The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Adaptive Proximal Average Based Variance Reducing
Stochastic Methods for Optimization with Composite Regularization

Jingchang Liu, Linli Xu, Junliang Guo, Xin Sheng
School of Computer Science and Technology
University of Science and Technology of China, Hefei, China
xdjcl @mail.ustc.edu.cn, linlixu@ustc.edu.cn, {guojunll, xins} @mail.ustc.edu.cn

Abstract

We focus on empirical risk minimization with a composite
regulariser, which has been widely applied in various ma-
chine learning tasks to introduce important structural infor-
mation regarding the problem or data. In general, it is chal-
lenging to calculate the proximal operator with the composite
regulariser. Recently, proximal average (PA) which involves a
feasible proximal operator calculation is proposed to approx-
imate composite regularisers. Augmented with the prevail-
ing variance reducing (VR) stochastic methods (e.g. SVRG,
SAGA), PA based algorithms would achieve a better per-
formance. However, existing works require a fixed stepsize,
which needs to be rather small to ensure that the PA approx-
imation is sufficiently accurate. In the meantime, the smaller
stepsize would incur many more iterations for convergence.
In this paper, we propose two fast PA based VR stochas-
tic methods — APA-SVRG and APA-SAGA. By initializing
the stepsize with a much larger value and adaptively decreas-
ing it, both of the proposed methods are proved to enjoy the
O(nlog 1 + moz) iteration complexity to achieve the e-
accurate solutions, where my is the initial number of inner
iterations and n is the number of samples. Moreover, exper-
imental results demonstrate the superiority of the proposed
algorithms.

Introduction

In many artificial intelligence and machine learning applica-
tions, one needs to solve the following generic optimization
problem in the form of regularized empirical risk minimiza-
tion (ERM) given n samples (Hastie, Tibshirani, and Fried-
man 2001):

min F(z) := %Zfl(x) +7r(x), €))
i=1

reR4

where f; : R? — R denotes the empirical loss of the i-th
sample with regard to the parameter x, and 7 is the regular-
ization term, which is convex but possibly non-smooth. The
goal is to find the optimal solution of = that minimizes the
regularized empirical loss over the whole dataset.

To solve the problem, deterministic algorithms including
traditional gradient descent (GD) and accelerated gradient
descent (AGD) (Nesterov 2013) are proposed, which involve
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the calculation of n gradients. When the data size scales up,
n can be rather large, which makes the calculation in de-
terministic algorithms unaffordable. An effective alternative
is stochastic gradient descent (SGD) (Robbins and Monro
1951) which involves lower per iteration cost by utilizing the
stochastic gradient instead of the full gradient to update .
However, a rather large variance introduced by the stochas-
tic gradient would slow down the convergence (Bottou, Cur-
tis, and Nocedal 2016). To address this issue, a number of
variance reducing (VR) stochastic methods are proposed re-
cently, including SAG (Schmidt, Le Roux, and Bach 2017),
SVRG (Johnson and Zhang 2013), SAGA (Defazio, Bach,
and Lacoste-Julien 2014) and SARAH (Nguyen et al. 2017).
As the key feature of these methods, the variance of stochas-
tic gradient asymptotically goes to zero along the iterative
updates, which allows them to achieve the linear conver-
gence rate when each loss is supposed to be strongly convex.

To obtain a compact representation of models, non-
smooth regularisers are often used in regularized ERM prob-
lems. Based on the VR stochastic methods mentioned above,
a general routine for this case is to employ the forward-
backward splitting (Singer and Duchi 2009), which involves
the calculation of the proximal operator of r, i.e., prox?(-).
A formal definition of prox}(-) is

prox) (z) = arg min(r(y)

1 2
emin(r(y) + - |y 1)

where v > 0. One requirement for using proximal opera-
tors is that prox)(-) can be calculated effectively, such as
when r(2) = ||z||;. But in a large number of important ap-
plications in machine learning, such as overlapping group
lasso (Jacob, Obozinski, and Vert 2009) and graph-guided
fused lasso (Kim and Xing 2009), the regularisers that take

a composite form r(z) = Zszl wyr(2) cannot be handled
effectively by proximal operators. One feasible technique to
fix this issue is the alternating direction method of multipli-
ers (ADMM) (Boyd et al. 2011) as well as its VR stochastic
variants, such as SDCA-ADMM (Suzuki 2014) and SVRG-
ADMM (Zheng and Kwok 2016). However, in spite of the
improved efficiency and scalability, these methods require
more space to store the transformation matrix and involve
complex implementation and convergence analysis. Very re-
cently, attempts are made to apply three operator splitting to
problems with the composite form regularisers (Pedregosa



and Gidel 2018; Pedregosa, Fatras, and Casotto 2018), but
they make a strong assumption that 7 is smooth in the anal-
ysis of strongly convex case.

