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Abstract

Recent advances in molecular science have been propelled signif-
icantly by large language models (LLMs). However, their effec-
tiveness is limited when relying solely on molecular sequences,
which fail to capture the complex structures of molecules. Beyond
sequence representation, molecules exhibit two complementary
structural views: the first focuses on the topological relationships
between atoms, as exemplified by the graph view; and the second
emphasizes the spatial configuration of molecules, as represented
by the image view. The two types of views provide unique insights
into molecular structures. To leverage these views collaboratively,
we propose the CROss-view Prefixes (CROP) to enhance LLMs’
molecular understanding through efficient multi-view integration.
CROP possesses two advantages: (i) efficiency: by jointly resam-
pling multiple structural views into fixed-length prefixes, it avoids
excessive consumption of the LLM’s limited context length and
allows easy expansion to more views; (ii) effectiveness: by uti-
lizing the LLM’s self-encoded molecular sequences to guide the
resampling process, it boosts the quality of the generated prefixes.
Specifically, our framework features a carefully designed SMILES
Guided Resampler for view resampling, and a Structural Embedding
Gate for converting the resulting embeddings into LLM’s prefixes.
Extensive experiments demonstrate the superiority of CROP in
tasks including molecule captioning, IUPAC name prediction and
molecule property prediction.

CCS Concepts

- Computing methodologies — Artificial intelligence.
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1 Introduction

LLMs have exhibited remarkable proficiency across diverse do-
mains [43]. In the chemical field, particularly in tasks such as mole-
cule captioning and property prediction [34], LLMs have emerged
as promising tools for streamlining research efforts. As a mole-
cule’s properties are fundamentally determined by its complex
structure [10, 41], providing LLMs with accurate structural repre-
sentations is essential for enhancing their molecular understanding.
However, current LLMs primarily rely on sequence representations
like SMILES [33] and SELFIES [16] for molecular tasks, which are
inadequate for capturing complex molecular structures.

To address that, recent works [2, 23, 24, 30] have preliminarily
explored integrating graph-based representations into LLMs, where
molecules are modeled as graphs, with atoms as nodes and chemical
bonds as edges. While these graph representations effectively cap-
ture topological relationships between atoms [19], they still exhibit
limitations. Specifically, graph representations only encode topolog-
ical relationships, allowing a single graph to correspond to infinite
variety of node arrangements. This ambiguity makes it challeng-
ing to represent critical characteristics such as molecular spatial
configuration and overall shape, as illustrated in Figure 1. Further-
more, when processing complex molecular graphs, graph-based
approaches frequently encounter issues such as over-smoothing
and over-squashing [3, 15], impeding the effective utilization of
graph representations by LLMs.

As a typical representation of the molecular spatial view, molec-
ular images provide complementary information about the spatial
configuration and overall shape of molecules. This visual repre-
sentation naturally encodes important structural features that are
difficult to derive from graphs, such as symmetry planes, functional
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Figure 1: An overview of the strengths and weaknesses of
each molecular view. Taking that into account, CROP com-
prehensively utilizes diverse views to enhance molecular
understanding capabilities.

group positions and rigidity of molecules [42]. Benefiting from sus-
tained advances in computer vision, some studies [11, 36, 48] that
utilize images for molecular modeling have achieved impressive
results in discriminative tasks, including molecular property predic-
tion and drug target identification. Specifically, ImageMol [45] con-
ducted 5 carefully crafted pretraining tasks on 10 million molecular
images, outperforming existing sequence-based and graph-based
methods on 10 regression tasks of GPCRs (G protein-coupled re-
ceptors) and 10 classification tasks of kinases in compound-protein
binding prediction. While molecular images have demonstrated
success in discriminative tasks, their application to generative tasks
with LLMs remains largely unexplored. This work pioneers the
integration of molecular visual representations to enhance LLM
performance in generative tasks, such as molecule captioning and
IUPAC name prediction.

Given the complementary nature of topological and spatial struc-
tures of molecules, works [2, 24] that solely introduce graph views
still fundamentally limit LLMs’ molecular understanding capabili-
ties. Our key insight is that integrating topological relationships
from graphs and spatial configurations from images enables a com-
prehensive understanding of molecular structures.

Directly concatenating embeddings from graph and image views
as input would result in excessive consumption of the LLM’s lim-
ited context length, and this issue exacerbates as more views are
introduced, as shown in Figure 2 (archl). In fact, there is substan-
tial information irrelevance and overlap among these embeddings.
For instance, a significant portion of the image embeddings corre-
spond to the blank areas in the molecular images, and all of these
molecular views capture the overlapping information of atomic
and bond types. Therefore, efficiently resampling key structural
features from these molecular views becomes crucial. While inde-
pendent resampling the graph and image embeddings can reduce
input length (Figure 2, arch2), it still faces increased consumption
of context length when accommodating additional views. Besides,
the lack of guidance from chemical domain knowledge limits the
effectiveness of resampling. Therefore, as shown in Figure 2 (arch3),
we propose to jointly resample multiple structural views into fixed-
length cross-view prefixes for LLMs. To boost the quality of the
generated prefixes, we utilize the LLM’s self-encoded SMILES as
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the resampling guidance, which are enriched with the LLM’s prior
chemical knowledge [22].

