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Abstract

Non-autoregressive translation (NAT) models, which remove
the dependence on previous target tokens from the inputs of
the decoder, achieve significantly inference speedup but at the
cost of inferior accuracy compared to autoregressive transla-
tion (AT) models. Previous work shows that the quality of
the inputs of the decoder is important and largely impacts
the model accuracy. In this paper, we propose two methods
to enhance the decoder inputs so as to improve NAT mod-
els. The first one directly leverages a phrase table generated
by conventional SMT approaches to translate source tokens
to target tokens, which are then fed into the decoder as in-
puts. The second one transforms source-side word embed-
dings to target-side word embeddings through sentence-level
alignment and word-level adversary learning, and then feeds
the transformed word embeddings into the decoder as inputs.
Experimental results show our method largely outperforms
the NAT baseline (Gu et al. 2017) by 5.11 BLEU scores
on WMT14 English-German task and 4.72 BLEU scores on
WMT16 English-Romanian task.

1 Introduction
The neural network based encoder-decoder framework has
achieved very promising performance for machine trans-
lation and different network architectures have been pro-
posed, including RNNs (Sutskever, Vinyals, and Le 2014;
Bahdanau, Cho, and Bengio 2014; Cho et al. 2014a; Wu
et al. 2016), CNNs (Gehring et al. 2017), and self-attention
based Transformer (Vaswani et al. 2017). All those models
translate a source sentence in an autoregressive manner, i.e.,
they generate a target sentence word by word from left to
right (Wu et al. 2018) and the generation of t-th token yt
depends on previously generated tokens y1:t−1:

yt = D(y1:t−1,E(x)), (1)

where E(·) and D(·) denote the encoder and decoder of the
model respectively, x is the source sentence and E(x) is the
output of the encoder, i.e., the set of hidden representations
in the top layer of the encoder.

∗The work was done when the first author was an intern at Mi-
crosoft Research Asia.
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Since AT models generate target tokens sequentially, the
inference speed becomes a bottleneck for real-world trans-
lation systems, in which fast response and low latency are
expected. To speed up the inference of machine translation,
non-autoregressive models (Gu et al. 2017) have been pro-
posed, which generate all target tokens independently and
simultaneously. Instead of using previously generated to-
kens as in AT models, NAT models take other global sig-
nals derived from the source sentence as input. Specifically,
Non-AutoRegressive Transformer (NART) (Gu et al. 2017)
takes a copy of source sentence x as the decoder input, and
the copy process is guided by fertilities (Brown et al. 1993)
which represents how many times each source token will be
copied; after that all target tokens are simultaneously pre-
dicted:

yt = D(x̂,E(x)), (2)

where x̂ = (x̂1, ..., x̂Ty ) is the copied source sentence and
Ty is the length of the target sentence y.

While NAT models significantly reduce the inference la-
tency, they suffer from accuracy degradation compared with
their autoregressive counterparts. We notice that the encoder
of AT models and that of NAT models are the same; the
differences lie in the decoder. In AT models, the genera-
tion of the t-th token yt is conditioned on previously gener-
ated tokens y1:t−1, which provides strong target side context
information. In contrast, as NART models generate tokens
in parallel, there is no such target-side information avail-
able. Although the fertilities are learned to cover target-side
information in NART (Gu et al. 2017), such information
contained in the copied source tokens x̂ guided by fertili-
ties is indirect and weak because the copied tokens are still
in the domain of source language, while the inputs of the
decoder of AT models are target-side tokens y1:t−1. Con-
sequently, the decoder of a NAT model has to handle the
translation task conditioned on less and weaker information
compared with its AT counterpart, thus leading to inferior
accuracy. As verified by our study (see Figure 2 and Ta-
ble 3), NART performs poorly for long sentences, which
need stronger target-side conditional information for correct
translation than short sentences.