An alternative to the above methods is to smooth the non-
smooth regulariser. One traditional way is to utilize Nes-
terov’s smoothing technique (Nesterov 2005; Chen et al.
2012). While recently, Yu (Yu 2013) introduces the proximal
average (PA) approximation in accelerated proximal gradi-
ent methods (PA-APG), and strictly shows its superiority
over the smoothing techniques. Several works have further
developed the PA method with different settings. Among
them, (Yu et al. 2015) and (Zhong and Kwok 2014) apply the
PA approximation to non-convex regularisers. (Zhong and
Kwok 2014) combines PA with stochastic gradient methods.
Further, PA is introduced to VR stochastic methods by (Che-
ung and Lou 2017).

On the other hand, approximating a composite regulariser
with PA would introduce approximation bias which is pro-
portional to the stepsize according to (Yu 2013), and a small
stepsize is required to ensure the accuracy of approximation.
In (Yu 2013) and (Cheung and Lou 2017), a fixed stepsize is
adopted and set as small as O(e), where € is the precision
given in advance. This makes the algorithms impractical
when a higher-precision solution is required. To tackle this
issue, the adaptive stepsize strategy is introduced in (Zhong
and Kwok 2014) and (Shen et al. 2017). Instead of setting
the stepsize rather small at the beginning, algorithms with
adaptive stepsize start with a large stepsize and reduce it
gradually. In the two works mentioned above, the stepsize
decreases at a rate of O(1/k), where k is the number of
iterations. As a result, these algorithms enjoy significantly
fewer iterations than the corresponding fixed stepsize algo-
rithms when one needs a higher-precision solution.

In this paper, we apply the adaptive stepsize strategy to
the PA-based VR stochastic algorithms, and propose the fol-
lowing algorithms correspondingly: APA-SVRG and APA-
SAGA. Both algorithms consist of two layers of loops, the
stepsize iteratively decreases to p (0 < p < 1) times of the
previous stepsize before the inner loop starts. Meanwhile,
the number of inner loops inside each outer loop increases
accordingly. We prove that the overall number of gradi-
ent calculations of the proposed algorithms, APA-SVRG
and APA-SAGA, are both O(n log% + mgé) to achieve
e-accurate solutions, where my is the initial number of in-
ner iterations. Note that such rate is superior to that of PA-
ASGD in (Zhong and Kwok 2014). Compared to PA-based
VR stochastic methods with fixed stepsize in (Cheung and
Lou 2017), the proposed algorithms need significantly fewer
iterations to achieve higher-precision solutions. On the other
side, compared to ADMM-based VR stochastic algorithms,
the proposed algorithms have low storage requirement as
they do not need to store the transformation matrix, and are
easier to implement and analyse. The experiments on over-
lapping group lasso and graph-guided lasso empirically val-
idate the superiority of proposed algorithms.

The rest of this paper is organized as follows. After in-
troducing the problem formulation, assumptions used in the
paper and reviewing the relevant theories of VR stochastic
methods and proximal average, we respectively present the

proposed APA-SVRG and APA-SAGA algorithms, together
with the corresponding convergence rate analysis. We then
present the experimental results and conclude the paper.
Notation. In this paper, we denote the gradient of the differ-
entiable function f; at x as V f;(z). ||z|| and ||z||; are the I3
and [; norm of vector x respectively. (-, -} denotes the inner
product. z* denotes the point on which F attains its optimal
value, which is denoted by F'*. We use x* for z in the k-th
iteration. E[-] denotes an expected value taken with respect
to all choices of indexes up to the current iteration, while E[']
denotes the expected value taken with respect to the choice
of index at the current iteration.

