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Abstract

Recent advances in molecular science have been propelled signif-

icantly by large language models (LLMs). However, their effec-

tiveness is limited when relying solely on molecular sequences,

which fail to capture the complex structures of molecules. Beyond

sequence representation, molecules exhibit two complementary

structural views: the first focuses on the topological relationships
between atoms, as exemplified by the graph view; and the second

emphasizes the spatial configuration of molecules, as represented

by the image view. The two types of views provide unique insights

into molecular structures. To leverage these views collaboratively,

we propose the CROss-view Prefixes (CROP) to enhance LLMs’

molecular understanding through efficient multi-view integration.

CROP possesses two advantages: (i) efficiency: by jointly resam-

pling multiple structural views into fixed-length prefixes, it avoids

excessive consumption of the LLM’s limited context length and

allows easy expansion to more views; (ii) effectiveness: by uti-

lizing the LLM’s self-encoded molecular sequences to guide the

resampling process, it boosts the quality of the generated prefixes.

Specifically, our framework features a carefully designed SMILES

Guided Resampler for view resampling, and a Structural Embedding

Gate for converting the resulting embeddings into LLM’s prefixes.

Extensive experiments demonstrate the superiority of CROP in

tasks including molecule captioning, IUPAC name prediction and

molecule property prediction.

CCS Concepts

• Computing methodologies → Artificial intelligence.
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1 Introduction

LLMs have exhibited remarkable proficiency across diverse do-

mains [43]. In the chemical field, particularly in tasks such as mole-

cule captioning and property prediction [34], LLMs have emerged

as promising tools for streamlining research efforts. As a mole-

cule’s properties are fundamentally determined by its complex

structure [10, 41], providing LLMs with accurate structural repre-

sentations is essential for enhancing their molecular understanding.

However, current LLMs primarily rely on sequence representations

like SMILES [33] and SELFIES [16] for molecular tasks, which are

inadequate for capturing complex molecular structures.

To address that, recent works [2, 23, 24, 30] have preliminarily

explored integrating graph-based representations into LLMs, where

molecules are modeled as graphs, with atoms as nodes and chemical

bonds as edges. While these graph representations effectively cap-

ture topological relationships between atoms [19], they still exhibit

limitations. Specifically, graph representations only encode topolog-

ical relationships, allowing a single graph to correspond to infinite

variety of node arrangements. This ambiguity makes it challeng-

ing to represent critical characteristics such as molecular spatial

configuration and overall shape, as illustrated in Figure 1. Further-

more, when processing complex molecular graphs, graph-based

approaches frequently encounter issues such as over-smoothing

and over-squashing [3, 15], impeding the effective utilization of

graph representations by LLMs.

As a typical representation of the molecular spatial view, molec-

ular images provide complementary information about the spatial

configuration and overall shape of molecules. This visual repre-

sentation naturally encodes important structural features that are

difficult to derive from graphs, such as symmetry planes, functional
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Molecular Image

ALL IN ONE

Figure 1: An overview of the strengths and weaknesses of

each molecular view. Taking that into account, CROP com-

prehensively utilizes diverse views to enhance molecular

understanding capabilities.

group positions and rigidity of molecules [42]. Benefiting from sus-

tained advances in computer vision, some studies [11, 36, 48] that

utilize images for molecular modeling have achieved impressive

results in discriminative tasks, including molecular property predic-

tion and drug target identification. Specifically, ImageMol [45] con-

ducted 5 carefully crafted pretraining tasks on 10 million molecular

images, outperforming existing sequence-based and graph-based

methods on 10 regression tasks of GPCRs (G protein-coupled re-

ceptors) and 10 classification tasks of kinases in compound-protein

binding prediction. While molecular images have demonstrated

success in discriminative tasks, their application to generative tasks

with LLMs remains largely unexplored. This work pioneers the

integration of molecular visual representations to enhance LLM

performance in generative tasks, such as molecule captioning and

IUPAC name prediction.

Given the complementary nature of topological and spatial struc-

tures of molecules, works [2, 24] that solely introduce graph views

still fundamentally limit LLMs’ molecular understanding capabili-

ties. Our key insight is that integrating topological relationships

from graphs and spatial configurations from images enables a com-

prehensive understanding of molecular structures.

Directly concatenating embeddings from graph and image views

as input would result in excessive consumption of the LLM’s lim-

ited context length, and this issue exacerbates as more views are

introduced, as shown in Figure 2 (arch1). In fact, there is substan-

tial information irrelevance and overlap among these embeddings.

For instance, a significant portion of the image embeddings corre-

spond to the blank areas in the molecular images, and all of these

molecular views capture the overlapping information of atomic

and bond types. Therefore, efficiently resampling key structural

features from these molecular views becomes crucial. While inde-

pendent resampling the graph and image embeddings can reduce

input length (Figure 2, arch2), it still faces increased consumption

of context length when accommodating additional views. Besides,

the lack of guidance from chemical domain knowledge limits the

effectiveness of resampling. Therefore, as shown in Figure 2 (arch3),
we propose to jointly resample multiple structural views into fixed-

length cross-view prefixes for LLMs. To boost the quality of the

generated prefixes, we utilize the LLM’s self-encoded SMILES as

the resampling guidance, which are enriched with the LLM’s prior

chemical knowledge [22].