In this paper, we aim to enhance the decoder inputs of
NAT models so as to reduce the difficulty of the task that
the decoder needs to handle. Our basic idea is to directly
feed target-side tokens as the inputs of the decoder. We pro-
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pose two concrete methods to generate the decoder input
ŷ = (ŷ1, ..., ŷTy ) which contains coarse target-side informa-
tion. The first one is based on a phrase table, and explicitly
translates source tokens into target-side tokens through such
a pre-trained phrase table. The second one linearly maps the
embeddings of source tokens into the target-side embedding
space and then the mapped embeddings are fed into the de-
coder. The mapping is learned in an end-to-end manner by
minimizing the L2 distance of the mapped source and target
embeddings in the sentence level as well as the adversary
loss between the mapped source embeddings and target em-
beddings in the word level.

With target-side information as inputs, the decoder works
as follows:

yt = D(ŷ,E(x)), (3)
where ŷ is the enhanced decoder input provided by our
methods. The decoder now can generate all yt’s in parallel
conditioned on the global information ŷ, which is more close
to the target tokens y1:t−1 as in the AT model. In this way,
the difficulty of the task for the decoder is largely reduced.

We conduct experiments on three tasks to verify the
proposed method. On WMT14 English-German, WMT16
English-Romanian and IWSLT14 German-English trans-
lation tasks, our model outperforms all compared non-
autoregressive baseline models. Specifically, we obtain
BLEU scores of 24.28 and 34.51 which outperform the non-
autoregressive baseline (19.17 and 29.79 reported in Gu et
al. (2017)) on WMT14 En-De and WMT16 En-Ro tasks.

2 Background
2.1 Autoregressive Neural Machine Translation
Deep neural network with encoder-decoder framework has
achieved great success on machine translation, with differ-
ent choices of architectures such as recurrent neural net-
works (RNNs) (Bahdanau, Cho, and Bengio 2014; Cho et
al. 2014b), convolutional neural networks (CNNs) (Gehring
et al. 2017), as well as self-attention based trans-
former (Vaswani et al. 2017; He et al. 2018). Early RNNs
based models have an inherently sequential architecture
that prevents them from being parallelized during train-
ing and inference, which is partially solved by CNNs
and self-attention based models (Kalchbrenner et al. 2016;
Gehring et al. 2017; Shen et al. 2018; Vaswani et al. 2017;
Song et al. 2018). Since the entire target translation is ex-
posed to the model at training time, each input token of the
decoder is the previous ground truth token and the whole
training can be parallel given the well-designed CNNs or
self-attention models. However, the autoregressive nature
still creates a bottleneck at inference stage, since without
ground truth, the prediction of each target token has to con-
dition on previously predicted tokens. See Table 1 for a clear
comparison between models about whether they are paral-
lelizable.

2.2 Non-Autoregressive Neural Machine
Translation

We generally denote the decoder input as z = (z1, ..., zTy
)

to be consistent in the rest of our paper, which represents x̂

Models Training Inference

AT models
RNNs based × ×
CNNs based

√
×

Self-Attention based
√

×
NAT models

√ √

Table 1: Comparison between Autoregressive Transla-
tion (AT) and Non-Autoregressive Translation (NAT) mod-
els about whether they are parallelizable in different stages.

and ŷ in Equation (2) and (3). The recently proposed non-
autoregressive model NART (Gu et al. 2017) breaks the in-
ference bottleneck by exposing all decoder inputs to the net-
work simultaneously. The generation of z is guided by the
fertility prediction function which represents how many tar-
get tokens that each source token can translate to, and then
repeatedly copy source tokens w.r.t their corresponding fer-
tilities as the decoder input z. Given z, the conditional prob-
ability P (y|x) is defined as:

P (y|x, z) =
Ty∏
t=1

P (yt|z, x) =
Ty∏
t=1

P (yt|z,E(x; θenc); θdec), (4)

where Ty is the length of target sentence, which equals to
the summation of all fertility numbers. θenc and θdec denote
the parameter of the encoder and decoder. The negative log-
likelihood loss function for NAT model becomes:

Lneg(x, y; θenc, θdec) = −
Ty∑
t=1

logP (yt|z, x) (5)

Although non-autoregressive models can achieve 15×
speedup compared to autoregressive models, they are also
suffering from accuracy degradation. Since the conditional
dependencies within the target sentence (yt depends on
y1:t−1) are removed from the decoder input, the decoder is
unable to leverage the inherent sentence structure for pre-
diction. Hence the decoder has to figure out such target-side
information by itself just with the source-side information
during training, which is a much more challenging task com-
pared to its autoregressive counterpart. From our study, we
find the NART model fails to handle the target sentence gen-
eration well. It usually generates repetitive and semantically
incoherent sentences with missing words, as shown in Ta-
ble 3. Therefore, strong conditional signals should be intro-
duced as the decoder input to help the model learn better
internal dependencies within a sentence.