Background and Related Work

In this section, we formulate the problem considered in this
paper, together with some common assumptions. Then we
overview the theories of variance reducing (VR) stochastic
methods and proximal average (PA) which are the founda-
tion of our methods.

Problem Formulation
We consider the following optimization problem

n K
min F(z) = f(z) + r(z) = % Z filx) + Z wirk (),
i=1 k=1

z€R?

3)
where wj, > 0 and Y1 wj, = 1. The above formula-
tion defines a general regularized ERM, in which the reg-
ulariser r is a convex combination of the K components
ry (k = 1,2,...,K). Such composite regularisers have
shown the superiority in capturing important structural in-
formation regarding the problem or data, such as structured
sparsity (Zhao, Rocha, and Yu 2009). The following lists the
composite forms of r for two representative machine learn-
ing models.

e Overlapping group lasso (Jacob, Obozinski, and Vert
2009). To select meaningful groups of features, the over-
lapping group lasso is introduced with the regulariser

K
r(z) =AY g, |, )
k=1

where A > 0, and gj, indicates the index group of features,
and x4, is the corresponding subvector of .

e Graph-guided fused lasso (Kim and Xing 2009). Graph-
guided fused lasso leads to structured sparsity according
to the graph G = {V, €}, in which V = {z1,...,24},
where x; € R, is the vertex set and & is the set of edges
among V. The regulariser is

r(@) =Y wilri — ], S
{i.jree
which would penalize the difference among variables con-
nected in G.

To facilitate the analysis, we make the following assump-
tions on f;’s and r’s, which are common in optimization.
As we focus on problems with smooth loss functions, we
assume that each f; is L-smooth.



Assumption 1. Each f; is L-smooth (L > 0), namely for
any x,y € R,

fily) < Jil@) +{VE@)y =) + Sy — ol ©

We also assume the strong convexity of f;. This assump-
tion can be readily satisfied by combing the general convex
loss functions with the strongly convex penalties, such as ¢
norm.

Assumption 2. Each f; is p-strongly (n > 0) convex,
namely for any .,y € R,

fily) = fiw) + (Vi) y =)+ Slly —al®. D)

For each non-smooth penalty 7, we assume it to be Lips-
chitz continuous with Lj, as shown in the following assump-
tion.

Assumption 3. Each ry. is Lj.-Lipschitz continuous, namely
forany x,y € RY,

ri(@) = re(y)] < Lillz =yl (®)

Variance Reducing Stochastic Methods

The variance of stochastic gradient would limit the per-
formance of stochastic algorithms. To effectively reduce
the variance, some methods which employ the control
variates (Owen 2013, Chapter 8.9) are introduced in re-
cent years (Johnson and Zhang 2013; Defazio, Bach,
and Lacoste-Julien 2014; Defazio, Domke, and others
2014; Schmidt, Le Roux, and Bach 2017). Among them,
SVRG (Johnson and Zhang 2013) and SAGA (Defazio,
Bach, and Lacoste-Julien 2014) are two representatives,
which propose the following VR stochastic gradient:

K=V V@ S VR, ©)
i=1

where = is the retained ‘snapshot’ of x to replace the
stochastic gradient V f;(z*) in SGD. As the control vari-
ate of V f;(z), Vf;(Z) will asymptotically get closer and
closer to V f;(z) in expectation along the iterative updates,
in which case the variance goes to zero. As a result, both
SVRG and SAGA can converge under the fixed stepsize,
and a large stepsize leads to a much faster convergence rate.
Equipped with proximal operators to handle the nonsmooth
regularisers, the corresponding algorithms are known as
Prox-SVRG (Xiao and Zhang 2014) and Prox-SAGA (De-
fazio, Bach, and Lacoste-Julien 2014), which involve the
following update

zFtl = proxl(xk — 'yvk), (10)

where v > 0 is the fixed stepsize. When the regularization r
is simple and admit an efficient proximal operation, Prox-
SVRG and Prox-SAGA perform quite well both in prac-
tice and theory. Next, we briefly review Prox-SVRG and
Prox-SAGA together with the corresponding theories, which
would be useful when establishing our own work.
Prox-SVRG consists of two loops. It saves & and calcu-
lates the full gradient Y .-,V fi(Z)/n just before the inner
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loop begins. Z is kept in fixed number of iterations, and up-
dated again just after the current outer loop ends.