To this end, we propose CROP, an MLLM that demonstrates

outstanding molecular understanding capabilities, augmented with

multiple structural views, as illustrated in Figure 3. CROP par-

titions the LLM backbone into lower and upper segments. The

whole forward propagation process is conducted as follows: (1) the
LLM’s lower segment processes SMILES strings to generate chem-

ical knowledge-aware guidance, referred to as SMILES guidance;

(2) the SMILES Guided Resampler adopts the SMILES guidance

to resample molecular graphs and images jointly; (3) the Struc-

tural Embedding Gate converts the derived structural embeddings

into fixed-length cross-view prefixes; (4) the LLM’s upper segment

processes both SMILES and prefixes to obtain a comprehensive un-

derstanding of molecules. This architecture substantially enhances

the effectiveness of the resampling process. Meanwhile, injecting

prefixes into multiple layers of the LLM allows for deep interaction

with molecular structural information, facilitating a more accurate

understanding of molecular structures.

In summary, our contributions are as follows:

• We identify the fundamental limitations of current molec-

ular MLLMs that rely solely on the graph view, which cap-

tures only topological relationships. In this work, we propose

leveraging the complementary topological and spatial infor-

mation conveyed by molecular graph and image views to

jointly advance the molecular understanding capabilities of

LLMs.

• We propose CROP, an innovative and scalable MLLM archi-

tecture that can accommodate multiple structural views to

jointly enhance molecular understanding while maintaining

computational efficiency.

• Through extensive evaluation, we demonstrate CROP achi-

eves significant performance gains across a wide range of

tasks, including molecule captioning, IUPAC name predic-

tion, and molecular property prediction, highlighting the

superiority of our multi-view integration approach.

2 Related Work

2.1 Molecule Modeling

SMILES and SELFIES strings can be modeled by language models

in a manner similar to text sequences. Models like KV-PLM [46],

MolT5 [5] and Galactica [31] excel in molecule-related tasks by

bridging SMILES and biomedical text. In molecular graph modeling,

both Graph Neural Networks (GNNs) [29] and Graph Transform-

ers [44] are widely employed. Pretraining is conducted at both

the graph and node levels to capture the global and local infor-

mation [28, 32, 49]. Molecular images offer distinct advantages in

depicting the spatial configuration and overall shape of molecules.

These images can be rendered by RDKit [1] or captured using

physical microscopy [7]. Chemception [12], 2DConvNet [11] and

DenseNet121 [48] are pioneering works utilizing molecular im-

ages for predicting chemical properties, compound toxicity, and

contaminant reactivity respectively, demonstrating the potential

of molecular images for promoting downstream tasks. Recently,

ImageMol [45] conducts massive self-supervised pretraining on 10

million unlabeled molecules, outperforming sequence-based and

2517



CROP: Integrating Topological and Spatial Structures via Cross-View Prefixes for Molecular LLMs MM ’25, October 27–31, 2025, Dublin, Ireland.

LLM

Graph
Encoder

Linear
Projector

Image
Encoder

Linear
Projector

SMILES
SMILES Guided
Resampler

SMILES

LLM
Re-

sampler
Re-

sampler

SMILES

Structural Embedding
Gate LLM

Graph Image

Graph
Encoder

Image
Encoder

Graph Image

Graph
Encoder

Image
Encoder

Graph Image

arch1 arch2 arch3

Figure 2: Comparison of three MLLM architectures with dif-

ferent ways to process embeddings from multiple molecular

views. CROP (arch3) jointly resample graph and image views

into fixed-length cross-view prefixes for LLMs, with LLM’s

prior chemical knowledge as resampling guidance, possess-

ing both efficiency and effectiveness.

graph-based models across various benchmarks. Despite the suc-

cess of molecular images in discriminative tasks, their potential

to enhance the performance of LLMs in generative tasks remains

largely unexplored.

2.2 Multimodal Large Language Models

MLLMs are capable of processing various modalities beyond text,

most of which are tailored for natural modalities such as image [47]

and audio [14, 39]. However, MLLMs designed for specializedmodal-

ities such as molecular graphs, images, and grids [37] have not been

sufficiently explored, which inspires us to propose CROP, a spe-

cialized MLLM focusing on molecular modalities in the chemical

field. BLIP-2 [17] and LLaVA [21] are two representative MLLM

architectures, utilizing compressed and uncompressed multimodal

embeddings, respectively. Considering the limited context length of

LLMs and substantial information overlap among molecular views,

we propose to derive efficient cross-view prefixes for LLMs, with

LLM’s prior chemical knowledge as resampling guidance.

2.3 MLLMs for Molecular Science

In the field of chemistry, beyond the commonly-used molecular

sequence view, DrugChat [20], InstructMol [2], MolTC [8], GIT-

Mol [22] and MolCA [24] introduce the graph view additionally to

advance molecular understanding of LLMs. However, molecules

inherently exhibit various structural views, and each of them ex-

hibits distinct strengths and weaknesses. The model’s performance

remains limited when relying solely on a single graph view. In this

research, we propose CROP to integrate the strengths of both graph

and image views to collaboratively advance the molecular under-

standing capabilities. Moreover, our architecture enables seamless

incorporation of additional structural views while maintaining com-

putational efficiency.

3 Methodology

3.1 Problem Definition

In this work, we adopt SMILES as the sequence view to leverage the

prior knowledge of LLMs, molecular graphs as the topological struc-

ture view to capture atomic connections, and molecular images as

the spatial structure view to encode molecular configurations. Let

𝑺 = (𝑠1, 𝑠2, . . . , 𝑠𝑙 ) be a molecule SMILES string tokenized based on

characters, where 𝑙 is the number of characters. Let 𝑮 = (𝑉 , 𝐸) be

a molecule graph, where 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is the set of 𝑛 graph

nodes and 𝐸 is the set of graph edges. Let 𝑰 be a molecule image.

