Locate Then Generate: Bridging Vision and Language with Bounding Box for Scene-Text VQA

Yongxin Zhu¹,³, Zhen Liu²,³, Yukang Liang²,³, Xin Li⁴, Hao Liu⁴, Changcun Bao⁴, Linli Xu²,³
¹School of Data Science, University of Science and Technology of China
²School of Computer Science and Technology, University of Science and Technology of China
³State Key Laboratory of Cognitive Intelligence
⁴Tencent YouTu Lab
{zyx2016, liuzhenz, liangyukang}@mail.ustc.edu.cn, {fujikoli, ivanhliu, changcunbao}@tencent.com, linlixu@ustc.edu.cn

Abstract

In this paper, we propose a novel multi-modal framework for Scene Text Visual Question Answering (STVQA), which requires models to read scene text in images for question answering. Apart from text or visual objects, which could exist independently, scene text naturally links text and visual modalities together by conveying linguistic semantics while being a visual object in an image simultaneously. Different to conventional STVQA models which take the linguistic semantics and visual semantics in scene text as two separate features, in this paper, we propose a paradigm of “Locate Then Generate” (LTG), which explicitly unifies these two semantics with the spatial bounding box as a bridge connecting them. Specifically, at first, LTG locates the region in an image that may contain the answer words with an answer location module (ALM) consisting of a region proposal network and a language refinement network, both of which can transform to each other with one-to-one mapping via the scene text bounding box. Next, given the answer words selected by ALM, LTG generates a readable answer sequence with an answer generation module (AGM) based on a pre-trained language model. As a benefit of the explicit alignment of the visual and linguistic semantics, even without any scene text based pre-training tasks, LTG can boost the absolute accuracy by +6.06% and +6.92% on the TextVQA dataset and the ST-VQA dataset respectively, compared with a non-pre-training baseline. We further demonstrate that LTG effectively unifies visual and text modalities through the spatial bounding box connection, which is underappreciated in previous methods.

Introduction

The vision-language tasks that incorporate scene text, such as STVQA (Singh et al. 2019; Biten et al. 2019), Text Caption (Sidorov et al. 2020), require models to reason over different modalities, including language (question text), vision (objects in an image), and a mixture of them (scene text in an image which has linguistic and visual semantics). Scene text based multi-modal tasks have many potential applications, including assisting visually-impaired people (Bigham et al. 2010), interaction in augmented reality (Li et al. 2020), robotics (Anderson et al. 2018b) and automatic driving (Zhang et al. 2021), etc. Although some vision-language models (Chen et al. 2020; Wang et al. 2021) have shown their effectiveness in learning task-agnostic vision-language joint representations, most of them focus on vision-language understanding tasks such as image-text retrieval (Young et al. 2014), visual question answering (Antol et al. 2015), visual grounding (Kazemzadeh et al. 2014), etc., which ignore scene text in images. As a consequence, they are not capable of handling scene text based VL tasks (Singh et al. 2019).

Recently, several methods (Hu et al. 2020; Yang et al. 2021; Biten et al. 2022) have been proposed to augment visual-language models with the ability to read texts in images. They improve the models’ performance by relying on powerful attention mechanisms and elaborately designed features of scene text. Among them, M4C (Hu et al. 2020) introduces the transformer (Vaswani et al. 2017) module to fuse different modalities, followed by proposing a multi-step multi-choice decoding module to generate answer sequences step by step from the OCR list or frequent words in natural languages. TAP (Yang et al. 2021) designs several scene text based pre-training tasks to implicitly learn the relationship between scene text and other modalities. Inspired by the success of LayoutLM (Xu et al. 2020), LaTr (Biten et al. 2022) is proposed with a layout-aware pre-training task to learn the spatial information of scene text in images. Despite the improvements achieved by the methods above in the task
of STVQA, they take the linguistic semantics and visual semantics of scene text as two separate features, and rely on the self-attention mechanism to implicitly learn the relationship between them, which is hard to be further enhanced because of the lack of image-text-scene text triplet data. In addition, it is found in Zeng et al. (2021) that some scene text based models (Hu et al. 2020) are not able to effectively understand the visual information, which also happens in the current SOTA model LaTr (Biten et al. 2022).