3 Methodology
As discussed in Section 1, to improve the accuracy of NAT
models, we need to enhance the inputs of the decoder. We
introduce our model, Enhanced Non-Autoregressive Trans-
former (ENAT), in this section. We design two kinds of
enhanced inputs: one is token level enhancement based on
phrase-table lookup and the other one is embedding level
enhancement based on embedding mapping. The illustration
of the phrase-table lookup and embedding mapping can be
found in Figure 1.
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Figure 1: The architecture of our model. A concrete description of fine-grained modules can be found in Section 4.2.

3.1 Phrase-Table Lookup
Previous NAT models take tokens in the source language in
as decoder inputs, which make the decoding task difficult.
Considering that AT models takes (already generated) target
tokens as inputs, a straightforward idea to enhance decoder
inputs is to also feed tokens in the target language into the
decoder of NAT models. Given a source sentence, a simple
method to get target tokens is to translate those source tokens
to target tokens using a phrase table, which brings negligible
latency in inference.

To implement this idea, we pre-train a phrase table based
on the bilingual training corpus utilizing Moses (Koehn et al.
2007), an open-source statistic machine translation (SMT)
toolkit. We then greedily segment the source sentence into
Tp phrases and translate the phrases one by one according to
the phrase table. The details are as follows. We first calcu-
late the maximum length L among all the phrases contained
in the phrase table. For i-th source word xi, we first check
whether phrase xi:i+L has a translation in the phrase table;
if not then check xi:i+L−1, and so on. If there exists a phrase
translation for xi:i+L−j , then translate it and check the trans-
lation started at xi+L−j+1 following the same strategy. This
procedure only brings 0.14ms latency per sentence on av-
erage over the newstest2014 test set on an Intel Xeon
E5-2690 CPU, which is negligible compared with the whole
inference latency (e.g., 25 to 200+ ms) of the NAT model, as
shown in Table 2.

Note that to reduce inference latency, we only search
the phrase table to obtain a course phrase-to-phrase transla-
tion, without utilizing the full procedure (including language
model scoring and tree-based searching). During inference,
we generate z by the phrase table lookup and skip phrases
that do not have translations.

3.2 Embedding Mapping
As the phrase table is pre-trained from SMT systems, it can-
not be updated/optimized during NAT model training, and
may lead to poor translation quality if the table is not very
accurate. Therefore, we propose the embedding mapping ap-
proach, which first linearly maps the source token embed-
dings to target embeddings and feeds them into the decoder

as inputs. This linear mapping can be trained end-to-end to-
gether with NAT models.

To be concrete, given the source sentence x =
(x1, ..., xTx) and its corresponding embedding matrix Ex ∈
RTx×d where d is the dimensionality of embeddings, we
transform Ex into the target-side embedding space by a lin-
ear mapping function fG:

Ez̃ = fG(Ex;W ) = ExW, (6)

where W ∈ Rd×d is the projection matrix to be learned
and Ez̃ ∈ RTx×d is the decoder input candidate who has
the same number of tokens as the source sentence x. We
then reconstruct Ez̃ ∈ RTx×d to the final decoder input
Ez ∈ RTy×d whose length is identical to the length of tar-
get sentence by a simple method which will be introduced in
the next section. Intuitively,Ez should contain coarse target-
side information, which is the translation of the correspond-
ing source tokens in the embedding space, although in sim-
ilar order as the source tokens. To ensure the projection ma-
trix W to be learned end-to-end with the NAT model, we
regularize the learning of W with sentence-level alignment
and word-level adversary learning.