Given a molecule’s 𝑺 , 𝑮 and 𝑰 , generative tasks such as molecule

captioning and IUPAC name prediction require generating a cor-

responding text 𝑦. Classification tasks such as molecule property

prediction require generating a probability distribution 𝑝 , with

cross-entropy loss used for optimization.

3.2 Model Architecture

Overview. As illustrated in Figure 3, CROP comprises four pri-

mary components: the LLM, molecule encoders, the SMILES Guided

Resampler and the Structural Embedding Gate. The LLM is parti-

tioned into lower and upper segments. The lower segment processes

the SMILES to derive the SMILES guidance 𝑍𝑆 . Then, the SMILES

Guided Resampler utilizes the SMILES guidance 𝑍𝑆 to jointly re-

sample molecular graph embeddings 𝑍𝐺 and image embeddings 𝑍𝐼
derived from respective encoders, and output the structural embed-

dings 𝑍 . After that, the Structural Embedding Gate converts the

structural embeddings 𝑍 into fixed-length cross-view prefixes 𝑍 . Fi-

nally, the LLM’s upper segment processes both the SMILES hidden

states from the lower segment and prefixes 𝑍 to achieve a compre-

hensive understanding of molecules. Benefiting from the SMILES

guidance 𝑍𝑆 , which is enriched with the LLM’s prior chemical

knowledge, the resampling possesses high effectiveness. Moreover,

injecting cross-view prefixes 𝑍 into multiple layers of the LLM

enables deep interaction with molecular structural information.

Molecule Encoders. The molecular graph encoder consists of

five Graph Isomorphism Network (GIN) layers [38] initialized from

moleculeSTM [23]. Molecular graphs are encoded into representa-

tions 𝑍𝐺 ∈ R𝑛×𝑑 , where each node representation contains local

structural information of the neighboring subgraph. The molecular

image encoder adopts the pretrained ResNet18 from ImageMol [45].

The original molecular image is encoded to a feature map with di-

mension𝐻 ×𝑊 ×𝑑 . This feature map is then flattened to𝑍𝐼 ∈ R𝑝×𝑑 ,
where 𝑝 = 𝐻𝑊 . These process can be formalized as:

𝑍𝐺 = 𝐺𝑟𝑎𝑝ℎ𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑮),
𝑍𝐼 = 𝐼𝑚𝑎𝑔𝑒𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑰 ) .

(1)

SMILES Guidance (SG). We adopt Galactica [31] as the LLM

backbone of CROP, which is pretrained on an extensive chemical

corpus and known for its strong proficiency in chemistry. Benefiting

from this, we adopt the SMILES representations within Galactica

as guidance, which are enriched with Galactica’s prior chemical

knowledge, to facilitate resampling key structural features from

graphs and images. To obtain the SMILES guidance 𝑍𝑆 from the

LLM and return cross-view prefixes 𝑍 to the LLM during a single

forward propagation, we partition the LLM into lower and upper

segments, consisting of 𝑏 and 𝑢 layers respectively.

We prepend𝑤 learnable vectors to all layers in the lower segment,

enabling extensive interaction with SMILES hidden states via the

LLM’s attention layers. These fixed-length vectors then serve as

the SMILES guidance 𝑍𝑆 ∈ R𝑏×𝑤×𝑑
. It is worth noting that the

prepended vectors cannot directly perceive the SMILES tokens

behind, due to the causal attention mechanism within the LLM.

As illustrated in Figure 3 (a), with prepended vectors, the standard
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Figure 3: The architecture of CROP. The SMILES Guided Resampler utilizes SMILES guidance 𝑍𝑆 derived from the LLM’s lower

segment to guide the resampling of graph and image views. The Structural Embedding Gate converts the derived structural

embeddings 𝑍 into prefixes 𝑍 for the LLM’s upper segment. (a) The standard attention mask of the LLM when handling prefixes,

where 𝑝, 𝑠 and 𝑡 denote prefix, SMILES and plain text respectively. This is used in the LLM’s upper segment. (b) The modified

attention mask enabling prefixes to perceive SMILES tokens behind. This is employed in the LLM’s lower segment.

attention calculation process can be formalized as:

AttentionLayer(𝐻,𝐻𝑝 , 𝐻𝑝 )

=softmax

(
(𝐻𝑊𝑄 ) (𝐻𝑝𝑊𝐾 )𝑇√︁

𝑑𝑘

+𝑀
)
(𝐻𝑝𝑊𝑉 ),

(2)

where𝐻 ∈ R𝑙×𝑑 denotes SMILES hidden states, and𝐻𝑝 ∈ R(𝑤+𝑙 )×𝑑

represents the concatenation of the prepended vectors and SMILES

hidden states.𝑊𝑄 ,𝑊𝐾 and𝑊𝑉 ∈ R𝑑×𝑑 are the query, key and value
transformmatrices respectively.𝑀 is the triangular causal attention

mask, with𝑀𝑖, 𝑗≤𝑖+𝑤 = 0 and𝑀𝑖, 𝑗>𝑖+𝑤 = −∞.

In order to enable the prepended vectors to perceive the SMILES

tokens behind, as illustrated in Figure 3 (b), we modify the standard

attention calculation process in the lower segment, which can be

formalized as:

AttentionLayer(𝐻𝑝 , 𝐻𝑝 , 𝐻𝑝 )

=softmax

(
(𝐻𝑝𝑊𝑄 ) (𝐻𝑝𝑊𝐾 )𝑇√︁

𝑑𝑘

+𝑀′
)
(𝐻𝑝𝑊𝑉 ).

