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Abstract

We propose a novel introspective model for variational neural
machine translation (IntroVNMT) in this paper, inspired by
the recent successful application of introspective variational
autoencoder (IntroVAE) in high quality image synthesis. Dif-
ferent from the vanilla variational NMT model, IntroVNMT
is capable of improving itself introspectively by evaluating
the quality of the generated target sentences according to the
high-level latent variables of the real and generated target sen-
tences. As a consequence of introspective training, the pro-
posed model is able to discriminate between the generated
and real sentences of the target language via the latent vari-
ables generated by the encoder of the model. In this way, In-
troVNMT is able to generate more realistic target sentences
in practice. In the meantime, IntroVNMT inherits the advan-
tages of the variational autoencoders (VAEs), and the model
training process is more stable than the generative adversarial
network (GAN) based models. Experimental results on dif-
ferent translation tasks demonstrate that the proposed model
can achieve significant improvements over the vanilla varia-
tional NMT model.

Introduction

Neural Machine Translation (NMT) has achieved remark-
able success in recent years and produces superior perfor-
mance over statistical machine translation (SMT). In gen-
eral, most NMT models ultilize the sequence-to-sequence
discriminative framework which consists of two neural net-
works: an RNN based encoder network transforming a
source sentence x = {x1, x2, . . . , xT x} into a sequence of
source-side memory banks, and an RNN based decoder
generating a target sentence y = {y1, y2, . . . , yT y} sequen-
tially with the use of the source-side memory banks via
the attention mechanism (Bahdanau, Cho, and Bengio 2015;
Luong, Pham, and Manning 2015). Due to the effectiveness
and simplicity of this end-to-end model structure, NMT has
been attracting more and more research interests recently.
Meanwhile, despite the significant success, there still exist
some challenges for standard attention based NMT mod-
els. On the one hand, traditional NMT models may not be
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sufficient to generate natural and accurate target sentences
compared to the ground-truth, because the Maximum Like-
lihood Estimation (MLE) principle employed by standard
NMT models is not entirely suitable for the machine transla-
tion task. More specifically, these models are only designed
to maximize the posterior probability of the target ground-
truth sentence given the source sentence but not to guarantee
the translation quality. On the other hand, standard attention
based methods cannot capture the complete information of
the source sentence from the source-side memory banks (Tu
et al. 2016) due to the possibility of errors in the semantic
alignments between source and target words identified by
the attention mechanism.

Thanks to the rise of generative models, many attempts
have been made to address the challenges mentioned above
with generative frameworks. To relieve the dependency of
MLE, (Wu et al. 2017) adopts a generative adversarial net-
work (GAN) based method, which directly minimizes the di-
vergence between the distributions of the ground-truth sen-
tences and the translations by incorporating a Convolutional
Neural Network (CNN) based discriminator into the typical
NMT model. To address the issues of the attention mech-
anism, variational NMT (VNMT) is proposed to add a la-
tent variable into NMT which serves as a global semantic
representation to facilitate generating better translations. In
VNMT, in addition to the variational neural encoder and the
variational neural decoder which work just like the encoder
and decoder in a standard NMT model, there is a variational
neural inferer that infers the latent variable z with a neural
prior model and neural posterior approximator. Further, to
alleviate the limitation of the static latent variable of VNMT,
variational recurrent NMT (VRNMT) is introduced (Su et
al. 2018) to incorporate a sequence of dynamic variables z
= {z1, z2, . . . , zT y} into the decoder input where the itera-
tively generated variable zj will participate in the generation
of the next target token yj .