To this end, we propose CROP, an MLLM that demonstrates
outstanding molecular understanding capabilities, augmented with
multiple structural views, as illustrated in Figure 3. CROP par-
titions the LLM backbone into lower and upper segments. The
whole forward propagation process is conducted as follows: (1) the
LLM’s lower segment processes SMILES strings to generate chem-
ical knowledge-aware guidance, referred to as SMILES guidance;
(2) the SMILES Guided Resampler adopts the SMILES guidance
to resample molecular graphs and images jointly; (3) the Struc-
tural Embedding Gate converts the derived structural embeddings
into fixed-length cross-view prefixes; (4) the LLM’s upper segment
processes both SMILES and prefixes to obtain a comprehensive un-
derstanding of molecules. This architecture substantially enhances
the effectiveness of the resampling process. Meanwhile, injecting
prefixes into multiple layers of the LLM allows for deep interaction
with molecular structural information, facilitating a more accurate
understanding of molecular structures.

In summary, our contributions are as follows:

o We identify the fundamental limitations of current molec-
ular MLLMs that rely solely on the graph view, which cap-
tures only topological relationships. In this work, we propose
leveraging the complementary topological and spatial infor-
mation conveyed by molecular graph and image views to
jointly advance the molecular understanding capabilities of
LLMs.

We propose CROP, an innovative and scalable MLLM archi-
tecture that can accommodate multiple structural views to
jointly enhance molecular understanding while maintaining
computational efficiency.

Through extensive evaluation, we demonstrate CROP achi-
eves significant performance gains across a wide range of
tasks, including molecule captioning, IUPAC name predic-
tion, and molecular property prediction, highlighting the
superiority of our multi-view integration approach.

2 Related Work

2.1 Molecule Modeling

SMILES and SELFIES strings can be modeled by language models
in a manner similar to text sequences. Models like KV-PLM [46],
MolT5 [5] and Galactica [31] excel in molecule-related tasks by
bridging SMILES and biomedical text. In molecular graph modeling,
both Graph Neural Networks (GNNs) [29] and Graph Transform-
ers [44] are widely employed. Pretraining is conducted at both
the graph and node levels to capture the global and local infor-
mation [28, 32, 49]. Molecular images offer distinct advantages in
depicting the spatial configuration and overall shape of molecules.
These images can be rendered by RDKit [1] or captured using
physical microscopy [7]. Chemception [12], 2DConvNet [11] and
DenseNet121 [48] are pioneering works utilizing molecular im-
ages for predicting chemical properties, compound toxicity, and
contaminant reactivity respectively, demonstrating the potential
of molecular images for promoting downstream tasks. Recently,
ImageMol [45] conducts massive self-supervised pretraining on 10
million unlabeled molecules, outperforming sequence-based and
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Figure 2: Comparison of three MLLM architectures with dif-
ferent ways to process embeddings from multiple molecular
views. CROP (arch3) jointly resample graph and image views
into fixed-length cross-view prefixes for LLMs, with LLM’s
prior chemical knowledge as resampling guidance, possess-
ing both efficiency and effectiveness.

graph-based models across various benchmarks. Despite the suc-
cess of molecular images in discriminative tasks, their potential
to enhance the performance of LLMs in generative tasks remains
largely unexplored.

2.2 Multimodal Large Language Models

MLLMs are capable of processing various modalities beyond text,
most of which are tailored for natural modalities such as image [47]
and audio [14, 39]. However, MLLMs designed for specialized modal-
ities such as molecular graphs, images, and grids [37] have not been
sufficiently explored, which inspires us to propose CROP, a spe-
cialized MLLM focusing on molecular modalities in the chemical
field. BLIP-2 [17] and LLaVA [21] are two representative MLLM
architectures, utilizing compressed and uncompressed multimodal
embeddings, respectively. Considering the limited context length of
LLMs and substantial information overlap among molecular views,
we propose to derive efficient cross-view prefixes for LLMs, with
LLM’s prior chemical knowledge as resampling guidance.

2.3 MLLMs for Molecular Science

In the field of chemistry, beyond the commonly-used molecular
sequence view, DrugChat [20], InstructMol [2], MolTC [8], GIT-
Mol [22] and MolCA [24] introduce the graph view additionally to
advance molecular understanding of LLMs. However, molecules
inherently exhibit various structural views, and each of them ex-
hibits distinct strengths and weaknesses. The model’s performance
remains limited when relying solely on a single graph view. In this
research, we propose CROP to integrate the strengths of both graph
and image views to collaboratively advance the molecular under-
standing capabilities. Moreover, our architecture enables seamless
incorporation of additional structural views while maintaining com-
putational efficiency.