To tackle these issues, we take a different perspective by explicitly binding the linguistic semantics and visual semantics in scene text with the location information, which takes the form of spatial bounding boxes. Specifically, we propose a “Locate Then Generate” (LTG) framework, which consists of an answer location module (ALM) and an answer generation module (AGM). Generally, we use ALM to select scene text words which may be contained in answers, and proceed to generate readable answer sequences with AGM according to the words selected by ALM.

By locating the scene text words relevant to the answers, the answer location module (ALM) unifies the linguistic semantics and visual semantics of scene text, benefiting the comprehension of scene text from a linguistic perspective and a visual perspective simultaneously. To achieve that, we design two networks to locate the region in an image that may contain the answer words. Firstly, we use a region proposal network to roughly predict the bounding box of the answer region, which we transform to the probability space on the scene text words with one-to-one mapping between scene text words and bounding boxes. Next, we leverage a language refinement network to refine the probability predicted by the region proposal network. At last, we select the candidate answer words according to the refined probability. An example is shown in Figure 1 (a) to describe how our ALM works, in which the question requires the model to understand two concepts, including the visual semantic “color” and the text semantic “number”. On the one hand, if the model is not capable of reading texts in images and identifying the textual concept “number”, it will get confused when selecting from the black and white words “to” and “201”; on the other hand, if the model can not understand the visual information regarding “black and white”, it will get confused in selecting numbers “15” or “201”. In our ALM, the region proposal network is responsible for understanding the visual semantics like “color”, and the language refinement network is responsible for understanding the text semantics like “number” mentioned above. By unifying them through the bounding box mapping, ALM is enabled to benefit from both of them.

For the answer generation module (AGM), we leverage a pre-trained language model BART (Lewis et al. 2019) to generate readable answer sequences auto-regressively with the words selected by the answer location module. Compared with the previous methods that can only generate words through an amalgamation of a pointer mechanism and a 5K most frequent vocabulary which is data-specific (Hu et al. 2020; Yang et al. 2021), our AGM can generate answer words out of OCR lists, which is also adopted in LaTr (Biten et al. 2022). As well known, scene text of arbitrary shape is difficult to be recognized (Liu et al. 2020b). For example in Figure 1(b), the OCR system (Microsoft OCR system) recognizes the key scene text words “states”, “of”, “america”, while missing the word “united”. In previous methods (Hu et al. 2020; Yang et al. 2021), the model can only generate answers like “states of america” because of the fixed OCR vocabulary. In contrast, our model can generate “united states of america” for the outstanding denoising ability of pre-trained language models.

We conduct experiments with the proposed LTG framework on the TextVQA and ST-VQA datasets. LTG improves the accuracy on the TextVQA dataset from 44.50% to 50.56%, compared with a non-pre-training baseline. Moreover, our final model ranks No.2 on the ST-VQA challenge, and outperforms the best non-pretraining baseline on the ST-VQA dataset by +6.92% in absolute accuracy, even outperforming the pre-trained model TAP (Yang et al. 2021) by +1.83% in absolute accuracy.

In summary, the main contributions of the work include:

- We propose a novel and effective framework of “Locate Then Generate” (LTG) to explicitly leverage the relationship between the text words and spatial bounding boxes in scene text, unifying the linguistic semantics and visual semantics of scene text, leading to significant performance improvement on the STVQA task.
- We propose to exploit a pre-trained denoising language model for answer generation, which can correct some OCR recognition errors effectively.

Related Work

Vision-Language Tasks Incorporating Scene Text. Recently, some multi-modal models (Chen et al. 2020; Wang et al. 2021) have achieved outstanding performance in vision-language tasks like VQA (Antol et al. 2015), image caption (Anderson et al. 2018a), image-text retrieval (Young et al. 2014), visual grounding (Kazemzadeh et al. 2014), etc. However, recent studies (Singh et al. 2019) show that these models fail to read text in images. To address this problem, some methods have been proposed to augment vision-language models with the ability to read scene text in natural images. Among them, LoRRA (Singh et al. 2019) is the first model that is able to read scene text with an OCR brach based on a VQA model Pythia (Jiang et al. 2018). In M4C (Hu et al. 2020) a transformer (Vaswani et al. 2017) module is introduced followed by a multi-step multi-choice decoding module to generate answer sequences, which becomes the backbone of many subsequent models. For example, SA-M4C (Kant et al. 2020) extends M4C by providing supervision on self-attention weights. In MM-GNN (Gao et al. 2020), a representation of three graphs is proposed for three modalities, with three aggregators to update the message passing. Instead of designing separate graphs for each modality, SMA (Gao et al. 2021) encodes all modalities into one single graph. SSBaseline (Zhu et al. 2021) splits OCR