However, the GAN and VAE based NMT models dis-
cussed above are restricted in the following perspectives.
Firstly, different from traditional GANs which assume that
the space of generator is continuous, the NMT model is in-
stead a probabilistic transformation that maps a source sen-
tence to a target sentence which are both in discrete spaces.
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As a consequence, the GAN based NMT model (Yu et al.
2017; Wu et al. 2017) turns to the policy gradient method
named REINFORCE (Williams 1992) to build the optimiza-
tion in an adversarial manner, which may lead to instabil-
ity in training. Secondly, VAEs are theoretically elegant and
easy to train, nevertheless VAE-based models tend to pro-
duce blurry manifold representations which are not capable
of capturing sharper details, and one of the reasons could
be that VAEs assign high probabilities to training samples,
while not ensuring that blurry samples are assigned with
low probabilities (Goodfellow, Bengio, and Courville 2016),
which implies insufficient discrimination between different
samples. As a consequence, the VAE based NMT models
may generate some ambiguous translations which are not ca-
pable of transferring the prominent information in the source
sentence in practice.

To alleviate the problems discussed above, in this paper,
we propose a novel introspective model for variational neu-
ral machine translation, inspired by the recent work of in-
trospective variational autoencoder (IntroVAE) for synthe-
sizing high resolution images. In IntroVNMT, a different
training paradigm compared to VNMT is conducted to dis-
criminate the real target sentences from the generated ones.
Specifically, the model consists of three components which
play a min-max game:
• A Variational Neural Encoder. Just like the encoder in

the vanilla NMT models which aims to encode the infor-
mation of source sentences, this component transforms a
source/target sentence into an intermediate representation
and a sequence of memory banks.
• A Variational Neural Inferer. Different from the stan-

dard VNMT, this component in the proposed model self-
estimates the quality of a real sentence or generated sen-
tence. Specifically, this component attempts to assign a
higher confidence score to a real target sentence and a
lower score to a generated one respectively, which acts
like the discriminator in GANs. To achieve that, we
will reuse the two submodules in VNMT: Neural Prior
Model and Neural Posterior Approximator (i.e. pθ(z|x)
and pφ(z|x, y)) which output the prior and the posterior
respectively. For pairs of real source sentence x and real
target sentence y, this component tries to minimize the di-
vergence between the prior and the posterior, while maxi-
mizing it for pairs of real source sentence x and generated
target sentence y′.

• A Variational Neural Decoder. Our decoder does not just
work as a generator of target sentences. To complete such
a min-max game, this component will focus on generating
more realistic target sentences which can even mislead the
Inferer. To achieve that, this component is trained with
the Variational Neural Inferer iteratively to minimize the
divergence between the prior and posterior for pairs of
real source sentence x and generated target sentence y′.
By training the model of IntroVNMT iteratively in an

introspective manner, the three components can improve
themselves and the model can eventually generate sharper
target sentences. Compared to adversarial NMT models, In-
troVNMT requires no extra discriminator, which reduces the

complexity of the model. In the meantime, IntroVNMT can
generate target sentences through a single-stream network
in one stage similar to VNMT. This training paradigm in-
tegrates the advantages of the nice manifold representation
of VAEs, and the adversarial training procedure of GANs,
while avoiding the deficiencies of GANs and VAEs in terms
of instable training and insufficient discrimination respec-
tively.

The contribution of this work is two-fold:

• We propose the IntroVNMT model that not only self-
estimates the high-level latent variables of real and gen-
erated target sentences, but also produces more realistic
target sentences compared to a typical VNMT. To the best
of our knowledge, this work is the first attempt to adapt
IntroVAE into NMT models.

• Experimental results on the WMT’14 EN-DE and
IWSLT’14 DE-EN translation tasks show that the pro-
posed model outperforms standard VAE based NMT
models by generating more realistic sentences, while dis-
tinguishing real and generated samples with significant
KL-Divergence.