3 Methodology
3.1 Problem Definition

In this work, we adopt SMILES as the sequence view to leverage the
prior knowledge of LLMs, molecular graphs as the topological struc-
ture view to capture atomic connections, and molecular images as
the spatial structure view to encode molecular configurations. Let
S = (s1,82,...,57) be a molecule SMILES string tokenized based on
characters, where [ is the number of characters. Let G = (V, E) be
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a molecule graph, where V = {v1,0y,...,0,} is the set of n graph
nodes and E is the set of graph edges. Let I be a molecule image.
Given a molecule’s S, G and I, generative tasks such as molecule
captioning and IUPAC name prediction require generating a cor-
responding text y. Classification tasks such as molecule property
prediction require generating a probability distribution p, with
cross-entropy loss used for optimization.

3.2 Model Architecture

Overview. As illustrated in Figure 3, CROP comprises four pri-
mary components: the LLM, molecule encoders, the SMILES Guided
Resampler and the Structural Embedding Gate. The LLM is parti-
tioned into lower and upper segments. The lower segment processes
the SMILES to derive the SMILES guidance Zs. Then, the SMILES
Guided Resampler utilizes the SMILES guidance Zg to jointly re-
sample molecular graph embeddings Zs and image embeddings Z1
derived from respective encoders, and output the structural embed-
dings Z. After that, the Structural Embedding Gate converts the
structural embeddings Z into fixed-length cross-view prefixes Z. Fi-
nally, the LLM’s upper segment processes both the SMILES hidden
states from the lower segment and prefixes Z to achieve a compre-
hensive understanding of molecules. Benefiting from the SMILES
guidance Zg, which is enriched with the LLM’s prior chemical
knowledge, the resampling possesses high effectiveness. Moreover,
injecting cross-view prefixes Z into multiple layers of the LLM
enables deep interaction with molecular structural information.

Molecule Encoders. The molecular graph encoder consists of
five Graph Isomorphism Network (GIN) layers [38] initialized from
moleculeSTM [23]. Molecular graphs are encoded into representa-
tions Zg € R™4, where each node representation contains local
structural information of the neighboring subgraph. The molecular
image encoder adopts the pretrained ResNet18 from ImageMol [45].
The original molecular image is encoded to a feature map with di-
mension H X W xd. This feature map is then flattened to Z; € R? xd,
where p = HW. These process can be formalized as:

Zg = GraphEncoder(G),

Zr = ImageEncoder (I). )

SMILES Guidance (§G). We adopt Galactica [31] as the LLM
backbone of CROP, which is pretrained on an extensive chemical
corpus and known for its strong proficiency in chemistry. Benefiting
from this, we adopt the SMILES representations within Galactica
as guidance, which are enriched with Galactica’s prior chemical
knowledge, to facilitate resampling key structural features from
graphs and images. To obtain the SMILES guidance Zs from the
LLM and return cross-view prefixes Z to the LLM during a single
forward propagation, we partition the LLM into lower and upper
segments, consisting of b and u layers respectively.

We prepend w learnable vectors to all layers in the lower segment,
enabling extensive interaction with SMILES hidden states via the
LLM’s attention layers. These fixed-length vectors then serve as
the SMILES guidance Zs € RP*"*9 It is worth noting that the
prepended vectors cannot directly perceive the SMILES tokens
behind, due to the causal attention mechanism within the LLM.
As illustrated in Figure 3 (a), with prepended vectors, the standard
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Figure 3: The architecture of CROP. The SMILES Guided Resampler utilizes SMILES guidance Zs derived from the LLM’s lower
segment to guide the resampling of graph and image views. The Structural Embedding Gate converts the derived structural
embeddings Z into prefixes Z for the LLM’s upper segment. (a) The standard attention mask of the LLM when handling prefixes,
where p, s and ¢ denote prefix, SMILES and plain text respectively. This is used in the LLM’s upper segment. (b) The modified
attention mask enabling prefixes to perceive SMILES tokens behind. This is employed in the LLM’s lower segment.

attention calculation process can be formalized as:

AttentionLayer(H, Hp, Hp)
(HWp) (HpWx)"

Vi

where H € R4 denotes SMILES hidden states, and Hy € R(wH)xd
represents the concatenation of the prepended vectors and SMILES
hidden states. Wp, Wk and Wy € R4* are the query, key and value
transform matrices respectively. M is the triangular causal attention
mask, with M; j<i+w = 0 and Mj j> ity = —0o.

In order to enable the prepended vectors to perceive the SMILES
tokens behind, as illustrated in Figure 3 (b), we modify the standard
attention calculation process in the lower segment, which can be
formalized as:

@

=softmax + M| (HyWy),

AttentionLayer(Hp, Hp, Hp)
(HpWo) (HpWi)"

Vi

where M’ denotes the modified attention mask, with M’ . =
i<w,j<w+l
0, M/ —oo, M! =0and M/

. = P .. = —00,
i<w,j>w+l i>w,j<i i>w,j>i

®)

=softmax +M (HpWy).