(3)

where𝑀′
denotes the modified attention mask, with𝑀′

𝑖≤𝑤,𝑗≤𝑤+𝑙 =

0,𝑀′
𝑖≤𝑤,𝑗>𝑤+𝑙 = −∞,𝑀′

𝑖>𝑤,𝑗≤𝑖 = 0 and𝑀′
𝑖>𝑤,𝑗>𝑖

= −∞.

SMILES Guided Resampler (SGR). By leveraging the SMILES

guidance, SGR proceeds to jointly resample lengthy graph and

image embeddings into fixed-length structural embeddings, which

integrate the strengths of both molecular views.

SGR consists of multiple transformer layers. Graph embeddings

𝑍𝐺 , image embeddings 𝑍𝐼 and SMILES guidance 𝑍𝑆 are concate-

nated along the sequence dimension to serve as keys and values.

The SMILES guidance 𝑍𝑆 , enriched with LLM’s prior chemical

knowledge, serve as queries:

𝐾𝑒𝑦𝑠,𝑉𝑎𝑙𝑢𝑒𝑠 = [𝑍𝐺 , 𝑍𝐼 , 𝑍𝑆 ] ∈ R𝑏×(𝑛+𝑝+𝑤 )×𝑑 , (4)

𝑄𝑢𝑒𝑟𝑖𝑒𝑠 = 𝑍𝑆 ∈ R𝑏×𝑤×𝑑 , (5)

𝑍 = 𝑆𝐺𝑅(𝑄𝑢𝑒𝑟𝑖𝑒𝑠, 𝐾𝑒𝑦𝑠,𝑉𝑎𝑙𝑢𝑒𝑠) ∈ R𝑏×𝑤×𝑑 . (6)

where the resampling process is conducted through the cross atten-

tion mechanism in SGR’s transformer layers, producing compact

structural embeddings 𝑍 .

Beyond molecular graph and image views, SGR can further ac-

commodate more structural views by simply concatenating their

embeddings with [𝑍𝐺 , 𝑍𝐼 , 𝑍𝑆 ], and serve as keys and values. This

design ensures the extensibility and flexibility of SGR.

Structural Embedding Gate (SEG). Considering the lower and
upper segment of the LLM may contain different number of lay-

ers, namely 𝑏 ≠ 𝑢, we propose the SEG. SEG can flexibly convert

structural embeddings 𝑍 ∈ 𝑅𝑏×𝑤×𝑑
into fixed-length cross-view

prefixes 𝑍 ∈ 𝑅𝑢×𝑤×𝑑
, which are then prepended to the LLM’s

upper segment. These prefixes empower the LLM to understand

molecular structures accurately and comprehensively.

×

×

×

＋

𝑀𝑒𝑎𝑛(·)

𝑀𝑒𝑎𝑛(·)

𝑀𝑒𝑎𝑛(·)

𝐶𝑜𝑛𝑐𝑎𝑡(·) 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(·)
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𝑍…

𝑍#

𝑍"$

Figure 4: The architecture of the Structural Embedding Gate

for the LLM’s Layer𝑖 , which sums 𝑏 groups of 𝑍 𝑗 ∈ R𝑤×𝑑
with

the weighted vector 𝑃𝑖 ∈ R𝑏 to obtain the prefixes 𝑍𝑖 ∈ R𝑤×𝑑
.
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Table 1: Molecule captioning results on PubChem324k and CheBI-20 datasets. Bold denotes the best performance.

Dataset Model Modalities TrainableParams BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