Related Work

Recently, end-to-end neural machine translation (NMT) has
become a mainstream research direction in the field of natu-
ral language processing (NLP) (Jean et al. 2015; Bahdanau,
Cho, and Bengio 2015; Wu et al. 2016; Cho et al. 2014),
where many types of generative models have been pro-
posed, including variational autoencoders (VAEs) (Kingma
and Welling 2013), generative adversarial networks (GANs)
(Goodfellow et al. 2014) and flow-based generative models
(Kingma and Dhariwal 2018).
Neural Machine Translation. Different from statistical
machine translation (SMT) which relies heavily on huge
phrase/rule tables, neural machine translation (NMT) re-
quires smaller memory. NMT starts from the sequence to se-
quence learning paradigm proposed by (Sutskever, Vinyals,
and Le 2014), where the authors adopt two four-layer Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber
1997) models, which are responsible for encoding a source
sentence into a fixed-length intermediate vector and decod-
ing the translation step by step respectively. In order to im-
prove the limited representation capacity of the fixed-length
intermediate vector, the attention mechanism is introduced
into NMT where the model can be trained to focus on the rel-
evant parts when generating target tokens (Bahdanau, Cho,
and Bengio 2015) .
Variational Autoencoders. Variational Autoencoders
(VAEs) have become a group of the most prominent gener-
ative models recently. Among them, (Kingma and Welling
2013) and (Rezende, Mohamed, and Wierstra 2014) focus
on VAEs which can be regarded as a regularized variant of a
standard autoencoder. Specifically, VAEs introduce a neural
inference model to approximate the intractable posterior
probability, and optimize the model with a reparameter-
ized variational lower bound, also called the Evidence
Lower Bound (ELBO). More recently, (Huang et al. 2018)
proposes a novel training paradigm for VAEs where the
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encoder attempts to self-estimate the latent variable and the
decoder attempts to generate more realistic samples that can
mislead the encoder.
Generative Adversarial Networks. Generative Adversarial
Networks (GANs) (Goodfellow et al. 2014) consist of two
networks: a generator and a discriminator. In a typical adver-
sarial procedure, the generator and discriminator are trained
to compete with each other alternatively. More specifically,
the generator is trained to generate more realistic samples
that could fool the discriminator. Adversarial training has
been applied to some natural language processing tasks suc-
cessfully (Yu et al. 2017; Li et al. 2017). However, training
instability is still a big challenge that GANs have to face.
VAE based Neural Machine Translation. Due to the nice
manifold representation of VAEs, attempts have been made
to incorporate variational latent variables into NMT train-
ing. Among them, (Bowman et al. 2016) firstly introduces
a variational autoencoder to construct an unsupervised gen-
erative language model. Variational NMT (VNMT) is pro-
posed in (Zhang et al. 2016), which introduces a latent vari-
able produced by an extra inferer compared to a traditional
encoder-decoder NMT model. VNMT is further extended in
(Su et al. 2018) and (Eikema and Aziz 2019) to achieve bet-
ter performance. More specifically, (Su et al. 2018) proposes
variational recurrent NMT (VRNMT) models to incorpo-
rate a sequence of latent variables during decoding, while
auto-encoding variational NMT (AEVNMT) is introduced
in (Eikema and Aziz 2019) that generates the source and tar-
get sentences jointly from a shared latent variable. Although
these VAE based NMT models can produce a manifold rep-
resentation in a simple and elegant way, they are not capable
of capturing sharp details in the latent variables, which re-
stricts them from generating more realistic sentences.

The models in (Zhang et al. 2016) and (Huang et al. 2018)
are most relevant to our work. In this paper, we adjust the
training principle of VNMT (Zhang et al. 2016) to an adver-
sarial manner as introduced in (Huang et al. 2018), which
has been proven to be effective for generating high resolu-
tion images. Different from VRNMT (Su et al. 2018) which
incorporates latent variables into hidden states of recurrent
neural networks (RNNs), we concentrate on training VNMT
to generate sharper manifold representations. As far as we
know, this work is the first to explore the potential applica-
tion of IntroVAE to NMT models.

Introspective Variational Neural Machine

Translation

In this section, we introduce IntroVNMT by adapting the
training paradigm of IntroVAE to vanilla VNMT. The goal
is to train the model which can self-estimate the differences
between the real target sentences and the generated ones, and
improve itself accordingly to generate more realistic target
sentences that cannot be distinguished. To achieve that, the
Inferer of IntroVNMT takes the role similar to the discrim-
inator in GANs to self-estimate the divergence between the
real and generated target sentences, and maximize it for dis-
crimination. In the meantime, the Decoder of IntroVNMT
is analogous to the generator in GANs, which focuses on

Figure 1: Framework of VNMT. ‘Src’ and ‘Tgt’ are short
for ‘Source’ and ‘Target’ respectively which correspond to
the ground-truth language sentences, while ‘Gen’ means the
generated target sentence. ‘E’ and ‘D’ represent the encoder
and decoder respectively. The details of the attention mech-
anism are not shown here for simplicity.

generating more realistic target sentences to minimize the
divergence, such that it can mislead the Inferer. On the other
hand, to alleviate the problems of adversarial training, the
Inferer and Decoder are trained jointly, as a benefit from the
manifold representations of VAEs.