1According to the official leader-boards (August, 2022). Note that the No.1 model GIT is pretrained on an incredibly huge dataset with 0.6B image-text pairs.
token features into separate visual and linguistic parts, which are fused pair-wisely before being sent to a transformer decoder to generate answers. LOGOS (Lu et al. 2021) extracts ROI features to align question semantics and visual semantics, followed by a scene text clustering operation to enhance the spatial information. TAP (Yang et al. 2021) proposes to pre-train the model on a large image-text-scene triplet text (1.4M image-text-scene triplets) and designs three auxiliary tasks, including masked language modeling (MLM), image-text matching (ITM) and relative position prediction (RPP) to enhance its ability to capture the contextualized information of scene text. More recently, LaTr (Biten et al. 2022) proposes a layout-aware multi-modal pre-training task based on T5 (Raffel et al. 2020) with an extremely large Industrial Document Library (64M pages of document images). Additionally, some big multi-modal pre-trained models (Alayrac et al. 2022; Wang et al. 2022) also perform tests on the STVQA task and achieve competitive results.

Despite the powerful transformer module, most previous works directly fuse the vision features, linguistic features and spatial features together into the transformer block. Such a rough fusion design could be ineffective in learning the aligned multi-modal representations and thus limit the model performance. In this study, we explicitly leverage the one-to-one map between text words and spatial locations in scene text, with which we bridge the vision and language semantics.

Visual Grounding. Visual grounding aims to predict the location of a region referred by the language expression in an image. Recent advances in visual grounding can be categorized into two-stage methods (Yu et al. 2018; Zhang, Niu, and Chang 2018) and one-stage methods (Yang et al. 2019; Deng et al. 2021; Kamath et al. 2021). Two-stage methods usually generate region proposals in the first stage by a pre-trained object detector (Yu et al. 2018; Zhang, Niu, and Chang 2018) followed by leveraging the language expressions to select the best matching region in the second stage. In comparison, instead of keeping the computation-intensive region proposal generation in the two-stage paradigm, one-stage methods employ a multi-modal network to densely fuse different modalities and then predict the bounding box in one step. Recent works mostly rely on transformer to learn the relationship between the text modality and visual modality. For example, TransVG (Deng et al. 2021) uses a transformer based encoder-decoder architecture to directly regress the object bounding box. MDETR (Kamath et al. 2021) builds a modulated end-to-end detector with a transformer-based architecture to reason jointly over texts and images by fusing the two modalities at an early stage, followed by a non-auto-regressive transformer decoder to locate the objects referred to in texts.

Method

In this section, we elaborate on the proposed LTG framework for the STVQA task in detail. We start with the problem definition, followed by the motivation and the model architecture. We then proceed to introduce how the model is designed.

Problem Definition

Given an image and a question text in the STVQA task, the image usually contains many scene text objects represented as text words and bounding boxes, which are aligned with one-to-one mapping. The task of STVQA requires the model to generate an answer text to the question, which is usually a sequence of words either from the scene text word list or the dictionary of the pre-trained language model.

Model Architecture

We aim to build a framework that is able to explicitly leverage the relationship between the visual semantics and linguistic semantics of the scene text. To be specific, the model should understand what the scene text words mean in linguistics, and what visual attributes they have in images simultaneously. To achieve this goal, we propose a novel “Locate Then Generate” (LTG) framework with an answer location module (ALM) and an answer generation module (AGM).

Specifically, ALM aims to understand the visual information of the image, and then locate the region that may contain the words appearing in the answer text. Different from previous STVQA models that directly generate answer text sequences according to the image-question pair and the scene text word list, which implies that the model may only use the text information to answer the question instead of unifying the text and vision modalities together, we design an answer location module to force the model to look at the image. An illustration of ALM is shown in Figure 2, which consists of an answer region proposal network and a language refinement network. The former network is based on a visual grounding model to predict the bounding box of the answer region visually, which sometimes may include ambiguous scene text words sharing the same visual attributes with the correct scene text words in images or appearing close to them. In order to select or filter out the correct scene text words, we design a language refinement network based on a pre-trained language model to distinguish whether they are correct or not from the linguistic perspective. Thus, the model can select scene text words by unifying the linguistic semantics and visual semantics simultaneously. Next, AGM takes the scene text words selected by ALM as input, which are usually some disordered and sometimes wrong words, to generate ordered readable correct answer sequences. We introduce the details as follows.

