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Abstract
Sparse Mixture of Experts (sMoE) has become a pivotal approach
for scaling large vision-language models, offering substantial capac-
ity while maintaining computational efficiency through dynamic,
sparse activation of experts. However, existing routing mechanisms,
typically based on similarity scoring, struggle to effectively capture
the underlying input structure. This limitation leads to a trade-off
between expert specialization and balanced computation, hinder-
ing both scalability and performance. We propose Input Domain
Aware MoE, a novel routing framework that leverages a probabilis-
tic mixture model to better partition the input space. By model-
ing routing probabilities as a mixture of distributions, our method
enables experts to develop clear specialization boundaries while
achieving balanced utilization. Unlike conventional approaches,
our routing mechanism is trained independently of task-specific
objectives, allowing for stable optimization and decisive expert
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assignments. Empirical results on vision-language tasks demon-
strate that our method consistently outperforms existing sMoE
approaches, achieving higher task performance and improved ex-
pert utilization balance.
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Keywords
Large Multimodal Model; Visual Question Answering; Mixture of
Experts; Load Balancing
ACM Reference Format:
YongXiang Hua, Haoyu Cao, Zhou Tao, Bocheng Li, Zihao Wu, Chaohu
Liu, and Linli Xu. 2025. Input Domain Aware MoE: Decoupling Routing
Decisions from Task Optimization in Mixture of Experts. In Proceedings
of the 33rd ACM International Conference on Multimedia (MM ’25), October
27–31, 2025, Dublin, Ireland. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3746027.3755754

1 Introduction
Vision-language models (VLMs) have demonstrated remarkable
capabilities, but their immense computational demands pose signif-
icant scaling challenges. To address this, sparsely-gated Mixture-of-
Experts (sMoE) was introduced in Large Language Models (LLMs)
[22] and has since established itself as a dominant solution, find-
ing widespread applications across models of varying scales and
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(a) Comparative analysis of IDA-MoE
against various routing mechanisms
implemented in LLaVA MoE

(b) Performance evaluation of IDA-
MoE versus sota open-source models
of comparable parameter size (2B)

Figure 1: Benchmark performance of IDA-MoE (ours) across
visual question answering and multimodal reasoning tasks.
The left panel (Fig. 1a) illustrates the effectiveness of dif-
ferent MoE routing implementations, while the right panel
(Fig. 1b) demonstrates comparative performance against
models of similar computational scale.

domains[4, 8, 13, 34, 58, 63, 65]. At its core, sMoE employs condi-
tional computation where each input token activates only a subset
of specialized experts through a learned routing function, effec-
tively reducing computational overhead while maintaining model
capacity. However, the effectiveness of this approach ultimately
hinges on the routing mechanism that assigns inputs to experts.

Various routing methods have been proposed. Among them, the
predominant approaches [8, 10, 22, 32, 39] rely on similarity-based
scoring, where routing probabilities are computed through soft-
max over token-expert alignment scores. This mechanism, trained
end-to-end with the task objective, tends to develop a strong bias
towards routing tokens to high-performing experts, creating a feed-
back loop that exacerbates load imbalance. To mitigate this, conven-
tional approaches introduce auxiliary load balancing objectives[22,
47, 70] that push per-token routing distributions toward uniformity
across experts. However, this creates a fundamental contradiction:
while the core principle of sMoE emphasizes specialized experts
through conditional computation, load balancing forces indiscrimi-
nate token distribution, inevitably undermining expert specializa-
tion. This unresolved tension manifests in two critical problems:
during training, routing instability leads to frequent changes in
token-expert assignments, severely impacting sample efficiency
[9, 70]; during inference, ambiguous routing decisions result in
suboptimal expert selection, compromising model performance and
robustness to distribution shifts [53, 57].

The root cause lies in coupling routing decisions with task opti-
mization, which makes it contradictory to achieve balanced token
allocation while preserving sharp, decisive routing. Specifically,
when experts are evaluated solely on their contribution to the final
loss, the system naturally concentrates computation on a small
subset of versatile experts rather than developing complementary
specializations(analysed in Section 3.2). This suggests a fundamen-
tal need to decouple routing from task-specific learning signals and
instead ground it in the inherent structure of the input distribution.

To this end, we propose Input Domain Aware MoE (IDA-MoE),
which explicitly models the input space through a Gaussian Mix-
ture Model (GMM) to create natural, data-driven routing bound-
aries. This probabilistic framework partitions inputs based on their
distribution characteristics rather than loss contributions, where
routing decisions are guided by the posterior probabilities rather
than learned similarity scores, enabling experts to develop clear spe-
cializations while maintaining balanced utilization. By associating
each expert with multiple mixture components (i.e., regions of the
input distribution) rather than learning routing directly from task
objectives, our approach creates a flexible mapping between input
domains and expert specializations. This decoupling allows inde-
pendent optimization of expert workload distribution (controlled by
mixture priors 𝑃 (𝑘)) while maintaining sharp, distribution-aware
token routing - achieving load balance as an emergent property
rather than an enforced constraint. Our contributions in this work
are threefold.