As shown in Fig. 1, the loss function of VNMT proposed
in (Zhang et al. 2016) can be formulated in the negative ver-
sion of ELBO as follows:

L(θ, φ; x, y) =− Eqφ(z|x,y)[logpθ(y|z, x)]

+ KL(qφ(z|x, y)||pθ(z|x)), (1)

where pθ(z|x) is the Neural Prior Model, qφ(z|x, y) is the
Neural Posterior Approximator, and pθ(y|z, x) is the Varia-
tional Neural Decoder conditioned on z. Accompanied with
the Variational Neural Encoder, VNMT conducts a single-
stream training flow. More specifically, the Variational Neu-
ral Encoder is responsible for encoding the source/target
sentences, which is the same as the encoder of NMT (Bah-
danau, Cho, and Bengio 2015). The Variational Neural In-
ferer is composed of a Neural Prior Model and a Neural
Posterior Approximator, where the posterior qφ(z|x, y) is en-
couraged to match the pθ(z|x) for pairs of source/target sen-
tences. The Variational Neural Decoder integrates the latent
representation z to guide the generation of target sentences
(i.e. pθ(y|z, x)) together with the attention mechanism (Bah-
danau, Cho, and Bengio 2015).

Here we denote the two terms of ELBO as LCE and
LREG (i.e. the cross-entropy loss and regularization loss)
respectively. For the first term, we use the Monte Carlo
method to approximate the expectation over the posterior,
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Figure 2: Framework of IntroVNMT. ‘Src’ and ‘Tgt’ are short for ‘Source’ and ‘Target’ respectively which correspond to the
ground-truth language sentences. y′prior and y′

post represent two different generated sentences. IntroVNMT consists of two
components, the Inferer E and the Decoder D, in a circulation loop.

i.e. Eqφ(z|x,y)[∗] � 1
L

∑L
l=1 logpθ(y|x, h(l)

z ), where L is the
number of samples, and LCE will degenerate to the cross-
entropy loss of conventional NMTs when L = 1. The second
term LREG is a KL-Divergence which regularizes the en-
coder by encouraging the approximate posterior qφ(z|x, y)
to match the prior pθ(z|x). Following the training routine
described above, we will describe IntroVNMT as a modi-
fied combination of these two terms. For the sake of con-
venience, we integrate the Variational Neural Encoder and
Variational Neural Inferer into Inferer E and keep the De-
coder D intact.

Adversarial Self-Estimation

In order to self-estimate the divergence between the real and
generated target sentences, we take LREG as the adversar-
ial training loss function. During training, the Inferer E is
trained to minimize LREG to encourage the approximate
posterior qφ(z|x, y) of sentence pairs (x, y) to match the prior
pθ(z|x) where both x and y come from real data. Meanwhile,
the Inferer E is also trained to maximize LREG to encour-
age qφ(z|x, y′) of sentence pairs (x, y′) to deviate from the
prior pθ(z|x), where x is a real source sentence while y′ is a
generated target sentence. Thus, the divergence between the
distributions of real and generated target sentences will grad-
ually increase. In contrast, the Decoder D attempts to gener-
ate target sentences that can achieve small LREG, such that
the approximate posterior for the generated sentences can
match the prior more closely. As a consequence, the gener-
ated target sentences will be more realistic, with a distribu-
tion closer to the real target sentences.