SMILES Guided Resampler (SGR). By leveraging the SMILES
guidance, SGR proceeds to jointly resample lengthy graph and
image embeddings into fixed-length structural embeddings, which
integrate the strengths of both molecular views.

SGR consists of multiple transformer layers. Graph embeddings
Zg, image embeddings Z; and SMILES guidance Zg are concate-
nated along the sequence dimension to serve as keys and values.
The SMILES guidance Zs, enriched with LLM’s prior chemical
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knowledge, serve as queries:

Keys, Values = [Zg, Z1, Zs] € be("ﬂHW)Xd, 4)
Queries = Zg € RPXwXd, (5)
Z = SGR(Queries, Keys, Values) € RP*"*d, (6)

where the resampling process is conducted through the cross atten-
tion mechanism in SGR’s transformer layers, producing compact
structural embeddings Z.

Beyond molecular graph and image views, SGR can further ac-
commodate more structural views by simply concatenating their
embeddings with [Zg, Z1, Zs], and serve as keys and values. This
design ensures the extensibility and flexibility of SGR.

Structural Embedding Gate (SEG). Considering the lower and
upper segment of the LLM may contain different number of lay-
ers, namely b # u, we propose the SEG. SEG can flexibly convert
structural embeddings Z € RP*"*9 into fixed-length cross-view
prefixes Z € R“*W*d_ which are then prepended to the LLM’s
upper segment. These prefixes empower the LLM to understand
molecular structures accurately and comprehensively.

Mean(-)

z Linear;(a(+)) —l
! Mean(") .L’onmt(v) .Saftmax(~ ._1
z.a0a8 /\@@ anRn:
Mean(:) _l
Zp

Figure 4: The architecture of the Structural Embedding Gate
for the LLM’s Layer;, which sums b groups of Z; € R4 with
the weighted vector P; € R? to obtain the prefixes Z; e Rwxd,
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Table 1: Molecule captioning results on PubChem324k and CheBI-20 datasets. Bold denotes the best performance.

Dataset Model Modalities TrainableParams ‘ BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
GPT-40 S -, 3-shot 16.5 7.1 30.8 11.3 23.1 22.5
Llama3fustrucisp S -, 3-shot 14.4 6.4 30.3 12.8 24.7 203
BioT5 S 252M, full ft 42.9 34.3 53.1 39.8 47.5 48.7
MolT5-Large S 780M, full ft 30.2 22.2 41.5 25.9 34.8 36.6
MoMu-Large S+G 782M, full ft 31.1 22.8 41.8 25.7 36.7 36.2

PubChem324k |\ 1CA Guinerss S +G 100M, LoRA ft 387 303 50.2 35.9 445 45.6
CROPGuierss S 71M, LoRA ft 36.6 29.1 48.7 34.8 431 435
CROPGuiaciss S+G 71M, LoRA ft 434 354 54.0 40.1 48.7 495
CROPGgaerss  S+1 71M, LoRA ft 43.1 34.9 53.5 39.7 483 49.1
CROPGgigerss S+G+I  71M, LoRA ft 449 367 54.8 411 49.5 50.8
GPT-40 S -, 3-shot 21.9 9.8 35.9 13.6 26.7 27.6
Llama3fnsiructsg S -, 3-shot 20.9 9.4 35.8 15.5 28.9 25.4
MolReGPTgpry S RAG, 10-shot 60.7 52.5 63.4 47.6 56.2 61.0
MolXPT S 350M, full ft 59.4 50.5 66.0 51.1 59.7 62.6
BioT5 S 252M, full ft 63.5 55.6 69.2 55.9 63.3 65.6
MoMu-Large S+G 782M, full ft 59.9 51.5 - - 59.3 59.7

CheBI-20 GIT-Mol S+G 210M, LoRA ft 35.2 26.3 57.5 48.5 56.0 53.3
InstructMol S+G - ,LoRAft 47.5 37.1 56.6 39.4 50.2 50.9
MolICAGuiaerss S+G 110M, LoRA ft 62.0 53.1 68.1 53.7 61.8 65.1
CROPGuic1ss S 71M, LoRA ft 584 496 67.0 51.3 60.3 62.7
CROPGuiaciss S+G 71M, LoRA ft 63.8 55.8 69.0 55.0 63.5 66.1
CROPGuigerss S+1 71M, LoRA ft 62.8 54.2 68.9 54.7 62.8 65.8
CROPGuaciss  S+G+I  71M, LoRA ft 64.6  56.2 69.8 55.9 63.9 66.7

Specifically, we sum b groups of Z; € R4 with the weighted
vector P; € R? to obtain the prefixes Z; € RWXd for Layer; in the
LLM’s upper segment, as shown in Figure 4. The calculation is
formalized as follows:

V = Concat(Mean(Z;);. . .; Mean(Zp)), 7)
P; = Softmax(Linear;(a(V))), 8)
Zi=PiZ. ©)

where Zj_15 p € R"*4 indicates the jth group of embedding

in Z. Mean(-) denotes mean pooling along the sequence dimen-
sion, yielding Mean(Z;) € R¥. Concat(-) concatenates embeddings
along the hidden dimension, producing V € R??. ¢(-) is the acti-
vation function. Linear;(-) has an input dimension of bd and an
output dimension of b, thus P; € R?.