Pre-processing

We first explain how to construct answer region box targets from the answer sequences. For an answer sequence $s_a = [w_1, w_2, \ldots, w_n]$, a scene text word list $s_o = [w_1, w_2, \ldots, w_m]$ and its associated bounding boxes $b_o = [b_1, b_2, \ldots, b_m]$, where the tokens in s_a are either from s_o or the dictionary of the pre-trained language model. Each bounding box $b_o = [x_1, y_1, x_2, y_2]$ in b_o indicates the relative positions in images, where $[x_1, y_1]$ corresponds to the position of the upper left corner of the bounding box, while $[x_2, y_2]$ represents the position of the lower right corner. To construct the answer region boxes, we will conduct an exact
matching between the answer sequence s_a and the scene text word list s_s word by word. Suppose answer words $[w_m^a, w_n^a]$ in s_a match the scene text words $[w_k^s, w_l^s]$ in s_s, and the corresponding bounding boxes are $b^k = [x^k_1, y^k_1, x^k_2, y^k_2]$ and $b^l_i = [x^l_i, y^l_i, x^l_i, y^l_i]$, we set the answer region box as below:

$$b_a = [\min(x^k_1, x^l_i), \min(y^k_1, y^l_i), \max(x^k_2, x^l_i), \max(y^k_2, y^l_i)]$$

(1)

If no words are matched, we simply set the answer region box as $[x_1 = 0, y_1 = 0, x_2 = 0, y_2 = 0]$. In the language refinement network, we formulate the task of language refinement as a binary classification problem on the scene text word list s_s. For each word s_s^j in s_s, we set its label tag in $y \in \{0, 1\}$, where $y = 1$ indicates that it appears in s_a and $y = 0$ otherwise. In the above example, w_k^s, w_l^s are tagged as $y_k = 1, y_l = 1$, while the rest are tagged as $y_{k l} = 0$.

Answer Location Module

We build our answer location module based on MDETR (Kamath et al. 2021), a pre-trained end-to-end modulated detector that detects objects in an image conditioned on a raw text query. Following the original input of MDETR, we encode an image by a convolution backbone and flatten it. In order to conserve the spatial information, we add 2-D position embeddings to this flattened vector. The question text is encoded by a pre-trained transformer language model Roberta (Liu et al. 2019) to produce a sequence of hidden vectors. Then the concatenated feature vectors are fed into a multi-modal transformer encoder-decoder to generate the bounding boxes, with a [CLS] special token prepended. In order to fully exploit the bounding box information, we use a layout enhanced Roberta model (Wang, Jin, and Ding 2022) instead of the vallina Roberta, which can output the original language hidden states and layout hidden states separately.

To roughly predict the bounding box of the answer region, we design a region proposal network. On one side, we concatenate the language hidden states h_{lang} and the layout hidden states h_{lay} of the layout enhanced Roberta to predict the probability P_1 regarding which token could be the answer from the linguistic perspective,

$$h_l = \text{concat}(h_{lang}, h_{lay}),$$

$$P_1 = \sigma(w_1 h_l + b_1),$$

(2)

where w_1, b_1 are learnable parameters, and σ is the sigmoid function.

On the other side, we apply a gated module on the hidden states of the MDETR decoder h_v to get the visual features of the answer region h_v^a.

$$h_v^a = \sum \sigma(w_a h_v + b_a) h_v$$

(3)

In order to enhance the region proposal network’s capability of spatial perception, we aggregate the layout hidden states h_{lay} with a gated module as the spatial features h_v^g to augment the visual features h_v^a of the answer region. With both visual features and spatial features of the answer region, we concatenate them together as the final representation of the answer region proposal h_a. Then we apply a bounding box regression module with a two-layer feed-forward network to predict the bounding box of the answer region b_p:

$$h_a = \sum P_i h_{lay}$$

$$h_a = \text{concat}(h_v^a, h_v^g)$$

$$b_p = \sigma(\text{FFN}_{bbox}(h_a))$$

(4)

The loss function of answer region regression is the same as in MDETR:

$$\text{Loss}_{bbox} = \lambda_1 L_1(b_p, b_a) + \lambda_2 \text{GIOU}(b_p, b_a),$$

where L_1 indicates the L1 distance between boxes and GIOU is the generalized IOU distance (Rezatofighi et al. 2019).