Given a source sentence x, a target sentence y and a latent
variable z where both x and y come from training data, we
train the model as described above with the loss functions:

LE(x, y, z) = E(x, y) + [m− E(x, D(z))]+, (2)
LD(x, z) = E(x, D(z)), (3)

where E(x, y) = KL(qφ(z|x, y)||pθ(z|x)), [∗]+ =
max(0, ∗), and m is a positive margin which is set to keep
E(x, D(z)) not too large. Just like GANs, the Inferer E and
Decoder D will play a min-max game during training.

Introspective Variational Inference

However, the training strategy introduced above may also
lead to problems of model collapse and training instability,
due to the characteristics of typical adversarial training. To
alleviate these problems, different from the two independent
models (i.e. the generator and discriminator) in GANs, we
train the Inferer E and Decoder D jointly by adding a cross-
entropy loss to Eq. (2) and Eq. (3). Thus, the formulation
can be redefined as follows:

LE(x, y, z) =E(x, y) + [m− E(x, D(z))]+

+ LCE(x, y), (4)
LD(x, z) =E(x, D(z)) + LCE(x, y), (5)

where LCE(x, y) represents the cross-entropy loss. More
specifically, this cross-entropy loss is calculated by taking
the groud-truth target sentence y and the generated one y′ as
inputs, where y′ is generated by taking x and y as inputs.

From the perspective of VNMT, this objective becomes
the negative version of the standard VNMT’s ELBO when
the input pairs are x and y, which preserves the nice training
flow of VNMT; and from the perspective of GANs, this ob-
jective implies a min-max game between E and D when the
input pairs are x and y′, which facilitates the latent variables
to capture sharper information.

Training of IntroVNMT

The overall training flow of IntroVNMT is shown in Fig. 2.
The Inferer E is designed to output two variables μ and σ
according to the input sentences, and then calculate the ap-
proximate posterior qφ(z|x, y) or prior pθ(z|x) via the repa-
rameterization trick: z = μ + σ � ε where ε ∼ N(0, I).
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Algorithm 1: Training Process of IntroVNMT
1 Initialize the network parameters θD, φE ;
2 while not converged do
3 X , Y ← Random sampled mini-batch from dataset;
4 Zprior ← Enc(X), Zpost ← Enc(X,Y );

5 Y ′
prior ← D(Zprior), Y ′

post ← D(Zpost);
6 Compute the cross-entropy loss:

LCE(X,Y )← cross-entropy(Y, Y ′
post);

7 Zpostx ← Enc(X,ng(Y ′
prior)),

Zpostxy
← Enc(X,ng(Y ′

post));
8 Compute the adversarial loss for generated data:

LE
adv ←

[m−LREG(Zpostx)]
+ + [m−LREG(Zpostxy

)]+;
9 Compute the full loss of Inferer E:

LE ← αLREG(Zpost) + βLE
adv + γLCE(X,Y );

10 Perform gradient descent for φE :
φE ← φE − η∇φE

LE ;

11 Y ′
prior ← D(Zprior), Y ′

post ← D(Zpost);
12 Compute the cross-entropy loss:

LCE(X,Y )← cross-entropy(Y, Y ′
post);

13 Zpostx ← Enc(X,Y ′
prior),

Zpostxy ← Enc(X,Y ′
post);

14 Compute the adversarial loss for generated data:
LD
adv ← LREG(Zpostx) + LREG(Zpostxy

);
15 Compute the full loss of Inferer D:

LD ← βLD
adv + γLCE(X,Y );

16 Perform gradient descent for φD:
θD ← θD − η∇θDLD;

17 end

And the input latent variable of the Decoder D is sampled
from the distribution calculated by E. In this setting, the KL-
Divergence LREG (i.e. E(x, y) in Eq. (7) and Eq. (8)) can be
computed as follows:

LREG(zpost, zprior;μpost, σpost, μprior, σprior)

=− 1

2

N∑

i=1

Mz∑

j=1

[1− log(σ2
prior,ij) + log(σ2

post,ij)

− σ2
post,ij

σ2
prior,ij

− (μpost,ij − μprior,ij)
2

σ2
prior,ij

], (6)

where N is the number of samples, Mz is the dimension of
the latent variable z.