SEG can flexibly convert any b groups of structural embeddings
into specified u groups of cross-view prefixes, thus the LLM can be
partitioned arbitrarily, where the lower segment is unimodal and
the upper segment is multimodal.

3.3 Training Strategies

As Galactica is primarily pretrained on SMILES, we adopt SMILES
as the molecular sequence view in this research to fully stimulate
Galactica’s prior chemical knowledge. The training process consists
of two stages. In the pretraining stage (Stage 1), CROP performs
the molecule captioning task conditioned on molecular SMILES,

graphs, and images. Molecular graphs and images could be obtained
using the RDKit toolkit according to SMILES. Common data aug-
mentation techniques for images are applied to enhance the LLM’s
ability to leverage the structural information in molecular images.
The primary objective of this stage is to establish initial alignment
between multiple views and the LLM. Therefore, we freeze the
molecular graph encoder, image encoder and the LLM, and focus
on training the bridging modules, including the SMILES guidance,
SGR and SEG. In the fine-tuning stage (Stage 2), to pursue optimal
performance on downstream tasks, in addition to the aforemen-
tioned bridging modules, we unfreeze the molecular graph encoder
and image encoder and utilize LoRA [13] to fine-tune the LLM.

To conduct a fair comparison with baselines and to analyze the
contributions of molecular graphs and images respectively, we
develop four variants of CROP by selectively including different
structural representations alongside SMILES. Specifically, by mask-
ing graph embeddings Zg or image embeddings Z;, we develop
CROP (5;G+1)> CROP (5, Gy and CROP g, 1). When all structural
views are excluded, CROP ) reduces to the original Galactica op-
erating only on SMILES input.

4 Experiments

4.1 Experimental Setup

Datasets. We pretrain CROP on PubChem324k’s pretraining
subset [24], which contains about 300k molecule-text pairs of rela-
tively low-quality. For the molecule captioning task, we evaluate

2520
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Table 2: IUPAC name prediction results on PubChem324k (Baseline results are from [24]).

Model Modalities TrainableParams ‘ BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
GPT-4o0 [26] S -, 3-shot 42.6 26.1 40.5 13.4 32.6 411
Llama3p,sruciss [4] S -, 3-shot 31.9 16.0 28.9 5.0 223 26.8
BioT5 [27] S 252M, full ft 79.4 72.6 75.4 55.7 69.5 75.8
GIT-Mol [22] S+G 210M, LoRA ft 58.3 51.7 54.5 32.6 50.2 55.7
MOoICAGyiger 55 [24] S+G 100M, LoRA ft 75.0 66.6 69.6 48.2 63.4 72.1
CROP G 4lac1.38 S 71M, LoRA ft 74.5 65.9 68.7 473 62.5 71.4
CROP Galuc1.3B S+G 71M, LoRA ft 80.8 73.2 77.5 57.5 72.0 78.2
CROP Galuc1 3B S+1 71M, LoRA ft 80.6 72.7 77.1 56.9 71.4 77.9
CROP G 41ac1.38 S+G+I 71M, LoRA ft 815 743 78.5 58.6 72.9 78.8

Table 3: Molecule property prediction results on 6 datasets in MoleculeNet. The scaffold splits [40] are adopted. Baseline results
are from their original papers. ROC-AUC scores are calculated across 5 random seeds.

Model Modalities ‘ Tox21T  ToxCast]  SiderT ClinToxT BBBP T Bace T ‘ Mean
KV-PLM [46] S 72.1£1.0 55.0£1.7 59.8+0.6 - 70.5£0.5  78.5+2.7 67.2
Mole-BERT [35] G 76.8+0.5 64.3+£0.2 62.8+1.1 78.9£3.0 719+1.6 80.8t1.4 72.6
MoMu [30] G 75.6+0.3 63.4+0.5 60.5+0.9 79.9+4.1 70.5+2.0 76.7+2.1 71.1
GIT-Mol [22] S+G 75.9+0.5 66.8+0.5 63.4+0.8 88.3+1.2 73.9+0.6 81.1x1.5 74.9
MoICA Ggigerss [24] S+G 772405  64.5£0.8  63.0+17  89.5£0.7  70.0£0.5 79.8+05 | 74.0
CROP Galuc1.3B S 72.6+0.6 58307  63.3+1.5 90.8+1.8 71.0+1.5 81.0+12 | 728
CROP G ylae1 38 S+G 762404  60.940.6 65107 93.7£0.9  71.2+1.0 83.54£0.5 | 75.1
CROP Galuc1 3B S+1 754206  60.7£04  66.241.2 92.0+14 722408 82.9+0.8 | 74.9
CROP Galuc1.3B S+G+1 | 77.5+0.2 614404 67.3£0.7 94.6+0.6 72.6+0.6 84.2+0.7 | 76.3

CROP’s performance on the standard PubChem324k and CheBI-
20 [5] datasets. For the IUPAC name prediction task, we evaluate
CROP’s performance on the standard PubChem324k dataset. For
the molecule property prediction task, we evaluate CROP’s perfor-
mance on various sub-datasets in MoleculeNet [34]: Tox21, ToxCast,
Sider, ClinTox, BBBP, and Bace, with the scaffold splits [40] adopted.