Notice that each scene text word is associated with a bounding box, we can define the proportion of the overlapping area between bounding boxes as the probability in the language space of scene text. Thus the proportion of the
overlapping area between the bounding box of the predicted answer region and that of each scene text word can be seen as the probability \(P_v \) regarding which token could be the answer from the visual perspective. We design a modified IOU metric to measure the proportion of the overlapping area:

\[
P_v = \frac{|A \cap B|}{|B|},
\]

where \(A \) is the predicted bounding box of the answer region, \(B \) is the bounding box of the scene text word and \(|.|\) indicates the area of a box.

In order for the model to balance the probability of selecting answer words from a linguistic perspective and a visual perspective, we design a language refinement network. A selection probability \(P_s \in [0, 1] \) is calculated from the hidden state of the visual [CLS] token \(h_{cls}^v \) and the hidden state of the language [CLS] token \(h_{cls}^l \):

\[
p_s = \sigma(FFN_{cls}(w_{cls}^v h_{cls}^l + w_{cls}^h h_{cls}^v))
\]

Next, \(p_s \) is used as a soft switch to choose between selecting a token from the visual perspective by sampling from \(P_v \), or selecting a token from the linguistic perspective by sampling from \(P_l \). We obtain the following probability distribution on each scene text word \(P_v \), and the loss function of word selection is the binary negative log-likelihood,

\[
P_w = p_s P_v + (1 - p_s) P_l,
\]

\[
\text{Loss}_s = - \sum_i y_i \log p(w_i) + (1 - y_i) \log(1 - p(w_i))
\]

The ability of producing answer words from the visual spatial perspective is one of the primary advantages of our answer location module. By contrast, previous models (Hu et al. 2020; Yang et al. 2021) take object features extracted by Faster-RCNN (Ren et al. 2017) as vision tokens in transformer, neglecting the relationship between scene text words and scene text bounding boxes.

Finally, the loss function of the answer selection module is the combination of the answer region regression loss and the answer word selection loss:

\[
\text{Loss}_a = \text{Loss}_{bbox} + \text{Loss}_s
\]

Answer Generation Module

To transform the words selected by ALM into answer sequences, we use the pre-trained denoising language model BART (Lewis et al. 2019) for its excellent generation and denoising performance in NLG tasks.

Given the question texts \(s_0 \), the scene text word list \(s_0 \), and the words selected by ALM \(s_t \), we concatenate them into the sequence \([s_0; s_t; s_0]\) which is then fed into the BART encoder for fusion. The encoder can model the language semantic relationship between \(s_t \) and \(s_0 \) with \(s_t \) as the guidance for answer generation. The decoder is responsible for generating an answer sequence \(s_a \) in an auto-regressive manner with the cross-entropy loss:

\[
\text{Loss}_g = - \sum_i \log P(s_{a;i=n}|s_0, s_t, s_0, s_{a;i<n})
\]

Experiments

We evaluate our LTG framework on the ST-VQA (Biten et al. 2019) and TextVQA (Singh et al. 2019) datasets. We first briefly introduce the datasets, followed by the results and discussions.

Datasets

ST-VQA. The ST-VQA dataset (Biten et al. 2019) contains 21,892 images from multiple sources including IC-DAR (Karatzas et al. 2015), VizWiz (Gurari et al. 2018), Visual Genome (Krishna et al. 2017), COCO-Text (Veit et al. 2016), etc. We follow the settings in previous works (Hu et al. 2020; Yang et al. 2021) and split the dataset into train, validation and test splits with 17,028, 1,893, and 2,971 images respectively. The methods are evaluated by both accuracy and Average Normalized Levenshtein Similarity (ANLS).

TextVQA. The TextVQA dataset (Singh et al. 2019) contains 28,408 images from the Open Images dataset (Kuznetsova et al. 2020), with human-written questions asking to reason about the text in images. We follow the same training/validation/test split used in the previous work (Singh et al. 2019) in our experiments. Similar to the VQA (Goyal et al. 2017) dataset, each question in the TextVQA dataset has 10 human annotated answers, and the final accuracy is measured via soft voting of the 10 answers.