As shown in Fig. 2, the channel of generated sentences
is not unique. y′prior is generated conditioned on the latent
variable zprior which is produced only from the source sen-
tence x, while y′post is generated conditioned on zpost which
involves both the source sentence x and the target sentence
y. Thus, the full loss functions for E and D will be redefined

as:

LE = αLREG(zpost) + β
∑

s∈S

[m− LREG(zs)]
+

+ γLCE(x, y)

= αLREG(Enc(x, y))

+ β
∑

r∈R

[m− LREG(Enc(x, ng(y′r)))]
+

+ γLCE(x, y), (7)

LD = β
∑

s∈S

LREG(zs) + γLCE(x, y)

= β
∑

r∈R

LREG(Enc(x, y′r)) + γLCE(x, y), (8)

where S = {postxy, postx}, R = {post, prior}, LREG(z)
denotes LREG(z, zprior) for simplicity, Enc represents the
Inferer E, LCE(x, y) is the cross-entropy loss in the stan-
dard VNMT loss which takes x and y as input, ng(∗) indi-
cates that the update of the gradients is stopped, α, β and γ
are three hyper-parameters to balance the different parts of
the loss function.

The complete algorithm is summarized in Algorithm 1,
where the Inferer E and Decoder D play a min-max game
just like GANs. More specifically, the Inferer E and De-
coder D are trained iteratively, such that E is updated to
distinguish the three different types of sentence pairs (i.e.
pairs of real source/target sentence X&Y and pairs of real
source sentence and generated target sentence X&Y ′

prior or
X&Y ′

post), while D is updated to generate target sentences
that are increasingly similar to real ones. It is worth noting
that directly providing discrete generated target sentences as
input to the Inferer E does not allow for backpropagation
as they are discontinuous. Here we use the straight-through
Gumbel-Softmax approximation (Jang, Gu, and Poole 2016)
at the output of the Decoder D to sample words during train-
ing.

Experiments

In this section, we conduct experiments on the WMT’14
English→German (EN-DE for short) and IWSLT’14
German→English (DE-EN for short) translation tasks to
demonstrate the effectiveness of IntroVNMT.

Data Settings

For the EN-DE translation task, we use the same datasets
as (Zhang et al. 2016). Our training set1 consists of 4.45M
sentence pairs with 116.1M English words and 108.9M Ger-
man words. We use news-test 2013 as the validation set
and news-test 2015 as the test set. For the DE-EN transla-
tion task, we select the dataset from the IWSLT 2014 eval-
uation campaign (Cettolo et al. 2014), consisting of train-
ing/validation/test corpus with approximately 153K, 7K and
6.5K bilingual sentence pairs respectively.

1The preprocessed data can be found and downloaded from
http://nlp.stanford.edu/projects/nmt/
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Table 1: Case-sensitive BLEU scores of different NMT systems on the WMT’14 EN-DE translation task. Here we use the case-
sensitive BLEU scores as the evaluation metric. The default setting of various NMT models follows conventional RNNSearch
(Bahdanau, Cho, and Bengio 2015).

System System Structure BLEU

RNNSearch related NMT models
RNNSearch (Bahdanau, Cho, and Bengio 2015) Bidirectional encoder + Word-level decoder 23.4
BPEChar (Chung, Cho, and Bengio 2016) Bidirectional encoder + Character-level decoder 23.9
RecAtten (Yang et al. 2017) RNNSearch + Recurrent attention 25.0
ConvEncoder (Gehring et al. 2017) Convolutional encoder + Word-level decoder 24.3

VAE based NMT models
VNMT (Zhang et al. 2016) RNNSearch + Static latent variable 25.49
VRNMT (Su et al. 2018) RNNSearch + Dynamic latent variable 25.93
IntroVNMT (this work) RNNSearch + Static latent variable + Introspective training 26.14

Table 2: Case-insensitive BLEU scores of different systems
on the IWSLT’14 DE-EN translation task. Here we conduct
experiments only for RNNSearch, VNMT, VRNMT and
the proposed IntroVNMT.