Implementation Details. CROP is pretrained for 20 epochs and
finetuned for 100 epochs on all downstream task datasets respec-
tively. The best-performing model on the validation set is selected
for testing. To save the context length of the LLM, we experimen-
tally determine the prefix length w as 10. We analyze the perfor-
mance of CROP under different partition settings and identify the
optimal partition for each task. Specifically, we set b = 12,u = 12
in the molecule captioning and molecule property prediction tasks,
and set b = 6,u = 18 in the IUPAC name prediction task.

4.2 Evaluation on Downstream Tasks

Molecule Captioning. This task requires generating a descrip-
tion about the molecule’s properties, structures, biological activity,
and other characteristics. In the setting with sequence-only in-
put, leading LLMs such as MolT5 [6], MoIXPT [25] and BioT5 [27]
are included as baselines. Besides, we report the performance of
GPT-40 and Llama3-Instruct in a few-shot setting to showcase the
current progress of mainstream general-purpose LLMs in the field
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of chemistry. MolReGPT [18] is based on GPT4 with the retrieval-
augmented generation (RAG) technique. In the setting with multi-
view input, advanced MLLMs such as MoMu [30], GIT-Mol [22],
InstructMol [2], and MolCA [24] are included as baselines. Among
them, InstructMol employs the LLaVA architecture [21] and MolCA
employs the BLIP-2 [17] architecture.

The results are reported at Table 1. Beyond the original SMILES
view, when utilizing both graph and image views additionally,
CROP (s,G+1) achieves the best performance. This highlights the
importance of integrating multiple structural views to provide more
accurate molecular information, which can mitigate the limitations
of relying on a single structural view. When only adopt the graph
view additionally, CROP s, g) still outperforms other models by a
large margin with fewer trainable parameters, highlighting CROP’s
architectural superiority. The superiority primarily stems from two
aspects. First, CROP introduces SMILES guidance when jointly re-
sampling multiple structural views, thereby effectively leveraging
Galactica’s prior chemical knowledge. Second, the generated cross-
view prefixes are prepended to all layers in the upper segment of
the LLM, enabling it to fully interact with the molecular structural
information. In contrast, models such as InstructMol or MolCA
provide structural information from the input embedding layer.
Detailed analysis is provided in the Ablation Studies.

TUPAC Name Prediction. The IUPAC systematic names [9]
are standardized molecular identifiers that take aspects, such as
molecular functional groups and substituents, into account. This
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Ground Truth

CROP(S + G)

CROP(S + G +I)

The molecule is a
monomethoxyflavanone that is (2S)-
flavanone substituted by a methoxy
group at position 5, hydroxy groups at
positions 7 and 4' and a 3-hydroxy-3-
methylbut-1-en-1-yl group at position
8...

The molecule is a
monomethoxyflavanone that is (2S)-
flavanone substituted by a methoxy

a hydroxy group at
position 7, a hydroxy group at position
8 and a 3-hydroxy-3-methylbut-1-en-
1-yl group at position 6...

group at position 5,

The molecule is a
monomethoxyflavanone that is (2S)-
flavanone substituted by a methoxy
group at position 5, hydroxy groups at
positions 7 and 4' and a 3-hydroxy-3-
methylbut-1-en-1-yl group at position
8...

)?UQ Q%Qﬁ

The molecule is a branched amino
heptasaccharide consisting of a linear
sequence of ... beta-D-galactosyl and
N-acetyl-beta-D-glucosamine re51dues
lll'll\k.(llt\]kull\k,l\ (2->3), (1->3), (1-
3) and ( ), to each N—acetyl—beta—
D- glucosamme residue of which is
also linked (1->4) an alpha-L-fucosyl

The molecule is a branched amino
heptasaccharide consisting of a linear
sequence of ... beta-D-galactosyl and
N-acetyl-beta-D-glucosaminyl
residues, linked (2->3), (1->4), (1->3)
and (1->3), to each N-acetyl-beta-D-
glucosaminyl residue of which is also
linked an alpha-L-fucosyl residue...

The molecule is a branched amino
heptasaccharide consisting of a linear
sequence of ... beta-D-galactosyl and
N-acetyl-beta-D-glucosamine residues
linked respectively (2->3), (1->3), (1-

3) and (1->4), to each N-acetyl-beta-
D-glucosamine residue of which is
also linked an alpha-L-fucosyl

residue...

residue...