Results

ST-VQA. Table 1 shows the results on the ST-VQA dataset (Biten et al. 2019). We use the Microsoft-OCR system to extract scene text words in images and then train LTG on the ST-VQA training set. It is noteworthy that the current highest scores from TAP (Yang et al. 2021) and LaTr (Biten et al. 2022) are achieved by pre-training on other large-scale OCR datasets like OCR-CC (1.4M) and IDL (64M) which are designed to better utilize the scene text features in multimodal tasks. Nevertheless, these datasets are hard to obtain. As a matter of fact, our proposed model is focused on fully exploiting the connections between modalities in the model design, rather than the large-scale pre-training paradigm. In the meantime, our model is fully compatible with the baselines pre-trained on these datasets. We expect a further improvement of our model when it can get access to more OCR data.

We have several interesting observations from Table 1: (1) LTG outperforms the previous non-pre-training SOTA model TAP (Yang et al. 2021) by +6.92% and +6.8% on accuracy and ANLS respectively in the validation set, and +5.5% by ANLS in the online test. (2) Surprisingly, we can see that LTG without extra training data even outperforms the pre-trained model TAP by +1.38% and +2.1% on accuracy and ANLS respectively. (3) By joint training with the extra dataset TextVQA, which is much smaller than OCR-CC and IDL though, LTG can get a further improvement in accuracy and ANLS by +0.49% and +0.3% in the
<table>
<thead>
<tr>
<th>Method</th>
<th>Extra-Training Data</th>
<th>Val Acc.</th>
<th>Val ANLS</th>
<th>Test ANLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4C (Hu et al. 2020)</td>
<td>-</td>
<td>38.05</td>
<td>0.472</td>
<td>0.462</td>
</tr>
<tr>
<td>SA-M4C (Kant et al. 2020)</td>
<td>-</td>
<td>42.23</td>
<td>0.512</td>
<td>0.504</td>
</tr>
<tr>
<td>SMA (Gao et al. 2021)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CRN (Liu et al. 2020a)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.483</td>
</tr>
<tr>
<td>LaAP-Net (Han, Huang, and Han 2020)</td>
<td>-</td>
<td>39.74</td>
<td>0.497</td>
<td>0.485</td>
</tr>
<tr>
<td>SSBaseline (Zhu et al. 2021)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.509</td>
</tr>
<tr>
<td>LOGOS (Lu et al. 2021)</td>
<td>-</td>
<td>44.10</td>
<td>0.535</td>
<td>0.522</td>
</tr>
<tr>
<td>TAP (Yang et al. 2021)</td>
<td>-</td>
<td>45.29</td>
<td>0.551</td>
<td>0.543</td>
</tr>
<tr>
<td>LTG (Ours)</td>
<td>-</td>
<td>52.21</td>
<td>0.619</td>
<td>0.598</td>
</tr>
<tr>
<td>SSBaseline$^+$ (Zhu et al. 2021)</td>
<td>TextVQA (28K)</td>
<td>-</td>
<td>-</td>
<td>0.550</td>
</tr>
<tr>
<td>LOGOS$^+$ (Lu et al. 2021)</td>
<td>TextVQA (28K)</td>
<td>48.63</td>
<td>0.581</td>
<td>0.579</td>
</tr>
<tr>
<td>TAP$^+$ (Yang et al. 2021)</td>
<td>OCR-CC (1.4M)</td>
<td>50.83</td>
<td>0.598</td>
<td>0.597</td>
</tr>
<tr>
<td>LTG$^+$ (Ours)</td>
<td>TextVQA (28K)</td>
<td>52.70</td>
<td>0.622</td>
<td>0.609</td>
</tr>
<tr>
<td>LaTr (Biten et al. 2022)</td>
<td>IDL (64M)</td>
<td>61.64</td>
<td>0.702</td>
<td>0.696</td>
</tr>
</tbody>
</table>

Table 1: Results on the ST-VQA dataset (Biten et al. 2019). The top part of the table presents results without extra data but only the ST-VQA dataset for training, and the bottom part uses extra training datasets. Among them, “SSBaseline$^+$”, “LOGOS$^+$” and our “LTG$^+$” uses the TextVQA dataset as the extra training data, “TAP$^+$” and “LaTr” uses much larger datasets which are OCR-CC and IDL respectively.

Figure 3: Examples from the TextVQA validation set and the ST-VQA validation set. The red bounding boxes are predicted by ALM in LTG.