The convergence analysis of Prox-SVRG under Assump-
tion 1 and Assumption 2 is established in (Xiao and Zhang
2014). Define

0— 1 4Ly(m +1)
ol —4Ly)m (1 —4ALy)m’

where - is the stepsize and m is the number of inner loops
inside each outer loop. Further denote Z, = Y -, zx/m in
the s-th outer loop. The change of function value after one
outer loop of Prox-SVRG is described as

EF(‘%S) - < G[F(‘%sfl) - F*} (12)

Therefore, if 0 < v < 1/(4L) and m is large enough such
that & < 1, the linear convergence rate of Prox-SVRG with
respect to the outer iterations can be obtained immediately.

Meanwhile in Prox-SAGA, a table is established to record
the gradient V f;(z;) for each i = 1,2, ..., n, here z; € R?
is the value of x at one previous iteration. In this way, at the
cost of memory consumption, Prox-SAGA is simpler as it
avoids the expensive calculation of the full gradient.

The corresponding theories regarding the convergence of
Prox-SAGA under Assumption 1 and Assumption 2 are es-
tablished in (Defazio, Bach, and Lacoste-Julien 2014). The
analysis is based on the Lyapunov function

1

n

(1)

n

Z <Vfi(m*),xf —

=1

;v*>

13)

1 n

" = = i(z) - :
- ;f (i) — f(z7)
+efjat — )%,

Then the relation between T and T5t! can be set up:

BT T < -8 40y [f6") — fT) — (V) ek - )]
T a2 SR £ + - SR, ek — 2]

i=1 i=1

+ Cs - clla® — 2||* + Ca - AE|V £ (2") = V5%,

(14)

where C; = 1 — 72”(5_”) —2cv?uB, Cy = L +2(1 +

Bley®L— 1), 03 = L —quand Oy = (14 B)y — +.
: _ 1 _ 1 _ 1

Adopting v = gr. ¢ = gy and & = Sy

together with 8 = 2 to ensure that Cy, C5, C3 and Cy are all
non-positive, the linear convergence rate of Prox-SAGA can
be established since c|z* — z*(|? < T*:

. 1 p\*
k *(|2 0
E|lz — z*||* < (1 fmln{—lm,—gL}) T°. (15)

Proximal Average

The proximal operator can readily handle some basic regu-
larisers, such as r(x) = ||«||;. However, for the composite
regularization term r(z) in the form of (3), efficient solu-
tions for prox) (x) are generally hard to obtain although each
component 7 () can be easily handled. As the approxima-
tion to r(x), proximal average (PA) (Bauschke et al. 2008;
Yu 2013) is introduced to tackle this issue. Formally, the PA
7(x) of r(x) is defined below.



Definition 1 (Proximal Average). (Bauschke et al.
2008; Yu 2013) The proximal average of r is the
unique semicontinuous convex function 7(z) such that

M (@) = Y5y we My, (x), where M) (z) = inf,, (r(y) +
2
ly — 2l /27).
Since VM (z) %(x — prox] (z)), the corresponding
proximal operator of #(x) can be immediately obtained:

K
prox] (z) = Zwk - prox; (). (16)
k=1

That is to say, we approximate r(x) by pretending the lin-
earity of proximal operators. This approximation may lead
to bias, which can be bounded by the following Lemma (Yu
2013).

Lemma 1. Under Assumption 3, we have 0 < r(x)—7(z)
VTLZ, where L? = 25:1 wy L2,

As a result, as the stepsize « gets smaller, 7#(z) would
be closer to (). In fact, (Yu 2013) and (Cheung and Lou
2017) adopt the rather small stepsize v = O(e) to achieve
the desired accuracy €, which would lead to many more iter-
ations when € is small.

Based on the above background and analysis, we develop
our methods in the next section to tackle the issues raised by
the composite regularization as defined in (3), which cannot
be directly solved by traditional VR stochastic methods.