PubChem324k

GPT-4o 𝑺 - , 3-shot 16.5 7.1 30.8 11.3 23.1 22.5

Llama3Instruct8B 𝑺 - , 3-shot 14.4 6.4 30.3 12.8 24.7 20.3

BioT5 𝑺 252M, full ft 42.9 34.3 53.1 39.8 47.5 48.7

MolT5-Large 𝑺 780M, full ft 30.2 22.2 41.5 25.9 34.8 36.6

MoMu-Large 𝑺 + 𝑮 782M, full ft 31.1 22.8 41.8 25.7 36.7 36.2

MolCAGalac1.3B 𝑺 + 𝑮 100M, LoRA ft 38.7 30.3 50.2 35.9 44.5 45.6

CROPGalac1.3B 𝑺 71M, LoRA ft 36.6 29.1 48.7 34.8 43.1 43.5

CROPGalac1.3B 𝑺 + 𝑮 71M, LoRA ft 43.4 35.4 54.0 40.1 48.7 49.5

CROPGalac1.3B 𝑺 + 𝑰 71M, LoRA ft 43.1 34.9 53.5 39.7 48.3 49.1

CROPGalac1.3B 𝑺 + 𝑮 + 𝑰 71M, LoRA ft 44.9 36.7 54.8 41.1 49.5 50.8

CheBI-20

GPT-4o 𝑺 - , 3-shot 21.9 9.8 35.9 13.6 26.7 27.6

Llama3Instruct8B 𝑺 - , 3-shot 20.9 9.4 35.8 15.5 28.9 25.4

MolReGPTGPT4 𝑺 RAG, 10-shot 60.7 52.5 63.4 47.6 56.2 61.0

MolXPT 𝑺 350M, full ft 59.4 50.5 66.0 51.1 59.7 62.6

BioT5 𝑺 252M, full ft 63.5 55.6 69.2 55.9 63.3 65.6

MoMu-Large 𝑺 + 𝑮 782M, full ft 59.9 51.5 - - 59.3 59.7

GIT-Mol 𝑺 + 𝑮 210M, LoRA ft 35.2 26.3 57.5 48.5 56.0 53.3

InstructMol 𝑺 + 𝑮 - , LoRA ft 47.5 37.1 56.6 39.4 50.2 50.9

MolCAGalac1.3B 𝑺 + 𝑮 110M, LoRA ft 62.0 53.1 68.1 53.7 61.8 65.1

CROPGalac1.3B 𝑺 71M, LoRA ft 58.4 49.6 67.0 51.3 60.3 62.7

CROPGalac1.3B 𝑺 + 𝑮 71M, LoRA ft 63.8 55.8 69.0 55.0 63.5 66.1

CROPGalac1.3B 𝑺 + 𝑰 71M, LoRA ft 62.8 54.2 68.9 54.7 62.8 65.8

CROPGalac1.3B 𝑺 + 𝑮 + 𝑰 71M, LoRA ft 64.6 56.2 69.8 55.9 63.9 66.7

Specifically, we sum 𝑏 groups of 𝑍 𝑗 ∈ R𝑤×𝑑
with the weighted

vector 𝑃𝑖 ∈ R𝑏 to obtain the prefixes 𝑍𝑖 ∈ R𝑤×𝑑
for Layer𝑖 in the

LLM’s upper segment, as shown in Figure 4. The calculation is

formalized as follows:

𝑉 = Concat(Mean(𝑍1); . . . ; Mean(𝑍𝑏 )), (7)

𝑃𝑖 = Softmax(Linear𝑖 (𝜎 (𝑉 ))), (8)

𝑍𝑖 = 𝑃𝑖𝑍 . (9)

where 𝑍 𝑗=1,2,...,𝑏 ∈ R𝑤×𝑑
indicates the 𝑗th group of embedding

in 𝑍 . Mean(·) denotes mean pooling along the sequence dimen-

sion, yielding Mean(𝑍 𝑗 ) ∈ R𝑑 . Concat(·) concatenates embeddings

along the hidden dimension, producing 𝑉 ∈ R𝑏𝑑 . 𝜎 (·) is the acti-
vation function. Linear𝑖 (·) has an input dimension of 𝑏𝑑 and an

output dimension of 𝑏, thus 𝑃𝑖 ∈ R𝑏 .
SEG can flexibly convert any 𝑏 groups of structural embeddings

into specified 𝑢 groups of cross-view prefixes, thus the LLM can be

partitioned arbitrarily, where the lower segment is unimodal and

the upper segment is multimodal.

3.3 Training Strategies

As Galactica is primarily pretrained on SMILES, we adopt SMILES

as the molecular sequence view in this research to fully stimulate

Galactica’s prior chemical knowledge. The training process consists

of two stages. In the pretraining stage (Stage 1), CROP performs

the molecule captioning task conditioned on molecular SMILES,

graphs, and images. Molecular graphs and images could be obtained

using the RDKit toolkit according to SMILES. Common data aug-

mentation techniques for images are applied to enhance the LLM’s

ability to leverage the structural information in molecular images.

The primary objective of this stage is to establish initial alignment

between multiple views and the LLM. Therefore, we freeze the

molecular graph encoder, image encoder and the LLM, and focus

on training the bridging modules, including the SMILES guidance,

SGR and SEG. In the fine-tuning stage (Stage 2), to pursue optimal

performance on downstream tasks, in addition to the aforemen-

tioned bridging modules, we unfreeze the molecular graph encoder

and image encoder and utilize LoRA [13] to fine-tune the LLM.

To conduct a fair comparison with baselines and to analyze the

contributions of molecular graphs and images respectively, we

develop four variants of CROP by selectively including different

structural representations alongside SMILES. Specifically, by mask-

ing graph embeddings 𝑍𝐺 or image embeddings 𝑍𝐼 , we develop

CROP(𝑺+𝑮+𝑰 ) , CROP(𝑺+𝑮 ) and CROP(𝑺+𝑰 ) . When all structural

views are excluded, CROP(𝑺 ) reduces to the original Galactica op-

erating only on SMILES input.

4 Experiments

4.1 Experimental Setup

Datasets. We pretrain CROP on PubChem324k’s pretraining

subset [24], which contains about 300k molecule-text pairs of rela-

tively low-quality. For the molecule captioning task, we evaluate
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Table 2: IUPAC name prediction results on PubChem324k (Baseline results are from [24]).

Model Modalities TrainableParams BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

GPT-4o [26] 𝑺 - , 3-shot 42.6 26.1 40.5 13.4 32.6 41.1

Llama3Instruct8B [4] 𝑺 - , 3-shot 31.9 16.0 28.9 5.0 22.3 26.8

BioT5 [27] 𝑺 252M, full ft 79.4 72.6 75.4 55.7 69.5 75.8

GIT-Mol [22] 𝑺 + 𝑮 210M, LoRA ft 58.3 51.7 54.5 32.6 50.2 55.7

MolCAGalac1.3B [24] 𝑺 + 𝑮 100M, LoRA ft 75.0 66.6 69.6 48.2 63.4 72.1

CROPGalac1.3B 𝑺 71M, LoRA ft 74.5 65.9 68.7 47.3 62.5 71.4

CROPGalac1.3B 𝑺 + 𝑮 71M, LoRA ft 80.8 73.2 77.5 57.5 72.0 78.2

CROPGalac1.3B 𝑺 + 𝑰 71M, LoRA ft 80.6 72.7 77.1 56.9 71.4 77.9

CROPGalac1.3B 𝑺 + 𝑮 + 𝑰 71M, LoRA ft 81.5 74.3 78.5 58.6 72.9 78.8

Table 3: Molecule property prediction results on 6 datasets in MoleculeNet. The scaffold splits [40] are adopted. Baseline results

are from their original papers. ROC-AUC scores are calculated across 5 random seeds.