AGM module we propose is based on a pre-trained denoising language model, which is robust with the OCR recognition errors. (2) LTG outperforms the baseline model M4C by +6.06%, but is slightly lower than the non-pre-training SOTA LOGOS (Lu et al. 2021). This may be due to the fact that the TextVQA dataset contains some questions that can be answered without scene text, which are similar to the questions in the VQA task (Antol et al. 2015). For example in Figure 3(a,b), the questions require the model to answer the “color” and the “number”, which are not consistent with the definition and assumptions of the STVQA task. However, LTG is designed for the questions of which the answers contain scene text words. Even though it can predict the correct answer regions for the questions, there are no scene text words for answers in them, which inevitably impairs its performance. In contrast to the TextVQA dataset, answers in the ST-VQA dataset are more consistent with the STVQA task, where LTG can get a huge improvement.

Ablation Studies

We conduct ablation studies on the ST-VQA dataset to examine the effectiveness of our LTG framework for the STVQA task. Results are shown in Table 3. Row (a) correspond to the original BART model trained on the ST-VQA dataset by simply concatenating question and scene text words which are fed to the model. We can see even without any extra features or pre-training tasks, BART reaches a performance of 48.02%, +2.73% higher than the best non-pre-training baseline TAP (45.29%), which proves the superiority of the pre-trained language model used in our AGM module. In rows (b)-(c), we add the selected words by the region proposal network and the language refinement network in ALM respectively. The accuracy is improved by +2.5% and +2.46%, proving the importance of visual information in the STVQA task. After unifying them together, we
<table>
<thead>
<tr>
<th>Method</th>
<th>OCR System</th>
<th>Pre-Training Data</th>
<th>Extra Finetune</th>
<th>Val Acc.</th>
<th>Test Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4C (Hu et al. 2020)</td>
<td>Rosetta-en</td>
<td>×</td>
<td>×</td>
<td>39.40</td>
<td>39.01</td>
</tr>
<tr>
<td>SMA (Gao et al. 2021)</td>
<td>Rosetta-en</td>
<td>×</td>
<td>×</td>
<td>40.05</td>
<td>40.66</td>
</tr>
<tr>
<td>CRN (Liu et al. 2020a)</td>
<td>Rosetta-en</td>
<td>×</td>
<td>×</td>
<td>40.39</td>
<td>40.96</td>
</tr>
<tr>
<td>LaAP-Net (Han et al. 2020)</td>
<td>Rosetta-en</td>
<td>×</td>
<td>×</td>
<td>40.68</td>
<td>40.54</td>
</tr>
<tr>
<td>SSBaseline (Zhu et al. 2021)</td>
<td>SBD-Trans OCR</td>
<td>×</td>
<td>×</td>
<td>43.95</td>
<td>44.72</td>
</tr>
<tr>
<td>M4C+ (Yang et al. 2021)</td>
<td>Microsoft-OCR</td>
<td>×</td>
<td>×</td>
<td>44.50</td>
<td>-</td>
</tr>
<tr>
<td>M4C+ (Biten et al. 2022)</td>
<td>Amazon-OCR</td>
<td>×</td>
<td>×</td>
<td>47.84</td>
<td>-</td>
</tr>
<tr>
<td>TAP (Yang et al. 2021)</td>
<td>Microsoft-OCR</td>
<td>×</td>
<td>TextVQA</td>
<td>49.91</td>
<td>49.71</td>
</tr>
<tr>
<td>LOGOS (Lu et al. 2021)</td>
<td>Microsoft + Rosetta</td>
<td>×</td>
<td>×</td>
<td>50.79</td>
<td>50.65</td>
</tr>
<tr>
<td>LTG (Ours)</td>
<td>Microsoft-OCR</td>
<td>×</td>
<td>×</td>
<td>50.56</td>
<td>50.04</td>
</tr>
<tr>
<td>M4C+ (Yang et al. 2021)</td>
<td>Microsoft-OCR</td>
<td>×</td>
<td>ST-VQA</td>
<td>45.22</td>
<td>-</td>
</tr>
<tr>
<td>SA-M4C (Kant et al. 2020)</td>
<td>Google-OCR</td>
<td>×</td>
<td>ST-VQA</td>
<td>45.4</td>
<td>44.6</td>
</tr>
<tr>
<td>SMA (Gao et al. 2021)</td>
<td>SBD-Trans OCR</td>
<td>×</td>
<td>ST-VQA</td>
<td>-</td>
<td>45.51</td>
</tr>
<tr>
<td>SSBaseline (Zhu et al. 2021)</td>
<td>SBD-Trans OCR</td>
<td>×</td>
<td>ST-VQA</td>
<td>45.3</td>
<td>45.66</td>
</tr>
<tr>
<td>TAP (Yang et al. 2021)</td>
<td>Microsoft-OCR</td>
<td>×</td>
<td>TextVQA, ST-VQA</td>
<td>50.57</td>
<td>50.71</td>
</tr>
<tr>
<td>LOGOS (Lu et al. 2021)</td>
<td>Microsoft + Rosetta</td>
<td>×</td>
<td>ST-VQA</td>
<td>51.53</td>
<td>51.08</td>
</tr>
<tr>
<td>LTG (Ours)</td>
<td>Microsoft-OCR</td>
<td>×</td>
<td>ST-VQA</td>
<td>51.04</td>
<td>50.3</td>
</tr>
<tr>
<td>TAP+ (Yang et al. 2021)</td>
<td>Microsoft-OCR</td>
<td>TextVQA, ST-VQA, TextCaps, OCR-CC</td>
<td>ST-VQA</td>
<td>54.71</td>
<td>53.97</td>
</tr>
<tr>
<td>LaTr (Biten et al. 2022)</td>
<td>Amazon-OCR</td>
<td>ST-VQA, IDL</td>
<td>ST-VQA</td>
<td>61.05</td>
<td>61.60</td>
</tr>
</tbody>
</table>