<

Adaptive Proximal Average based Variance
Reducing Stochastic Methods

Although Prox-SVRG and Prox-SAGA perform well when
dealing with common problems, they are incapable to han-
dle problems with more complex composite regularisers as
defined in (3). A proper alternative is to consider the follow-
ing approximated problem

min F(z) = f(z) + (),

a7
ER?

in which r is replaced by its proximal average 7. Then the
iteration (10) becomes

k+1 Y

= prox/ (xk - yvk), (18)

which can be efficiently solved according to the property of
proximal average as shown in (16) by

x

K

= E wy, - prox;, (z* — yo*).
k=1

And the difference between F(z) and F(x) is bounded
by vL?/2 according to Lemma 1. A straightforward ap-
proach to reduce this difference is to adopt a rather small
stepsize, as in (Yu 2013; Cheung and Lou 2017), which
would lead to a rather slow convergence rate when a high-
precision solution is required. A more flexible alternative
is to apply the adaptive stepsize (Zhong and Kwok 2014;
Shen et al. 2017), which starts with a relatively large stepsize
value and gradually decreases it. But for Prox-SVRG and

(19)
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Prox-SAGA specifically, the adjustment of stepsize would
influence the convergence, since with the decreasing step-
size we may not ensure # defined in (11) to be less than 1
and C7-Cy defined in (14) to be non-positive. To fix these
issues, we develop two adaptive proximal average based al-
gorithms named APA-SVRG and APA-SAGA. Next we will
elaborate on these two algorithms with the corresponding
convergence analysis respectively.

Adaptive Proximal Average based SVRG

We summarize the idea of adaptive proximal average based
SVRG (APA-SVRG) in Algorithm 1. We employ the effi-
cient proximal operator in step 9 by replacing r with 7 as
mentioned above. To compensate for the resulting bias, we
choose to decrease the stepsize, and increase the number of
inner loops inside the outer loop accordingly.

Algorithm 1 APA-SVRG Algorithm

1: Initialize: An initial number of inner loops my > 0,
decay rate 0 < p < 1, and an initial point Zy.
2: fors=1,2,---,do

3: .Z‘O 255_1,1722?:1 fi(a?s_l)/n;

4: ms=mg-p °;

5: s =min{l1/4L, p°};

6: forl=1,2,--- ,msdo

7: Randomly pick j from {1,2,...,n};
8: vl = ij(l’l_l) - ij(jsfl) + v;

9: ah =0 wp -proxs (271 — y0l);
10:  end for

1 iy =" ! /n.

12: end for

In the following, we denote FS+1 as the approximation of
F with the stepsize parameter 7,41, and F ; as the mini-
mum value of F, s+1- According to Lemma 1, we have

F(3,) — F* < By(7,) — F* + %EQ. (20)
In general, F (%) — F* decreases with a linear rate as we
have shown in (12). To keep this linear convergence rate for
Fy(zs)—F*, we set the decay rate of 7, to be linear as shown
in step 5 to balance F (%) — F* and ~,L? /2. Also, v, need
to be less than 1/(4L) to ensure a positive 6 defined in (11).
Moreover, we increase the number of inner loops from the
initial mgo exponentially as shown in step 4, to ensure that
there exists 0 < 6 < 1, such that
EBFy1 (@) — Frpy < 0(Foa(3,) — Fl,y). @D

We state our main theorem for APA-SVRG followed with

its proof below.

Theorem 1 (APA-SVRG). Suppose that Assump-
tion 1, 2 and 3 hold. Then for the update in APA-
SVRG, it holds that

EF(i,) — F*

+ Efﬂi

< 0°(Fo(io) — F*) 2 9,

(6° — p°).