• First, we present a systematic analysis of existing MoE rout-
ing mechanisms, revealing the fundamental dilemma: the
coupling between routing and task objectives inherently
drives load imbalance, while conventional mitigation strate-
gies often compromise training stability and prevent effective
expert specialization.

• Second, we introduce Input Domain Aware MoE (IDA-MoE),
a novel architecture that explicitly models input distribution
through probabilistic mixture modeling, effectively decou-
pling routing decisions from task optimization while main-
taining precise expert specialization.

• Third, through comprehensive experiments across multi-
ple vision-language tasks, we demonstrate that IDA-MoE
achieves superior performance compared to traditional rout-
ing approaches, exhibiting improved training stability, better
expert utilization, and enhanced performance on VQA bench-
marks.

2 Related Works
Large Vision-LanguageModels. The emergence of powerful Large

Language Models (LLMs) has enabled a new paradigm for mul-
timodal learning, where frozen LLMs act as reasoning engines
for vision-language tasks. Early approaches like BLIP-2[24] and
LLaVA[37, 38] proposed lightweight adapters (e.g., Q-Former, MLP
projectors) to map visual features from pretrained encoders (e.g.,
CLIP[43]) into the LLM’s token space. This adapter-based para-
digm has achieved substantial performance gains across diverse
vision-language tasks. Recent works [2, 5, 6, 11, 12, 14, 48, 62] con-
tinue this paradigm by aggressively scaling both model parameters
and training data. While this leads to improved capabilities, it also
makes training and inference prohibitively expensive. To address
these computational challenges, researchers have explored sparse
Mixture of Experts (sMoE) architectures, which are adopted both in
pre-training [2, 3, 59] and via efficient upcycling of dense models
[21, 25, 27, 30, 50, 56, 60] in multimodal context. Despite these ad-
vances, sMoE architectures face significant load balancing problems.
This challenge is particularly pronounced in multimodal contexts,
as inputs from the same modality tend to activate identical expert
pathways, further exacerbating the load imbalance problem.
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Mixture-of-Experts, particularly Sparse Mixture-of-Experts, was
introduced to large language models by Gshard[22] and refined in
subsequent works [8, 10, 19, 32, 55, 61]. This architecture enables
capacity scaling while preserving computational efficiency through
selective expert activation. Since its introduction, sparse Mixture-
of-Experts models have faced persistent challenges with the load
imbalance problem. The predominant approaches rely on Auxil-
iary Losses, which penalize imbalanced expert utilization based
on token allocation fractions[10, 22, 32], Coefficient of Variance
of token allocation[47] or routing entropy[49]. However, multiple
studies [9, 53, 57] demonstrate that auxiliary losses can significantly
impair training stability and model performance. st-MoE[70] intro-
duced Router-z Loss to stabilize training. Recent approaches such as
Auxiliary-free-MoE[53] and Deepseek-v3[33] attempt to mitigate
the side effects of load balancing loss through introducing prior dis-
tribution correction. Another line of work achieves Runtime Load
Balancing via token dropping [10] or sophisticated system-level
approaches that involve dynamic resource allocation or predictive
scheduling[16, 20, 42, 54]. Nevertheless, these methods have yet to
achieve an optimal balance between computational efficiency and
model performance in multimodal settings. In contrast to previous
approaches, our work addresses the fundamental tension between
expert specialization and computational balance by introducing a
novel routing mechanism that enables effective specialization while
maintaining efficient resource utilization.

3 The Specialization-Balance Dilemma
In this section, we delve into a fundamental challenge of stan-
dard Sparse Mixture-of-Experts(sMoE) architectures: the inherent
tension between achieving expert specialization and maintaining
balanced computation. We first provide the necessary background
on the standard sMoE architecture and token-choice gating mecha-
nism (Section 3.1). Then, we analyze how coupling routing decisions
directly with task optimization promotes expert specialization but
results in inevitable load imbalance (Section 3.2). Finally, we exam-
ine how conventional auxiliary load balancing loss compromises
specialization and stability, thus revealing the core dilemma (Sec-
tion 3.3).

3.1 Sparse Mixture of Experts
In modern transformer architectures, Sparse Mixture of Experts
(sMoE) represents a powerful approach to scaling model capacity
whilemaintaining computational efficiency. sMoE typically replaces
the standard feedforward network (FFN) with a set of expert net-
works, where each input token is dynamically routed to a small
subset of these experts based on its content.