Figure 5: The captions generated by CROP (5, ) and CROP (5, 1) on example molecules. CROP g, g, ) provides more accurate
descriptions of substituent positions, types, and the connectivity of branched structures in molecules.

task aims at predicting JUPAC name strings from other molecular
representations, thus requiring accurately understanding molecular
complex structures. CROP (s, g41) outperforms MolCA by 6.5 in
BLEU-2 score, as shown in Table 2.

Molecule Property Prediction. This task involves judging a
molecule’s potential toxicity and other properties based on its struc-
ture. Cross-view prefixes and SMILES hidden states from the LLM’s
last layer are passed through a separate linear head for classification.
As shown in Table 3, on six datasets in MoleculeNet, CROP (g, 1)
outperforms GIT-Mol by 1.4 ROC-AUC scores on average.

4.3 Ablation Studies

Effectiveness of Integrating Topological and Spatial Struc-
tural Views. The structures of molecules can be categorized into
two types: topological and spatial structures. However, previous
MLLMs primarily focus on the graph view, which emphasizes topo-
logical relationships, while neglecting the image view, which excels
at capturing molecular spatial configurations. In this section, we
highlight the benefits of jointly considering the two types of struc-
tural information conveyed in molecular graphs and images respec-
tively. As shown in Table 1, compared to CROP g, CROP 5, )
achieves a 6.8 BLEU-2 score improvement on PubChem324k and a
5.4 BLEU-2 score improvement on CheBI-20. Similarly, CROP (s, 1)
improves the BLEU-2 score by 6.5 on PubChem324k and 4.4 on
CheBI-20. This demonstrates that incorporating either molecular
graphs or images independently can enhance the LLM’s comprehen-
sion of molecular structures. Furthermore, when both graph and im-
age views are introduced, CROP (s, g+1) outperforms CROP s, )
and CROP s, 1) by a large margin, demonstrating the limitations of
relying solely on a single structural view. For a more detailed anal-
ysis, we compare the quality of captions generated by CROP s, )
and CROP (s, .1 for molecules of different complexity, which is
measured by the length of SMILES. As illustrated in Figure 6 (Left),
molecular images enhance the performance of CROP particularly
on more complex molecules.
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Some examples are provided in Figure 5, where it can be observed
that CROP, by incorporating images, is able to more accurately
describe the substituent positions and the spatial interconnectivity
of units in complex molecules. Therefore, in this work, we also
reveal the effectiveness of molecular images in generative tasks.

Effectiveness of SGR. The effectiveness of SGR stems from its
use of SMILES guidance to guide the resampling process, which is
derived from the LLM and enriched with prior chemical knowledge.
To validate the role of SMILES guidance in boosting the quality of
the derived cross-view prefixes, we replace SGR with an alterna-
tive resampler, in which the SMILES guidance is substituted with
learnable vectors which are randomly initialized. This variant is
referred to as CROPy/q sgr- Without the need to obtain SMILES
guidance during the forward propagation, the LLM does not need
to be partitioned into two segments, allowing us to prepend the
cross-view prefixes to all layers of the LLM. We compare the perfor-
mance of CROP and CROPy/, sgr When adopting both graph and
image views. As shown in Table 4, CROP consistently outperforms
CROPy,/0 sgr across diverse tasks. In addition, we also find that

60
44
50 2
a0l 42
3 o
T 30 2
@ 20 o 40
101 —* CROPs+c+)
CROP(s 4.6) 38 °- CRoP
CROPy/0 sGr

@ ﬁmg 35\\5A 53\530 10 \,—, 383‘$3 xo\s%\sg 1236}
SMILES Length

10 20 30 40 50 60 70 80 90 100
Epoch

Figure 6: (Left) The distinct BLEU-2 scores in different

SMILES length ranges on the PubChem324k molecule cap-

tioning dataset. (Right) The distinct metric curves of CROP

and CROPy/, sgr on the PubChem324k molecule captioning

validation set during finetuning.
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Table 4: Ablation results on the molecule captioning, IUPAC
name prediction and molecule property prediction tasks. All
experiments are conducted with S, G, I as input simultane-
ously. The second lines denote CROPy,/, scr and the third
lines denote CROPy/ sgc-

CROP Molecule Captioning
SGR SEG|BLEU; BLEU; ROUGE; ROUGE; ROUGE;, METEOR
v V| 449 36.7 54.8 41.1 49.5 50.8
v | 424 33.5 52.4 38.9 48.1 48.1
v 44.2 36.2 54.0 40.7 48.4 50.2
CROP TUPAC Name Prediction
SGR SEG|BLEU; BLEU; ROUGE; ROUGE; ROUGE;, METEOR
v Vv | 815 74.3 78.5 58.6 72.9 78.8
v | 785 71.8 76.4 56.2 71.2 77.3
v 80.7 73.6 77.9 58.1 72.3 78.4
CROP Molecule Property Prediction
SGR SEG| Tox21 ToxCast Sider ClinTox BBBP Bace
v V| 775 61.4 67.3 94.6 72.6 84.2
v | 75.4 60.2 66.4 92.1 71.6 82.7
v 76.2 60.8 66.9 94.0 72.1 83.4

CROP converges much faster particularly in the initial stage, and
reaches the optimum state earlier than CROPy,/, g during the fine-
tuning process, as illustrated in Figure 6 (Right). These demonstrate
the effectiveness of SGR when utilizing SMILES guidance.