System BLEU

RNNSearch 28.36
VNMT 28.77

VRNMT 29.39
IntroVNMT (this work) 29.7

To improve the computational efficiency and avoid prob-
lems with closed vocabularies, we segment the data using
byte pairs encoding (BPE) (Sennrich, Haddow, and Birch
2016), except for the target language sentences in the test
set which are left as the ground-truth for testing. Sentences
longer than 50 words are removed. For the EN-DE task, we
take the vocabularies produced by BPE as our final vocab-
ularies. For the DE-EN task, the vocabularies for the Ger-
man and English corpus include about 23K and 32K most
frequent words respectively. All the other words not in the
vocabulary are replaced with a special token ‘UNK’. Fi-
nally, we use BLEU (Papineni et al. 2002) as our evaluation
metric. Here we emloy the case-sensitive BLEU score for
the EN-DE translation task, and the case-insensitive BLEU
score for the DE-EN translation task.

Baseline Methods

We compare our model against the following systems:
RNNSearch. For convenient comparison with previous

VAE based NMT models, we keep the basic model as
RNNSearch (Bahdanau, Cho, and Bengio 2015), which is
an RNN-based encoder-decoder framework.

VNMT. It is a variational NMT model proposed in
(Zhang et al. 2016) that incorporates a static latent variable
into the model, which serves as a global semantic signal for
the sentence pairs.

VRNMT. Different from VNMT, it introduces dynamic
latent variables instead of a static latent variable to model
the translation procedure of a sentence.

Training Details

The implementation of various NMT models is based on
RNNSearch (Bahdanau, Cho, and Bengio 2015), so we fol-
low the settings of RNNSearch, except for some hyper-
parameters specific to different NMT models. For the basic
hyper-parameters, we set the word embedding dimension as
620, hidden layer size as 1000, learning rate as 1 × 10−4,
batch size as 80, gradient norm as 1.0 and dropout rate as
0.3 (Srivastava et al. 2014). As implemented in the VAE
framework, we set the sampling number L = 1 and the di-
mension of the latent variable as 2000. During decoding, we
adopt the beam search algorithm (Sutskever, Vinyals, and Le
2014) and set the beam size as 10 for all models. For Intro-
VNMT, we set m = 100, α = 1, β = 1 and γ = 1 as the
default parameters respectively. The Inferer E and Decoder
D are trained iteratively using the Adam algorithm (Kingma
and Ba 2015) (β1 = 0.9, β2 = 0.999).

We initialize the parameters of various VAE based mod-
els and IntroVNMT with the pretrained RNNSearch model
and the pretrained VNMT model respectively. With regard
to the source and target encoders, we share the parameters
of GRUs except for the word embeddings.

Results on WMT’14 EN-DE Translation

In Table 1, we compare the performance of IntroVNMT with
several previous works (Bahdanau, Cho, and Bengio 2015;
Chung, Cho, and Bengio 2016; Yang et al. 2017; Gehring
et al. 2017; Zhang et al. 2016; Su et al. 2018). Here we di-
rectly report the results of BPEChar, RecAtten and Con-
vEncoder as provided in (Gehring et al. 2017) and the re-
sults of VAE based NMT models as provided in (Su et al.
2018). As shown in Table 1, IntroVNMT outperforms the
two previous VAE based NMT models including VNMT and
VRNMT with gains of 0.65 and 0.21 BLEU points respec-
tively. Meanwhile, our model also achieves comparable per-
formance to several recent NMT models.

Results on IWSLT’14 DE-EN Translation

Here we compare the VAE based models on the IWSLT’14
DE-EN Translation task to verify the improvements of intro-
spective training with the measure of case-insensitive BLEU
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Figure 3: The training process of IntroVNMT on DE-EN translation. Here we plot the curves of different KL-Divergence losses
during training. Specifically, EREAL

REG , EX
REG, EXY

REG represent LREG(zpost), LREG(zpostx), LREG(zpostxy
) for the Inferer E.

DX
REG, DXY

REG correspond to LREG(zpostx), LREG(zpostxy
) for the Decoder D.