Since we already have the sentence-level alignment from
the training set, we can minimize the L2 distance between
the mapped source embeddings and the ground truth target
embeddings in the sentence level:

Lalign(x, y) = ‖fG(e(x))− e(y)‖2, (7)

where e(x) = 1
Tx

∑Tx

i=1 e(xi) is the embedding of source
sentence x which is simply calculated by the average of em-
beddings of all source tokens. e(y) is the embedding of tar-
get sentence y which is defined in the same way.

As the regularization in Equation (7) just ensures the
coarse alignment between the sentence embeddings which
is simply the summation of each word embeddings, it
misses the fine-grained token-level alignment. Therefore,
we propose the word-level adversary learning, considering
we do not have the supervision signal of word-level map-
ping. Specifically, we use Generative Adversarial Network
(GAN) (Goodfellow et al. 2014) to regularize the the projec-
tion matrix W , which is widely used in NLP tasks such as
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unsupervised word translation (Conneau et al. 2017) and text
generation (Yu et al. 2017). The discriminator fD takes an
embedding as input and outputs a confidence score between
0 and 1 to differentiate the embeddings mapped from source
tokens, i.e.,Ez , and the ground truth embedding of the target
tokens, i.e., Ey , during training. The linear mapping func-
tion fG acts as the generator whose goal is to make fG able
to provide plausible Ez that is indistinguishable to Ey in
the embedding space, to fool the discriminator. We imple-
ment the discriminator by a two-layers multi-layer percep-
tron (MLP). Although other architectures such as CNNs can
also be chosen, we find that the simple MLP has achieved
fairly good performance.

Formally, given the linear mapping function fG(·;W ),
i.e., the generator, and the discriminator fD(·; θD), the ad-
versarial training objective Ladv can be written as:

Ladv(x, y) = min
W

max
θD

Vword(fG, fD), (8)

where Vword is the word-level value function which encour-
ages every word in z and y to be distinguishable:

Vword(fG, fD) =Ee(yi)∼Ey
[log fD(e(yi))]+

Ee(xj)∼Ex
[log(1− fD(fG(e(xj))))],

(9)
where e(xj) and e(yi) indicates the embedding of j-th
source and i-th target token respectively. In conclusion, for
each training pair (x, y), along with the original negative
log-likelihood loss Lneg(x, y) defined in Equation (5), the
total loss function of our model is:

min
Θ

max
θD

L(x, y) = Lneg(x, y; θenc, θdec)+

µLalign(x, y;W ) + λLadv(x, y; θD,W ),
(10)

where Θ = (θenc, θdec,W ) and θD consist of all parameters
that need to be learned, while µ and λ are hyper-parameters
that control the weight of different losses.

3.3 Discussion
The approach of phrase-table lookup is simple and efficient.
It achieves considerable performance in experiments by pro-
viding direct token-level enhancements, when the phrase ta-
ble is good enough. However, when training data is messy
and noisy, the generated phrase table might be of low qual-
ity and consequently hurts NAT model training. We observe
that the phrase table trained by Moses can obtain fairly good
performance on small and clean datasets such as IWSLT14
but very poor on big and noisy datasets such as WMT14.
See Section 5.3 for more details. In contrast, the approach
of embedding mapping learns to adjust the mapping func-
tion together with the training of NAT models, resulting in
more stable results.

As for the two components proposed in embedding map-
ping, the sentence-level alignment Lalign leverages bilingual
supervisions which can well guide the learning of the map-
ping function, but lacks the fine-grained word-level mapping
signal; word-level adversary loss Ladv can provide compli-
mentary information to Lalign. Our ablation study in Sec-
tion 5.3 (see Table 5) verify the benefit of combining the
two loss functions.

4 Experimental Setup
4.1 Datasets
We evaluate our model on three widely used public ma-
chine translation datasets: IWSLT14 De-En1, WMT14 En-
De2 and WMT16 En-Ro3, which has 153K/4.5M/2.9M
bilingual sentence pairs in corresponding training sets. For
WMT14 tasks, newstest2013 and newstest2014 are
used as the validation and test set respectively. For the
WMT16 En-Ro task, newsdev2016 is the validation set
and newstest2016 is used as the test set. For IWSLT14
De-En, we use 7K data split from the training set as
the validation set and use the concatenation of dev2010,
tst2010, tst2011 and tst2012 as the test set, which
is widely used in prior works (Ranzato et al. 2015; Bah-
danau et al. 2016). All the data are tokenized and segmented
into subword tokens using byte-pair encoding (BPE) (Sen-
nrich, Haddow, and Birch 2015) , and we share the source
and target vocabulary and embeddings in each language
pair. The phrase table is extracted from each training set by
Moses (Koehn et al. 2007), and we follow the default hyper-
parameters in the toolkit.