Model Modalities Tox21 ↑ ToxCast ↑ Sider ↑ ClinTox ↑ BBBP ↑ Bace ↑ Mean

KV-PLM [46] 𝑺 72.1±1.0 55.0±1.7 59.8±0.6 - 70.5±0.5 78.5±2.7 67.2

Mole-BERT [35] 𝑮 76.8±0.5 64.3±0.2 62.8±1.1 78.9±3.0 71.9±1.6 80.8±1.4 72.6

MoMu [30] 𝑮 75.6±0.3 63.4±0.5 60.5±0.9 79.9±4.1 70.5±2.0 76.7±2.1 71.1

GIT-Mol [22] 𝑺 + 𝑮 75.9±0.5 66.8±0.5 63.4±0.8 88.3±1.2 73.9±0.6 81.1±1.5 74.9

MolCAGalac1.3B [24] 𝑺 + 𝑮 77.2±0.5 64.5±0.8 63.0±1.7 89.5±0.7 70.0±0.5 79.8±0.5 74.0

CROPGalac1.3B 𝑺 72.6±0.6 58.3±0.7 63.3±1.5 90.8±1.8 71.0±1.5 81.0±1.2 72.8

CROPGalac1.3B 𝑺 + 𝑮 76.2±0.4 60.9±0.6 65.1±0.7 93.7±0.9 71.2±1.0 83.5±0.5 75.1

CROPGalac1.3B 𝑺 + 𝑰 75.4±0.6 60.7±0.4 66.2±1.2 92.0±1.4 72.2±0.8 82.9±0.8 74.9

CROPGalac1.3B 𝑺 + 𝑮 + 𝑰 77.5±0.2 61.4±0.4 67.3±0.7 94.6±0.6 72.6±0.6 84.2±0.7 76.3

CROP’s performance on the standard PubChem324k and CheBI-

20 [5] datasets. For the IUPAC name prediction task, we evaluate

CROP’s performance on the standard PubChem324k dataset. For

the molecule property prediction task, we evaluate CROP’s perfor-

mance on various sub-datasets in MoleculeNet [34]: Tox21, ToxCast,

Sider, ClinTox, BBBP, and Bace, with the scaffold splits [40] adopted.

Implementation Details. CROP is pretrained for 20 epochs and

finetuned for 100 epochs on all downstream task datasets respec-

tively. The best-performing model on the validation set is selected

for testing. To save the context length of the LLM, we experimen-

tally determine the prefix length 𝑤 as 10. We analyze the perfor-

mance of CROP under different partition settings and identify the

optimal partition for each task. Specifically, we set 𝑏 = 12, 𝑢 = 12

in the molecule captioning and molecule property prediction tasks,

and set 𝑏 = 6, 𝑢 = 18 in the IUPAC name prediction task.

4.2 Evaluation on Downstream Tasks

Molecule Captioning. This task requires generating a descrip-

tion about the molecule’s properties, structures, biological activity,

and other characteristics. In the setting with sequence-only in-

put, leading LLMs such as MolT5 [6], MolXPT [25] and BioT5 [27]

are included as baselines. Besides, we report the performance of

GPT-4o and Llama3-Instruct in a few-shot setting to showcase the

current progress of mainstream general-purpose LLMs in the field

of chemistry. MolReGPT [18] is based on GPT4 with the retrieval-

augmented generation (RAG) technique. In the setting with multi-

view input, advanced MLLMs such as MoMu [30], GIT-Mol [22],

InstructMol [2], and MolCA [24] are included as baselines. Among

them, InstructMol employs the LLaVA architecture [21] and MolCA

employs the BLIP-2 [17] architecture.

The results are reported at Table 1. Beyond the original SMILES

view, when utilizing both graph and image views additionally,

CROP(𝑺+𝑮+𝑰 ) achieves the best performance. This highlights the

importance of integrating multiple structural views to provide more

accurate molecular information, which can mitigate the limitations

of relying on a single structural view. When only adopt the graph

view additionally, CROP(𝑺+𝑮 ) still outperforms other models by a

large margin with fewer trainable parameters, highlighting CROP’s

architectural superiority. The superiority primarily stems from two

aspects. First, CROP introduces SMILES guidance when jointly re-

sampling multiple structural views, thereby effectively leveraging

Galactica’s prior chemical knowledge. Second, the generated cross-

view prefixes are prepended to all layers in the upper segment of

the LLM, enabling it to fully interact with the molecular structural

information. In contrast, models such as InstructMol or MolCA

provide structural information from the input embedding layer.

Detailed analysis is provided in the Ablation Studies.

