares ridge regression provides single task
learning baselines, whereas low rank and rMTL are both
trace norm based methods, additionally rMTL, rMTFL and
Flex-Clus are examples of decomposition models similar
to the proposed algorithm. CMTL (Jacob, Bach, and Vert
2008) and Flex-Clus are the representatives of task cluster-
ing multi-task learning algorithms. For CMTL and the pro-
posed CoCMTL, k is treated as a hyper-parameter. In the
experiments, the hyper-parameters are tuned by 3-fold cross
validation. All algorithms are implemented with MATLAB.
The maximum number of iterations is set to 5000 for all al-
gorithms, with tolerance of 10−5.

To evaluate the performance, the normalized mean
squared error (nMSE), the averaged mean squared error
(aMSE) and the root mean squared error (rMSE) are em-
ployed. Note that nMSE is defined as the mean squared error

(MSE) divided by the variance of the target vector; aMSE is
defined as MSE divided by the squared norm of the target
vector. A smaller value of nMSE, aMSE and rMSE repre-
sents better regression performance.

Synthetic Dataset
For the synthetic data set, all samples have 80 features.
For the i-th task, we randomly generate 400 samples with
x ∼ N (0, I) and yi ∼ xwi +N (0, 10). 100 tasks and the
corresponding weight vectors are generated according to the
following scenarios:

S1: All tasks are independent – wi ∼ U(0,10), where U
denotes the uniform distribution.

S2: All tasks are similar, which means they are grouped
in a major cluster – wi ∼ N (µ, I) and µ ∼ U(0,10). In
this case k is 1 .

S3: Tasks are clustered into 4 groups, each of which con-
tains 25 tasks. Weight vectors in the c-th group are generated
byN (µc, I), and µc ∼ U(0,10). For CMTL and CoCMTL
k is set to 4.

S4: Tasks are separated into 4 groups and each group con-
tains a subset of tasks as well as the corresponding subset
of features, which simulates the block structure of cluster-
ing. Specifically, wi = pi + qi where pi ∼ N (µ, I),
µ ∼ U(0,5), and qi in each group is generated according
to the rule similar to that of wi in S3 but only using a subset
of features. The ground truth of the structure of W is shown
in Figure 3. Again, k for CMTL and CoCMTL is set to 4.
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Figure 3: Recovery of W by different algorithms in S4
which simulates the two-sided block structure. The training
ratio is 10% here.

10%, 20%, and 30% of the samples from each task are
randomly selected as training sets and the rest are used as
test sets. We measure the performance on the synthetic data
with nMSE and average the results after 20 repetitions which
are reported in Table 1.

Table 1 shows that in S1, the proposed CoCMTL is com-
parable to the other methods, while being significantly supe-
rior in the cases of S2 and S3, especially when the training
examples are insufficient (with training ratio of 10%). More
importantly, it can well capture the underlying structure in
the scenario S4 with task-feature co-cluster structure.

Figure 3 shows the comparison of the predicted weight
matrices W produced by all the algorithms with the ground
truth in scenario S4. One can observe that in the scenario S4
where tasks are related on subsets of features, CoCMTL can
recover the weight matrices very nicely.

School Data
The School data consists of the exam scores of 15362 stu-
dents from 139 secondary schools in London during the
years of 1985-1987; each student is described by 27 at-
tributes including gender, ethnic group, etc. The exam score
prediction of the students can be regarded as a multi-task re-
gression problem with 139 tasks (schools), where each task
has a different number of instances (students).

Here we follow the experimental setup as in (Chen, Zhou,
and Ye 2011) and randomly select 10%, 20%, and 30% of
the samples from each task as the training data and use the
rest as the test data. The experimental results are averaged
over 20 repetitions and summarized in Table 2.

From Table 2 it can be observed that the multi-task learn-
ing algorithms do improve the predictive performance sig-
nificantly over the independent ridge regression algorithm,
especially in the lack of training samples such as the cases
with training ratio 10%. This justifies the motivation of
learning multiple tasks simultaneously. Among all the algo-
rithms, the proposed CoCMTL approach is superior to the

other methods on School Data in terms of the three perfor-
mance measures, namely nMse, aMSE and rMSE. More im-
portantly, when comparing the three clustering based algo-
rithms, one can observe the clear advantage of task-feature
co-clustering (CoCMTL) over one-sided clustering (CMTL)
and feature-wise clustering (Flex-Clus).

Computer Survey Data
We next experiment with another data set - Computer Survey
Data (Argyriou, Evgeniou, and Pontil 2008), which consists
of ratings of 201 students on 20 different personal comput-
ers. The input is represented with 13 binary attributes in-
cluding telephone hot line, amount of memory, etc. Here the
students correspond to tasks and the computer models cor-
respond to instances. Invalid ratings and students with more
than 8 zero ratings are removed, leaving the tasks of 172
students. Due to the lack of instances, we do not sample the
training set with different ratios in this experiment, instead,
we randomly split the 20 instances into training, validation
and test sets with sizes of 8, 8, 4 respectively. Results are
averaged over 20 random repetitions and presented in Ta-
ble 3, which indicates the proposed CoCMTL approach out-
performs other MTL methods again.

Table 3: Performance of various algorithms on Computer
Survey Data. Methods with the best and comparable perfor-
mance (measured by paired t-tests at 95% significance level)
are bolded.

Algorithm nMse aMse rMse
Ridge 2.4529 1.4893 2.1744
L21 2.1912 1.3706 2.0764

Low Rank 2.2095 1.3873 2.0630
rMTL 2.2118 1.3863 2.0655

rMTFL 2.2343 1.4004 2.0839
Dirty 2.4839 1.5910 2.1188

Flex-Clus 2.0994 1.3197 2.0774
CMTL 2.0976 1.2840 2.0775

CoCMTL 1.8588 1.2047 1.9644

Conclusion
In this paper, we study the task-feature relationships in
multi-task learning. Based on the intuitive motivation that
tasks should be related to subsets of features, we exploit
the co-cluster structure of the task-feature relationships and
present a novel co-clustered multi-task learning method
(CoCMTL). The proposed approach is formulated as a de-
composition model which separates the global similarities
and group-specific similarities. To capture the group specific
similarities, unlike the traditional task clustering approaches
with only one-way clustering, we impose a novel regulariza-
tion term which leads to a block structure. Experiments on
both synthetic and real data have verified the effectiveness
of CoCMTL, which offers consistently better performance
than several state-of-the-art multi-task learning algorithms.
In future work we are interested in investigations of other
principles to enforce a co-cluster structure in the task-feature
relationships, as well as the optimization techniques.
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