4.2 Model Configurations
We follow the same encoder and decoder architecture as
Transformer (Vaswani et al. 2017). The encoder is composed
by multi-head attention modules and feed forward networks
, which are all fully parallelizable. In order to make the de-
coding process parallelizable, we cannot use target tokens
as decoder input cause such strong signals are unavailable
while inference. Instead, we use the input introduced in the
Section 3. There exists the problem of length mismatch be-
tween the decoder input z and the target sentence, which
is solved by a simple and efficient method. Given the de-
coder input candidate z̃ = (z̃1, ..., z̃Tz̃

) which is either pro-
vided by phrase-table lookup or Equation (6), the j-th ele-
ment of the decoder input z = (z1, ..., zTy

) is computed as
zj =

∑
i wij · e(z̃i), where wij = exp(−(j − j′(i))2/τ),

and j
′
(i) = i · Ty

Tz̃
, and τ is a hyper-parameter controlling

the sharpness of the function, which is set to 0.3 in all tasks.
We also use multi-head self attention and encoder-to-

decoder attention, as well as feed forward networks for de-
coder, as used in Transformer (Vaswani et al. 2017). Consid-
ering the enhanced decoder input is of the same word order
of the source sentence, we add the multi-head positional at-
tention to rearrange the local word orders within a sentence,
as used in NART (Gu et al. 2017). Therefore, the three kinds
of attentions along with residual connections (He et al. 2016)
and layer normalization (Ba, Kiros, and Hinton 2016) con-
stitute our model.

To enable a fair comparison, we use same network ar-
chitectures as in NART (Gu et al. 2017). Specifically, for
WMT14 and WMT16 datasets, we use the default hyper-
parameters of the base model described in Vaswani et
al. (2017), whose encoder and decoder both have 6 layers

1https://wit3.fbk.eu/
2https://www.statmt.org/wmt14/translation-task
3https://www.statmt.org/wmt16/translation-task
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and the size of hidden state and embeddings are set to 512,
and the number of heads is set to 8. As IWSLT14 is a smaller
dataset, we choose to a smaller architecture as well, which
consists of a 5-layer encoder and a 5-layer decoder. The size
of hidden state and embeddings are set to 256, and the num-
ber of heads is set to 4.

4.3 Training and Inference
We follow the optimizer settings in Vaswani et al. (2017).
Models on WMT/IWSLT tasks are trained on 8/1 NVIDIA
M40 GPUs respectively. We set µ = 0.1 and λ = 1.0 in
Equation (10) for all tasks to ensure Lneg, Lalign and Ladv
are in the same scale. We implement our model on Tensor-
flow (Abadi et al. 2016). We provide detailed description of
the knowledge distillation and the inference stage below.
Sequence-Level Knowledge Distillation During train-
ing, we apply the same knowledge distillation method used
in (Kim and Rush 2016; Gu et al. 2017; Li et al. 2019).
We first train an autoregressive teacher model which has the
same architecture as the non-autoregressive student model,
and collect the translations of each source sentence in the
training set by beam search, which are then used as the
ground truth for training the student. By doing so, we pro-
vide less noisy and more deterministic training data which
make the NAT model easy to learn (Kim and Rush 2016;
Ott et al. 2018; Gong et al. 2019). Specifically, we pre-train
the state-of-the-art Transformer (Vaswani et al. 2017) archi-
tecture as the autoregressive teacher model, and the beam
size while decoding is set to 4.
Inference While inference, we do not know the target
length Ty . Therefore we first calculate the average ratio be-
tween target and source sentence length in the training set
which is denoted as α, then predict the target length rang-
ing from