IUPAC Name Prediction. The IUPAC systematic names [9]

are standardized molecular identifiers that take aspects, such as

molecular functional groups and substituents, into account. This
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CROP(𝑺 + 𝑮 + 𝑰)CROP(𝑺 + 𝑮)Ground Truth
The molecule is a 
monomethoxyflavanone that is (2S)-
flavanone substituted by a methoxy 
group at position 5, hydroxy groups at 
positions 7 and 4' and a 3-hydroxy-3-
methylbut-1-en-1-yl group at position 
8…

The molecule is a 
monomethoxyflavanone that is (2S)-
flavanone substituted by a methoxy 
group at position 5, a hydroxy group at 
position 7, a hydroxy group at position 
8 and a 3-hydroxy-3-methylbut-1-en-
1-yl group at position 6…

The molecule is a 
monomethoxyflavanone that is (2S)-
flavanone substituted by a methoxy 
group at position 5, hydroxy groups at 
positions 7 and 4' and a 3-hydroxy-3-
methylbut-1-en-1-yl group at position 
8…

The molecule is a branched amino 
heptasaccharide consisting of a linear 
sequence of … beta-D-galactosyl and 
N-acetyl-beta-D-glucosamine residues 
linked respectively (2->3), (1->3), (1-
>3) and (1->4), to each N-acetyl-beta-
D-glucosamine residue of which is 
also linked an alpha-L-fucosyl
residue…

The molecule is a branched amino 
heptasaccharide consisting of a linear 
sequence of … beta-D-galactosyl and 
N-acetyl-beta-D-glucosaminyl 
residues, linked (2->3), (1->4), (1->3) 
and (1->3), to each N-acetyl-beta-D-
glucosaminyl residue of which is also 
linked an alpha-L-fucosyl residue…

The molecule is a branched amino 
heptasaccharide consisting of a linear 
sequence of … beta-D-galactosyl and 
N-acetyl-beta-D-glucosamine residues 
linked respectively (2->3), (1->3), (1-
>3) and (1->4), to each N-acetyl-beta-
D-glucosamine residue of which is 
also linked (1->4) an alpha-L-fucosyl
residue…

Figure 5: The captions generated by CROP(𝑺+𝑮 ) and CROP(𝑺+𝑮+𝑰 ) on example molecules. CROP(𝑺+𝑮+𝑰 ) provides more accurate

descriptions of substituent positions, types, and the connectivity of branched structures in molecules.

task aims at predicting IUPAC name strings from other molecular

representations, thus requiring accurately understanding molecular

complex structures. CROP(𝑺+𝑮+𝑰 ) outperforms MolCA by 6.5 in

BLEU-2 score, as shown in Table 2.

Molecule Property Prediction. This task involves judging a

molecule’s potential toxicity and other properties based on its struc-

ture. Cross-view prefixes and SMILES hidden states from the LLM’s

last layer are passed through a separate linear head for classification.

As shown in Table 3, on six datasets in MoleculeNet, CROP(𝑺+𝑮+𝑰 )
outperforms GIT-Mol by 1.4 ROC-AUC scores on average.

4.3 Ablation Studies

Effectiveness of Integrating Topological and Spatial Struc-
tural Views. The structures of molecules can be categorized into

two types: topological and spatial structures. However, previous

MLLMs primarily focus on the graph view, which emphasizes topo-

logical relationships, while neglecting the image view, which excels

at capturing molecular spatial configurations. In this section, we

highlight the benefits of jointly considering the two types of struc-

tural information conveyed in molecular graphs and images respec-

tively. As shown in Table 1, compared to CROP(𝑺 ) , CROP(𝑺+𝑮 )
achieves a 6.8 BLEU-2 score improvement on PubChem324k and a

5.4 BLEU-2 score improvement on CheBI-20. Similarly, CROP(𝑺+𝑰 )
improves the BLEU-2 score by 6.5 on PubChem324k and 4.4 on

CheBI-20. This demonstrates that incorporating either molecular

graphs or images independently can enhance the LLM’s comprehen-

sion of molecular structures. Furthermore, when both graph and im-

age views are introduced, CROP(𝑺+𝑮+𝑰 ) outperforms CROP(𝑺+𝑮 )
and CROP(𝑺+𝑰 ) by a large margin, demonstrating the limitations of

relying solely on a single structural view. For a more detailed anal-

ysis, we compare the quality of captions generated by CROP(𝑺+𝑮 )
and CROP(𝑺+𝑮+𝑰 ) for molecules of different complexity, which is

measured by the length of SMILES. As illustrated in Figure 6 (Left),

molecular images enhance the performance of CROP particularly

on more complex molecules.

Some examples are provided in Figure 5, where it can be observed

that CROP, by incorporating images, is able to more accurately

describe the substituent positions and the spatial interconnectivity

of units in complex molecules. Therefore, in this work, we also

reveal the effectiveness of molecular images in generative tasks.

Effectiveness of SGR. The effectiveness of SGR stems from its

use of SMILES guidance to guide the resampling process, which is

derived from the LLM and enriched with prior chemical knowledge.

To validate the role of SMILES guidance in boosting the quality of

the derived cross-view prefixes, we replace SGR with an alterna-

tive resampler, in which the SMILES guidance is substituted with

learnable vectors which are randomly initialized. This variant is

referred to as CROPw/o sgr. Without the need to obtain SMILES

guidance during the forward propagation, the LLM does not need

to be partitioned into two segments, allowing us to prepend the

cross-view prefixes to all layers of the LLM. We compare the perfor-

mance of CROP and CROPw/o sgr when adopting both graph and

image views. As shown in Table 4, CROP consistently outperforms

CROPw/o sgr across diverse tasks. In addition, we also find that

Figure 6: (Left) The distinct BLEU-2 scores in different

SMILES length ranges on the PubChem324k molecule cap-

tioning dataset. (Right) The distinct metric curves of CROP

and CROPw/o sgr on the PubChem324k molecule captioning

validation set during finetuning.
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Table 4: Ablation results on the molecule captioning, IUPAC

name prediction and molecule property prediction tasks. All

experiments are conducted with 𝑺, 𝑮, 𝑰 as input simultane-

ously. The second lines denote CROPw/o sgr and the third

lines denote CROPw/o seg.