Proof. According to Lemma 1, we have

F(Zo1) — F* < Fop1(s41) —

F* + %EQ. (22)

Now, we bound the expectation of FS“ (Zs41)—F*by (21):

E‘FA’S"Fl(i’S—‘rl) —F*
= E[Fyp1(For1) — Fipy + Fly — F7]
< E[0(Foi (&) — Fiy) + Ffy — F7]
= E[0(Fo(Fs) = F*) + (1= 0) (Fyyy — F7)
+9( s+1(xs) _Fs(‘%s)ﬂv (23)
where 0 < 0 < 1. As F* = F(z2*) > Fypq(a*) > 13';115
we have
Fr, - F* <o (24)

Meanwhile, denote 75 and 7511 as the approximation of r
with stepsize 5 and ;41 respectively, given

F s+1 ( ) - F (58) = TA@-&-l(js) - TAS(i's)
= 1(Ts) = T5(Ts) + Tsy1(Ts) — 7(Ts)
and 0 < 7(Z) — 7s(Ts) < VsL2/2, —vs41L2/2 <
Ts+1(Zs) — 1(Zs) < 0 from Lemma 1, we have
— L < Foa(3) - B(@) < BIA@9)
Plugging (24) and (25) into (23), we get
EFy(fo1) — F* < 0-E(Fu(3,) — F*) +0%L2. (26)
Summing up the above inequality over 0, 1, . .., s yields
Eﬁs—kl(is—&-l) -
< 67 (Fo(@o) = F*) + (01 DL + - + 922 L),

Plugging this inequality into (22) with taking expectation on
each term, we have
EF (Zs41) — F*

0"+ (Fy(30) — F*) + 4ot

2
s+1)7

IN

(98+1%+...

Y0 592 0
Nr2_~7
+2 0—p

where the second inequality holds due to s < p°.

)2

IN

0 (Bo(o) — 1) (0~

O

Apparently, when p = 1, which means the stepsize is
fixed, EF(Z441) will not converge to the minimum value,
and when 0 < p < 1, F(Z541) — F* approaches 0 at the
exponential rate. So to achieve the e-accurate solution, the
total number of outer loops denoted as S is O(log 1). Then
we have the following corollary about the total number of
required gradient calculations.

Corollary 1. To achieve the e-accurate solution, the overall
iteration complexity of APA-SVRG is Zf:o O(n+2m;) =
OnS + 5 my) = O(nlog L +mgl).

Note that the rate O(nlog L + mgl) is faster than that
deduced by Theorem 2 in (Zhong and Kwok 2014).

1556

Adaptive Proximal Average based SAGA

Next, the algorithm of adaptive proximal average based
SAGA (APA-SAGA) is summarized in Algorithm 2. Unlike
traditional Prox-SAGA (Defazio, Bach, and Lacoste-Julien
2014) which contains only one layer of loops, APA-SAGA
utilizes a multi-stage scheme to progressively decease the
stepsize as in APA-SVRG.

Algorithm 2 APA-SAGA Algorithm
1: Initialize: An initial number of inner loops mo > 0,

decay rate 0 < p < 1, an initial point z*, and g{ =
Vf( 0),i=1,2,.
:fors=1,2,- d0
3. m=mg - p S;
4 Y =5p %
50 2% =
6: forli=1,--- ,mdo
7: Randomly pick j from {1,2,...,n};
— n
8: ol =V fj(att) - gé' + 2 g/
o 2l =Y wy - proxy; (@1 — 7,00
10: Update g, i =1,2,...,n
L[V, ifi =,
=g, otherwise.
11:  end for
122 xg=x™
13: end for

At time k in the s-th outer loop, we define the Lyapunov
function T as

Tk =

s *Zfz
e[|?,

+c||x — &

A*)~Z V@), af — &)

27)

where Z* is the minimum of the approximated function E.
The same as (14), we have

BT - T8 < -1+ G168 - 16T — (V) o~ 87)]

+ G2 SRS - 7@ + = SV, 2 - 67
i=1 i=1
+ Cs - cllz® = 2" ||° + Ca - AE|V £ (2") = V@),
(28)

where C7, Co, C3 and C} are defined in (14). Since the de-

creasing stepsize is required, we adopt v = 3% p° here,
as shown in step 4, together with ¢ = 2(13%’ K =

1 — —s
7@“&’%,3,3},. ﬂ 2p tO. e.nsure that le, (5, C3 and
Cjy are non-positive. Then chammg over m yields

A

BT < (1- )T @
M min { '3 L } S (29)
According to the Bernoulli’s Inequahty, it holds that
1
1> (1 —min{4— — 5}) >1—-m- mln{4— 3Lp °1.
(30)



Since p* (0 < p < 1) decays with the increase of s in the
exponential rate, we increase the number of inner loops ex-
ponentially as well, as shown in step 3 of APA-SAGA, to
ensure that there exists 0 < 6 < 1 such that ET"™ < 6 - T?.