[
bα · Tz̃i − Bc, bα · Tz̃i + Bc

]
where b·c denotes

the rounding operation. This length prediction method de-
pends on the intuition that the length of source sentence and
target sentence is similar, where B is half of the searching
window. B = 0 indicates the greedy output that only gener-
ates a single translation result for a source sentence. While
B ≥ 1, there will be multiple translations for one source sen-
tence, therefore we utilize the autoregressive teacher model
to rescore and select the final translation. While inference, α
is set to 1.1 for English-to-Others tasks and 0.9 for Others-
to-English tasks, and we try both B = 0 and B = 4 which
result in 1 and 9 candidates. We use BLEU scores (Papineni
et al. 2002) as the evaluation metric4.

As for the efficiency, the decoder input z is obtained
through table-lookup or the multiplication between dense
matrices, which brings negligible additional latency. The
teacher model rescoring procedure introduced above is fully
parallelizable as it is identical to the teacher forcing train-
ing process in autoregressive models, and thus will not in-
crease the latency much. We analyze the inference latency

4We report tokenized and case-sensitive BLEU scores for
WMT14 En-De and WMT16 En-Ro to keep consistent with
NART (Gu et al. 2017), as well as tokenized and case-insensitive
scores for IWSLT14 De-En, which is common practices in litera-
ture (Wu et al. 2016; Vaswani et al. 2017).

per sentence and demonstrate the efficiency of our model in
experiment.

5 Results

5.1 Translation Quality and Inference Latency

We compare our model with non-autoregressive baselines
including NART (Gu et al. 2017), a semi-non-autoregressive
model Latent Transformer (LT) (Kaiser et al. 2018) which
incorporates an autoregressive module into NART, as well
as Iterative Refinement NAT (IR-NAT) (Lee, Mansimov, and
Cho 2018) which trains extra decoders to iteratively refine
the translation output, and we list the “Adaptive” results re-
ported in their paper. We also compare with strong autore-
gressive baselines that based on LSTM (Wu et al. 2016;
Bahdanau et al. 2016) and self-attention (Vaswani et al.
2017). We also list the translation quality purely by lookup
from the phrase table, denoted as Phrase-Table Lookup,
which serves as the decoder input in the hard model. For
inference latency, the average per-sentence decoding latency
on WMT14 En-De task over the newstest2014 test set is
also reported, which is conducted on a single NVIDIA P100
GPU to keep consistent with NART (Gu et al. 2017). Results
are shown in Table 2.

Among different datasets, our model achieves state-
of-the-art performance all non-autoregressive baselines.
Specifically, our model outperforms NART with rescoring
10 candidates from 4.26 to 5.62 BLEU score on differ-
ent tasks. Comparing to autoregressive models, our model
is only 1.1 BLEU score behind its Transformer teacher at
En-Ro tasks, and we also outperforms the state-of-the-art
LSTM-based baseline (Wu et al. 2016) on IWSLT14 De-En
task. The promising results demonstrate that the proposed
method can make the decoder easy to learn by providing
a strong input close to target tokens and result in a bet-
ter model. For inference latency, NART needs to first pre-
dict the fertilities of source sentence before the translation
process, which is slower than the phrase-table lookup pro-
cedure and matrix multiplication in our method. Moreover,
our method outperforms NART with rescoring 100 candi-
dates on all tasks, but with nearly 5 times faster, which also
demonstrate the advantages of the enhanced decoder input.
Translation Quality w.r.t Different Lengths We compare
the translation quality between AT (Vaswani et al. 2017),
NART (Gu et al. 2017) and our method with regard to dif-
ferent sentence lengths. We conduct the analysis on WMT14
En-De test set and divide the sentence pairs into different
length buckets according to the length of reference sentence.
The results are shown in Figure 2. It can be seen that as sen-
tence length increases, the accuracy of NART model drops
quickly and the gap between AT and NART model also en-
larges. Our method achieves more improvements over the
longer sentence, which demonstrates that NART perform
worse on long sentence, due to the weak decoder input,
while our enhanced decoder input provides strong condi-
tional information for the decoder, resulting more accuracy
improvements on these sentences.
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WMT14 WMT16 IWSLT14
Models En−De De−En En−Ro De−En Latency / Speedup