CROP Molecule Captioning

SGR SEG BLEU2 BLEU4 ROUGE1 ROUGE2 ROUGEL METEOR

✓ ✓ 44.9 36.7 54.8 41.1 49.5 50.8

✓ 42.4 33.5 52.4 38.9 48.1 48.1

✓ 44.2 36.2 54.0 40.7 48.4 50.2

CROP IUPAC Name Prediction

SGR SEG BLEU2 BLEU4 ROUGE1 ROUGE2 ROUGEL METEOR

✓ ✓ 81.5 74.3 78.5 58.6 72.9 78.8

✓ 78.5 71.8 76.4 56.2 71.2 77.3

✓ 80.7 73.6 77.9 58.1 72.3 78.4

CROP Molecule Property Prediction

SGR SEG Tox21 ToxCast Sider ClinTox BBBP Bace

✓ ✓ 77.5 61.4 67.3 94.6 72.6 84.2

✓ 75.4 60.2 66.4 92.1 71.6 82.7

✓ 76.2 60.8 66.9 94.0 72.1 83.4

CROP converges much faster particularly in the initial stage, and

reaches the optimum state earlier than CROPw/o sgr during the fine-

tuning process, as illustrated in Figure 6 (Right). These demonstrate

the effectiveness of SGR when utilizing SMILES guidance.

Effectiveness of SEG. SEG enables converting any 𝑏 groups

of structural embeddings 𝑍 ∈ R𝑏×𝑤×𝑑
into specified 𝑢 groups of

cross-view prefixes𝑍 ∈ R𝑢×𝑤×𝑑
, thus allowing the LLM to be parti-

tioned arbitrarily. However, when 𝑏 = 𝑢, an alternative is to directly

prepend 𝑍 into the LLM’s upper segment, namely discarding the

SEG. In this condition, we compare the performance of CROP and

CROPw/o seg, where 𝑍 passes through and bypasses SEG, respec-

tively. As shown in Table 4, CROP outperforms CROPw/o seg across

diverse tasks. Due to the varying structural features conveyed by

each group of 𝑍 , SEG combines these groups to generate cross-

view prefixes 𝑍 , enabling each prefix to encapsulate comprehensive

structural information and thereby enhancing the LLM’s ability to

understand molecular structures more accurately.

Figure 7: The experimental results of different partition set-

tings for the LLM. (Left) The pre-training loss curves. (Right)

The test results of four molecular tasks.

Table 5: The comparison in terms of computational cost

across four models on the PubChem324k molecule caption-

ing dataset. The metrics include the average length of cross-

view prefixes, average FLOPs for these prefixes and training

time on the PubChem324k molecule captioning dataset.

Model BLEU-2

Avg. Prefixes

(Count)

Avg. FLOPs

(Billions)

Train. Time

(Hours)

Galactica 36.6 - - 5.37

CROParch1 42.8 288 353.52 7.14

CROParch2 41.5 20 24.20 5.86

CROParch3 44.9 10 14.05 5.53

Impact of Different LLM Partitions. Galactica consists of 24
layers in total. We compare five CROP variants with (𝑏,𝑢) set
to (1, 23), (6, 18), (12, 12), (18, 6), and (23, 1), respectively. As il-
lustrated in Figure 7, CROP𝑏=12,𝑢=12 performs best on the Pub-

Chem324k and CheBI-20molecule captioning datasets. Additionally,

CROP𝑏=6,𝑢=18 performs best on the PubChem324k IUPAC name

prediction dataset. Increasing 𝑏 provides more groups of SMILES

guidance for SGR, facilitating the resampling process. Conversely,

increasing 𝑢 allows more LLM layers to leverage cross-view pre-

fixes, enhancing the utilization of structural information. There is a

trade-off between 𝑏 and 𝑢 for different tasks, with generally better

performance achieved when 𝑏 and 𝑢 are nearly balanced.

Efficiency Analysis. We compare the performance of CROP

with three different architectures, as shown in Figure 2 (arch1,
arch2 and arch3), under the setting of inputting 𝑺 , 𝑮 and 𝑰 simul-

taneously. Galactica serves as the common baseline, processing

only 𝑺 . The results are shown in Table 5. Compared to Galactica,

three variants of CROP achieve significant improvements. Among

them, CROParch3 achieves superior performance with shorter cross-

view prefixes, fewer additional FLOPs, and smaller training time

overhead. Specifically, compared to CROParch1, CROParch3 reduces

the length of cross-view prefixes by 96.5%, the additional average

number of FLOPs by 96.0% and the training time by 22.5%. This

demonstrates the architectural advantages of CROParch3, includ-

ing utilizing SMILES guidance during the resampling to boost the

quality of derived cross-view prefixes, and prepending prefixes to

multiple LLM layers to promote structural information utilization.

5 Conclusion

In this work, we identify the fundamental limitations of relying

solely on the molecular graph view, and propose CROP, an in-

novative and scalable MLLM architecture that can integrate both

topological and spatial structural views to jointly advance molecu-

lar understanding while maintaining computational efficiency. We

primarily explore enhancing LLMs by integrating molecular graphs

and images, which are representative topological and spatial views

respectively, and highlight the impressive effectiveness of molecu-

lar images for enhancing the performance of LLMs in generative

tasks. In future research, we will consider fine-tuning CROP on

large-scale molecular instruction datasets, and integrating more

representative molecular views into the CROP.
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