Table 3: Translation results generated by different NMT systems on the DE-EN task. The important parts are in bold.

Source

genau dies ist der grund, warum wir musik machen: damit wir etwas,
das in uns allen, tief im inneren steckt, unsere gefühle,

durch unsere künstlerische linse,
durch unsere kreativität zur wirklichkeit formen können.

sofort bekommen wir einen eindruck über die themen,
die auf wikipedia am populärsten sind.

Ground-Truth

this was the very reason why we made music,
that we take something that exists within all of

us at our very fundamental core,
our emotions, and through our artistic lens, through our creativity,

we’re able to shape those emotions into reality.

right away, we get a sense of what are the topical domains
that are most popular on wikipedia.

VNMT

this is the reason why we make music:
that we put something that in all of us,
is inside us, deep inside, our feelings,

our artistic lens, through our artistic lens,
can form through our artistic lens through our creativity.

now we get a sense of the issues
who are at wikipedia at wikipedia.

VRNMT

this is the reason why we do music:
so we’re doing something that is in our midst,

deep inside, our emotions, through our artistic lens,
through our creativity.

and then we get a sense of the topics
that are on wikipedia.

IntroVNMT

so this is why we make music:
so we have something that’s in all of us, in the interior,

our feelings, through our artistic lens,
through our creativity to reality.

immediately , we get a sense of the issues
that are on wikipedia at the most popular.

scores. As shown in Table 2, IntroVNMT model signifi-
cantly enhances the translation quality and achieves gains
of 0.93 and 0.31 over VNMT and VRNMT respectively, in-
dicating that the incorporation of introspective training is ef-
fective for improving variational NMT. Moreover, by com-
paring the BLEU scores of VNMT and IntroVNMT, we can
find that the introspective training principle can significantly
improve the translation performance.

Analysis of Training Stability

To illustrate the training process of IntroVNMT, in Fig. 3
we plot the curves of different KL-Divergence losses which
converge quickly to stable states with values fluctuating
steadily, justifying the effectiveness of the nice manifold
representation for stable training. From Fig. 3, we have two
observations: 1) All the values of EX

REG, EXY
REG, DX

REG and
DXY

REG are very close, since the origin of the two differ-
ent types of generated sentences is the same. Specifically,

the information of zpost and zprior both come from real
source/target sentences which express the same meaning; 2)
The distinction between EREAL

REG and the other four is signif-
icant, which indicates that the Inferer can self-estimate the
quality of the real and generated target sentences clearly.

Analysis of High Quality Translation Results

We further compare the quality of translations produced by
different VAE based NMT models with examples as shown
in Table 3. Clearly, VRNMT outperforms VNMT in terms
of over-translation in both cases, which has been demon-
strated in (Su et al. 2018). However, among all the models,
only IntroVNMT can highlight the skeleton of a source sen-
tence in its translation. As shown in the left example, the full
meaning of “durch unsere kreativität zur wirklichkeit for-
men können” in the source language is expected to be trans-
lated to “through our creativity, we’re able to shape those
emotions into reality” in the target language. But only In-
troVNMT expresses it as “through our creativity to reality”,
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which verifies that IntroVNMT can generate sharper latent
variables. Similarly, only IntroVNMT can express the most
prominent information “most popular” in the right shorter
example.

Conclusion

This paper presents an IntroVNMT model that introduces
an introspective training paradigm for variational neural ma-
chine translation. Similar to GANs, the learning objective of
IntroVNMT plays a min-max game between the Inferer and
Decoder. The Inferer E is trained to not only self-estimate
the quality of real and generated target sentences, but also
produce nice manifold representation. The Decoder D is
trained to generate more realistic target sentences. These
two parts are trained iteratively and improve themselves ac-
cordingly. Compared to VNMT and VRNMT, our model can
capture the skeleton information of source sentences while
maintaining the simple framework of VNMT. It is worth not-
ing that IntroVNMT is extended from standard VNMT mod-
els, therefore it is orthogonal to some state-of-the-art meth-
ods, and can be applied to them (such as Transformer) for
further improvements.
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