LSTM-based S2S (Wu et al. 2016) 24.60 / / 28.53† / /
Transformer (Vaswani et al. 2017) 27.41† 31.29† 35.61† 32.55† 607 ms 1.00×
LT (Kaiser et al. 2018) 19.80 / / / 105 ms 5.78×
LT (rescoring 10 candidates) 21.00 / / / / /
LT (rescoring 100 candidates) 22.50 / / / / /
NART (Gu et al. 2017) 17.69 21.47 27.29 22.95† 39 ms 15.6×
NART (rescoring 10 candidates) 18.66 22.41 29.02 25.05† 79 ms 7.68×
NART (rescoring 100 candidates) 19.17 23.20 29.79 / 257 ms 2.36×
IR-NAT (Lee, Mansimov, and Cho 2018) 21.54 25.42 29.66 / 254† ms 2.39×
Phrase-Table Lookup 6.03 11.24 9.16 15.69 / /
ENAT Phrase-Table Lookup 20.26 23.23 29.85 25.09 25 ms 24.3×
ENAT Phrase-Table Lookup (rescoring 9 candidates) 23.22 26.67 34.04 28.60 50 ms 12.1×
ENAT Embedding Mapping 20.65 23.02 30.08 24.13 24 ms 25.3×
ENAT Embedding Mapping (rescoring 9 candidates) 24.28 26.10 34.51 27.30 49 ms 12.4×

Table 2: BLEU scores on WMT14 En-De, WMT14 De-En, WMT16 En-Ro and IWSLT14 De-En tasks. “/” indicates the cor-
responding result is not reported and “†” means results are produced by ourselves. We also list the inference latency compared
with previous works. ENAT with rescoring 9 candidates indicates results when B = 4, otherwise B = 0.
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Figure 2: The BLEU scores comparison between AT, NART,
and our method over sentences in different length buckets on
newstest2014. Best view in color.

5.2 Case Study

We conduct several case studies on IWSLT14 De-En task to
intuitively demonstrate the superiority of our model, listed
in Table 3.

As we claimed in Section 1, the NART model tends to
repetitively translate same words or phrases and sometimes
misses meaningful words, as well as performs poorly while
translating long sentences. In the first case, NART fails to
translate a long sentence due to the weak signal provided
by the decoder input, while both of our models success-
fully translate the last half sentence thanks to the strong
information carried in our decoder input. As for the sec-
ond case, NART translates “to you” twice, and misses “all
of”, which therefore result in a wrong translation, while our
model achieves better translation results again.

5.3 Method Analysis
Phrase-Table Lookup v.s. Embedding Mapping We have
proposed two different approaches to provide decoder input
with enhanced quality, and we make a comparison between
the two approaches in this subsection.

According to Table 2, the phrase-table lookup achieves
better BLEU scores in IWSLT14 De-En and WMT14 De-
En task, and the embedding mapping performs better on the
other two tasks. We find the performance of the first ap-
proach is related to the quality of phrase table, which can
be judged by the BLEU score of the Phrase-to-Phrase trans-
lation. As IWSLT14 De-En is a cleaner and smaller dataset,
the pre-trained phrase table tends to have good quality (with
BLEU score 15.69 as shown in Table 2), therefore it is
able to provide an accurate enough signal to the decoder.
Although WMT14 En-De and WMT16 En-Ro dataset are
much larger, the phrase tables are of low quality (with BLEU
score 6.03 in WMT14 En-De and 9.16 in WMT16 En-Ro),
which may provides noise signals such as missing too much
tokens and misguide the learning procedure. Therefore, our
embedding mapping outperforms the phrase-table lookup by
providing implicit guidance and allow the model adjust the
decoder input in a way of end-to-end learning.
Varying the Quality of Decoder Input We study how the
quality of decoder input influence the performance of the
NAT model. We mainly analyze in the phrase-table lookup
approach as it is easy to change the quality of decoder input
with word-table. After obtained the phrase table by Moses
from the training data, we further extract the word table from
the phrase table following the word alignments. Then we
can utilize word-table lookup by the extracted word table as
the decoder input z, which provides relatively weaker sig-
nals compared with the phrase-table lookup. We measure the
BLEU score directly between the phrase/word-table lookup
and the reference, as well as between the NAT model out-
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Source: hier ist ein foto, das ich am nördlichen ende der baffin-inseln aufnahm, als ich mit inuits auf die narwhal-jagd ging.
und dieser mann, olaya, erzählte mir eine wunderbare geschichte seines großvaters.