Before the formal theorem regarding the convergence
rate, we propose a lemma which establishes the relation be-
tween T2, ; and T7". Due to space limitation, the proof de-
tails are put into supplementary materials.

Lemma 2. Suppose that Assumptions 1, 2 and 3 hold and
for the iterate set {l’k}kzoyl’gy_' produced in APA-SAGA, the
radius defined by

k

R:= sup

k=0,1,2,...

[ — a7

is bounded, that is, R < +00.' Then the following inequality
holds

T < T+ p*/%- Dy + p* - Do, 31

where Dy = 2RL(1 + 2L5m) /22, Dy = 4L(1 +
9L )Ej
2BL—p)n/ p*

Based on this lemma, we have the following theorem for
APA-SAGA.

Theorem 2 (APA-SAGA). Suppose that Assump-
tions 1, 2 and 3 hold. Then for the update in APA-
SAGA, it holds that

Ellzs — «*||?
4an ; Lz 2 65 — p*/2 4n
< =180ty — —ps4ro—L _ . —D
= 3070 toosn? Ty e ™
95 — o5 4
1P p,.
0—p 3L

Similar to APA-SVRG, with the fixed stepsize which cor-
responds to p = 1, we cannot ensure the convergence of
E|zs — z*|* to 0. On the other hand, when 0 < p < 1,
we can deduce the following corollary which is analogous
to Corollary 1.

Corollary 2. To achieve the e-accurate solution, the overall
iteration complexity of APA-SAGA is O(nlog % + moé).

Experiments

In this section, we conduct experiments on overlapping
group lasso and graph-guide fused lasso to verify the effec-
tiveness of our proposed APA-SVRG and APA-SAGA algo-
rithms.

Experimental Setup
We compare the following methods in our experiments.
- The proposed APA-SVRG and APA-SAGA.

- PA-SVRG and PA-SAGA (Cheung and Lou 2017): prox-
imal average based methods, which need a rather small
stepsize when a higher-precision solution is desired.

!This assumption has also appeared in some existing works,
e.g. (Liu et al. 2015).
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- SVRG-ADMM (Zheng and Kwok 2016): stochastic
ADMM combined with variance reduction.

- PA-ASGD (Zhong and Kwok 2014): accelerated stochas-
tic gradient descent with proximal average.

Since the Nesterov’s smoothing based algorithms, e.g.
ANSGD (Ouyang and Gray 2012) as well as the determin-
istic gradient descent methods, e.g. PA-PG (Yu 2013), have
been shown to be inferior to PA-ASGD in (Zhong and Kwok
2014), we do not compare with them. Moreover, we choose
SVRG-ADMM without the accelerated technique in the ex-
periment for a fair comparison. To establish the formulation
for ADMM, we refer to (Qin and Goldfarb 2012) for the
overlapping group lasso problem and (Ouyang et al. 2013)
for the graph-guided fused lasso problem.

We use synthetic datasets in the overlapping group lasso
experiment and four real datasets from LIBSVM (Chang and
Lin 2011) in the graph-guided fused lasso experiment. The
real datasets are summarized in Table 1. We tune the stepsize
and other parameters for different algorithms so that they
can achieve the best performance, such as in APA-SAGA
and APA-SVRG, p is set to about 0.8 to enable a proper de-
cay rate. To make a fair comparison, the initial value of z
is set to zero for all algorithms. Denote the number of sam-
ples as n, we measure the objective value at x as F'(x) and
the number of iterations as the evaluation of n component
gradients to evaluate the performance of algorithms.

Overlapping Group Lasso
We first conduct experiments on the overlapping group lasso
model (Jacob, Obozinski, and Vert 2009) with the squared

loss:
n

1 Z(mTai — bi)Q

K
min — + A [l (32)
=1 k=1

z€RI N
where a; € R%, b; € Rand A > 0. Similar to (Yu 2013),
all entries in a; (j = 1,2,...,n) are sampled from 4.i.d.
normal distribution, z; = (—1)7 exp(—(j — 1)/100), b; =
zTa; + ¢ with the noise £ ~ N(0,1), and the groups are
defined as

{1,...,100},{91,...,190}, ...