Effectiveness of SEG. SEG enables converting any b groups
of structural embeddings Z € RP*W* into specified u groups of
cross-view prefixes Z € R¥*"*4_thus allowing the LLM to be parti-
tioned arbitrarily. However, when b = u, an alternative is to directly
prepend Z into the LLM’s upper segment, namely discarding the
SEG. In this condition, we compare the performance of CROP and
CROPy/0 spg, Where Z passes through and bypasses SEG, respec-
tively. As shown in Table 4, CROP outperforms CROPy/q sgg across
diverse tasks. Due to the varying structural features conveyed by
each group of Z, SEG combines these groups to generate cross-
view prefixes Z, enabling each prefix to encapsulate comprehensive
structural information and thereby enhancing the LLM’s ability to
understand molecular structures more accurately.

so‘ —a— IUPAC Name Prediction (PubChem324k) \

—— pretrain_loss_23_1
—— pretrain_loss_18_6
—— pretrain_loss_12_12

175
pretrain_loss_6_18
—— pretrain_loss_1_23

MM

40k 60k
Pretrain Steps

Molecule Property Prediction (MoleculeNet)

—+— Molecule Captioning (CheBI-20)

—s— Molecule Captioning (PubChem324k)

BLEU-2

CrossEntropyLoss
5
8

0.75

80k 123)  (618) (12,12) (186 (231
(b,u)

Figure 7: The experimental results of different partition set-
tings for the LLM. (Left) The pre-training loss curves. (Right)
The test results of four molecular tasks.
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Table 5: The comparison in terms of computational cost
across four models on the PubChem324k molecule caption-
ing dataset. The metrics include the average length of cross-
view prefixes, average FLOPs for these prefixes and training
time on the PubChem324k molecule captioning dataset.

Avg. Prefixes Avg. FLOPs Train. Time
Bifeul BLEU-2 (Count) (Billions) (Hours)
Galactica 36.6 - - 5.37
CROP.p; | 428 288 353.52 7.14
CROP,p2 | 415 20 24.20 5.86
CROP,,p3 | 44.9 10 14.05 5.53

Impact of Different LLM Partitions. Galactica consists of 24
layers in total. We compare five CROP variants with (b, u) set
to (1,23), (6,18), (12,12), (18,6), and (23, 1), respectively. As il-
lustrated in Figure 7, CROPp=;5,,-1, performs best on the Pub-
Chem324k and CheBI-20 molecule captioning datasets. Additionally,
CROPp_g ;=13 performs best on the PubChem324k IUPAC name
prediction dataset. Increasing b provides more groups of SMILES
guidance for SGR, facilitating the resampling process. Conversely,
increasing u allows more LLM layers to leverage cross-view pre-
fixes, enhancing the utilization of structural information. There is a
trade-off between b and u for different tasks, with generally better
performance achieved when b and u are nearly balanced.

Efficiency Analysis. We compare the performance of CROP
with three different architectures, as shown in Figure 2 (archl,
arch2 and arch3), under the setting of inputting S, G and I simul-
taneously. Galactica serves as the common baseline, processing
only S. The results are shown in Table 5. Compared to Galactica,
three variants of CROP achieve significant improvements. Among
them, CROP 3 achieves superior performance with shorter cross-
view prefixes, fewer additional FLOPs, and smaller training time
overhead. Specifically, compared to CROP ;. ;, CROP 1,3 reduces
the length of cross-view prefixes by 96.5%, the additional average
number of FLOPs by 96.0% and the training time by 22.5%. This
demonstrates the architectural advantages of CROP 3, includ-
ing utilizing SMILES guidance during the resampling to boost the
quality of derived cross-view prefixes, and prepending prefixes to
multiple LLM layers to promote structural information utilization.

5 Conclusion

In this work, we identify the fundamental limitations of relying
solely on the molecular graph view, and propose CROP, an in-
novative and scalable MLLM architecture that can integrate both
topological and spatial structural views to jointly advance molecu-
lar understanding while maintaining computational efficiency. We
primarily explore enhancing LLMs by integrating molecular graphs
and images, which are representative topological and spatial views
respectively, and highlight the impressive effectiveness of molecu-
lar images for enhancing the performance of LLMs in generative
tasks. In future research, we will consider fine-tuning CROP on
large-scale molecular instruction datasets, and integrating more
representative molecular views into the CROP.
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