Target: this is a photograph i took at the northern tip of baffin island when i went narwhal hunting with some inuit people,
and this man, olayuk, told me a marvelous story of his grandfather.

Teacher: here’s a photograph i took up at the northern end of the fin islands when i went to the narwhal hunt,
and this man, olaya, told me a wonderful story of his grandfather.

NART: here’s a photograph that i took up the north end of of the baffin fin when i with iuits went to the narwhal hunt,
and this guy guy, ollaya. & lt; em & gt; & lt; / em & gt;

PT: so here’s a photo which i the northern end the detected when i was sitting on on the went.
and this man , told me a wonderful story his’s.

ENAT Phrase: here’s a photograph i took up at the end of the baffin islands i went to the nnarwhal hunting hunt,
and this man, olaaya told me a wonderful story of his grandfather.

ENAT Embedding: here’s a photograph that i took on the north of the end of the baffin islands, when i went to nuits on the narhal hunt,
and this man, olaya, told me a wonderful story of his grandfather.

Source: ich freue mich auf die gespräche mit ihnen allen!

Target: i look forward to talking with all of you.

Teacher: i’m happy to talk to you all!

NART: i’m looking to the talking to to you you.

PT: i look forward to the conversations with you all!

ENAT Phrase: i’m looking forward to the conversations with all of you.

ENAT Embedding: i’m looking forward to the conversations to all of you.

Table 3: Case studies on IWSLT14 De-En task. ENAT Phrase and ENAT Embedding denotes the proposed phrase-table lookup
and embedding mapping methods respectively. PT indicates the phrase-table lookup results, which serves as the decoder input
to ENAT Phrase method. We collect the results of NART with rescoring 10 candidates and set B = 4 while inference for our
methods to confirm a fair comparison.

Approach Decoder Input NAT Result

Word-Table Lookup 3.54 19.16
Phrase-Table Lookup 6.03 20.33

Table 4: The BLEU scores when varying the quality of de-
coder input on WMT14 En-De task. We set B = 0 in the
inference for the NAT result.

Lalign Ladv BLEU score
√ √

24.13
√

23.53√
23.74

Table 5: Ablation study of the embedding mapping approach
on IWSLT14 De-En task. We set B = 0 while inference.

puts and the reference in WMT14 En-De test set, listed in
Table 4. The quality of the word-table lookup is relatively
poor compared with the phrase-table lookup. Under this cir-
cumstance, the signal provided by the decoder input will be
weaker, and thus influence the accuracy of NAT model.
Ablation Study on Embedding Mapping We conduct
an ablation study in this subsection to study the different
components in the embedding mapping approach, i.e., the
sentence-level alignment and word-level adversary learn-
ing. Results are shown in Table 5. Sentence-level alignment

Lalign slightly outperforms the word-level adversary learn-
ing Ladv. However, adding Ladv to Lalign improves the BLEU
score to 24.13, which illustrates that the complimentary in-
formation provided by two loss functions is indispensable.

6 Conclusion
We targeted at improving accuracy of non-autoregressive
translation models and proposed two methods to enhance the
decoder inputs of NAT models: one based on a phrase table
and the other one based on word embeddings. Our methods
outperform the baseline on all tasks by BLEU scores ranging
from 3.47 to 5.02.

In the future, we will extend this study from several as-
pects. First, we will test our methods on more language
pairs and larger scale datasets. Second, we will explore bet-
ter methods to utilize the phrase table. For example, we may
sample multiple candidate target tokens (instead of using the
one with largest probability in this work) for each source to-
ken and feed all the candidates into the decoder. Third, it is
interesting to investigate better methods (beyond the phrase
table and word embedding based methods in this work) to
enhance the decoder inputs and further improve translation
accuracy for NAT models.
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