Table 2: Results on the TextVQA dataset (Singh et al. 2019). As commonly done, the top part of the table presents results without extra data but TextVQA dataset for training, the middle part uses the ST-VQA dataset for extra finetuning, and the bottom part uses extra pre-training data. Different OCR detector are listed in the “OCR system” column. The method “M4C+” uses different OCR systems compared with “M4C”. “TAP+” uses OCR-CC for pre-training compared with “TAP”.

<table>
<thead>
<tr>
<th>Model</th>
<th>V</th>
<th>L</th>
<th>Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>×</td>
<td>×</td>
<td>48.02</td>
</tr>
<tr>
<td>(b)</td>
<td>✓</td>
<td>×</td>
<td>50.52</td>
</tr>
<tr>
<td>(c)</td>
<td>×</td>
<td>✓</td>
<td>50.48</td>
</tr>
<tr>
<td>(d)</td>
<td>✓</td>
<td>✓</td>
<td>52.21</td>
</tr>
</tbody>
</table>

Table 3: Ablation Studies on the ST-VQA dataset. We ablate LTG by varying the word selection proposals of our method. V refers to selecting words according to the probability of the region proposal network in ALM, and L refers to selecting words according to the probability output by Roberta. Unifying both V and L refers to selecting words by ALM.

can further improve the accuracy from 48.02% to 52.21%, validating the effectiveness of linking language and vision through bounding boxes in LTG.

Case Study and Discussion

We conduct case studies to intuitively demonstrate the advantages of the proposed LTG framework in Figure 3(c)-(d). The cases are picked from the ST-VQA validation dataset.

- The example in Figure 3(c) shows the outstanding visual understanding ability of LTG. The question requires the model to understand the visual attributes “position” and “color”. LTG can easily locate the corresponding region which contains the answer words from the question.

- The example in Figure 3(d) shows the language comprehension ability of LTG in scene text words. The question requires the model to understand the linguistic attributes “number”. Although the model locates the region which contain some wrong words, LTG can filter out the words that are not numbers with its natural language understanding ability.

Conclusion

We have presented the “Locate Then Generate (LTG)” framework that explicitly aligns the linguistic semantics and visual semantics of scene text through bounding boxes, which benefits the STVQA task. With the answer location module and the answer generation module, LTG boosts the non-pre-training baselines by +6.06% in absolute accuracy on the TextVQA challenge and outperforms the best non-pre-training model by +6.92% on the ST-VQA challenge. It is noteworthy that LTG even outperforms TAP (Yang et al. 2021) pre-trained on OCR-CC by 1.83% on the ST-VQA dataset.
Acknowledgments

This research was supported by the National Key Research and Development Plan of China (Grant No. 2022YFB3103100), the National Natural Science Foundation of China (Grant No. 62276245), and Anhui Provincial Natural Science Foundation (Grant No. 2008085J31).

References