92

Ad—99,...,d},

9K

g1

where d = 90K + 10. We set A = K/(5n) and vary K in
{5, 10, 20, 50}. Moreover, we set n = d. For the composite
regulariser 74 (), prox;, () for each group gj. can be read-
ily computed as

i J & gk
(1 B m)+xj J € k-

For PA-SVRG and PA-SAGA, to explore the effect of
accuracy on the convergence, we set the desired accuracy
e = 107* when K = 5and K = 10, ¢ = 10~° when
K = 50. And when K = 20, we set ¢ = 10~* for PA-
SVRG, € = 10~° for PA-SAGA. The experimental results
are shown in Figure 1. As can be seen, PA-SVRG and PA-
SAGA need rather small stepsize when the desired accu-
racy is high, which greatly inhibits their performance. On

(prox7, (2));
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Figure 1: Comparison of several algorithms with overlapping group lasso.

German-numer a%a w7a cod-rna
065 1ty 0.48 1y 7 LY y S e —
. "o, 3 . ~ e -
o ~ e, o 0.46 kY o 04 o | | T s s e
= 06 SO LTI = \\ = = | -
g ~~. Soaa| |l . g035 Sos
o S sa o o AN o o
g g ‘ N > 03 2
g 0.55 g 0.42 \\ \ g g
= T o4 S o, 5025 204
) o O - .-, 9] [¢)
0.5 Seo 0.2
— 038f\Sly, T m= = 03 -
' = 0.15 ’
0 5 10 15 20 0 5 10 15 2 0 5 10
Number of iterations Number of iterations Number of iterations Number of iterations
‘ APA-SVRG APA-SAGA PA-ASGD SVRG-ADMM sssssssass PA-SVRG = = = PA-SAGA ‘

Figure 2: Comparison of several algorithms with graph-guided fused lasso.

Table 1: Summary of the datasets used in the graph-guided
fused lasso experiments

Dataset #samples  dimensionality A
german-numer 1000 24 1073
a9a 32561 123 10~*
w7a 24692 300 10~
cod-rna 59353 8 10~*

the other hand, the adaptive stepzise strategy enables APA-
SAGA and APA-SVRG to achieve a fast convergence rate
while involving a simpler implementation as well as conver-
gence analysis than SVRG-ADMM. Moreover, the perfor-
mance of PA-ASGD is poor on all datasets.

Graph-Guided Logistic Regression

We proceed with the experiments on the graph-guided logis-
tic regression (Kim and Xing 2009):

1 n
in =3 log(1 —bzTay
min n; og(1 + exp(—b;zTa;))
AP+ ) ok —awl). 63
{kl,kQ}GE

Here, E is the graph edge set, and we construct this graph by
sparse inverse covariance selection (Friedman, Hastie, and
Tibshirani 2008). For an edge k connecting feature k; and
ko, prox;, (z) can be easily computed, and the value on its
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j-th index is

Ly — Sign(‘rlm - mkz) min {77 szkﬂ} J = ki;

xj + sign(zy, — k,) min {7, Lf"zl} j = ko;
x; otherwise.
We set the desired accuracy ¢ = 10~* for PA-SVRG
and PA-SAGA. Figure 2 shows the experimental results. As
can be seen, the performance of PA-ASGD is poor with-
out the variance reduction technique. On the other side, the
small stepsize limits the performance of PA-SVRG and PA-
SAGA. With a larger stepsize, APA-SVRG, APA-SAGA and
SVRG-ADMM can quickly approach the optimal point. And
the adaptive stepsize strategy enables the iterations of APA-
SVRG and APA-SAGA to converge to the optimal point.

Conclusion

In this paper, we apply the adaptive stepsize strategy to the
PA-based VR stochastic algorithms, and propose the corre-
sponding APA-SVRG and APA-SAGA algorithms. By ini-
tializing the stepsize with a relatively large value and adap-
tively decreasing it, both proposed algorithms can achieve
the O(n log% + m()%) iteration complexity. Moreover, ex-
periments on overlapping group lasso and graph-guided lo-
gistic regression demonstrate the efficiency of the proposed
methods.
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