Consider a standard 𝐿-layer Transformer processing an input
sequence 𝑋 ∈ R𝑇×𝑑 with𝑇 tokens and embedding dimension 𝑑 . At
each layer 𝑙 , let h𝑙𝑡 represent the hidden state for token 𝑡 , and u𝑙𝑡
represent the intermediate representation after self-attention:

u𝑙𝑡 = SelfAttn(h𝑙−1) + h𝑙−1
𝑡 (1)

h𝑙𝑡 = FFN(u𝑙𝑡 ) + u𝑙𝑡 (2)

In sMoE-based transformers, the FFN module is replaced with a
dynamic mixture of expert networks:

h𝑙𝑡 =
𝑘∑︁
𝑖=1

G(u𝑙𝑡 , e𝑖 ) · FFN𝑖 (u𝑙𝑡 ) + u𝑙𝑡 (3)

where G(·, e𝑖 ) computes routing scores measuring token-expert
compatibility, with e𝑖 representing routing parameters of expert 𝑖 ,
and FFN𝑖 (·) represents the 𝑖-th expert network. For simplicity, we
note𝑀𝑜𝐸 (u𝑙𝑡 ) =

∑𝑘
𝑖=1 G(u𝑙𝑡 , e𝑖 ) · FFN𝑖 (u𝑙𝑡 ).

The choice of gating function is crucial for dynamic expert se-
lection. The predominant approach in large language and vision-
language models is Token-Choice Gating, where each token inde-
pendently selects its preferred top-𝑘 experts based on compatibility
scores. While alternative routing strategies exist, they present vari-
ous trade-offs. For instance, Expert-Choice Gating [67, 68] enforces
uniform expert workload but risks uneven token coverage and
violates the causal constraints of language modeling [53], while
Non-trainable Gating [44, 45, 71] offers balanced computation via
static or randomized routing at the cost of adaptability. Considering
these trade-offs, our work focuses on Token-Choice Gating, which
computes routing weights as:

p𝑡 = Softmax(u𝑙−1
𝑡 · [e1, . . . , e𝐾 ]) (4)

G(u𝑙−1
𝑡 , e𝑖 ) = 𝛿𝑡,𝑖 · p𝑡,𝑖 (5)

where p𝑡 represents the routing distribution for token 𝑡 , with each
element p𝑡,𝑖 measuring the token-expert compatibility. 𝛿𝑡,𝑖 is a
binary indicator, which equals 1 only when expert 𝑖 is among the
top-𝑘 highest-probability experts for token 𝑡 .

3.2 Load Imbalance
Load imbalance is a persistent and critical challenge in sMoEmodels.
Numerous studies [8, 10, 22, 47, 53, 68] observe that computation is
often heavily skewed in practice, with a small subset of experts pro-
cessing a disproportionate fraction of tokens while others remain
largely inactive. This disparity significantly compromises parame-
ter efficiency, computation utilization, and the overall model scaling
potential. While previous works have attempted to mitigate this
issue through auxiliary load balancing losses (discussed in Sec-
tion 3.3), we demonstrate that load imbalance is not merely an
implementation side-effect, but an inherent consequence of the un-
derlying sMoE training dynamics. By analyzing how the task loss
L influences the expert parameters e𝑖 , which in turn determine
routing probabilities, we can reveal the fundamental mechanisms
that drive this imbalance. Specifically, the gradient of the task loss
with respect to e𝑖 is given by:

∇e𝑖L =

𝑇∑︁
𝑡=1

𝛿𝑡,𝑖p𝑡,𝑖 · (𝜇𝑡,𝑖 − 𝜇𝑡 ) · u𝑙−1
𝑡 (6)

𝜇𝑡,𝑖 =
𝜕L

𝜕MoE(u𝑙−1
𝑡 )

· FFN𝑖 (u𝑙−1
𝑡 ) (7)

𝜇𝑡 =
𝜕L

𝜕MoE(u𝑙−1
𝑡 )

·MoE(u𝑙−1
𝑡 ) (8)

where 𝜇𝑡,𝑖 quantifies how effectively expert 𝑖 processes token 𝑡
through task-specific loss gradients, while 𝜇𝑡 represents the average
effectiveness of the activated experts for that token. This gradient
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(a) Token-Expert Allocation before
load-balancing

(b) Token-Expert Allocation after
load-balancing

Figure 2: Illustration of load balancing loss effects. Experts
colored circles and their corresponding token assignments
colored dots in matching colors. The transition from Fig. 2a
to Fig. 2b simulates the effect of load balancing loss. Token
embeddings are pushed toward and accumulated around de-
cision boundaries.

dictates updates to the routing parameters e𝑖 , thereby shaping
future routing probabilities p𝑡 ′,𝑖 for similar tokens 𝑡 ′.

Careful examination of this gradient reveals several intercon-
nected factors that systematically drive expert imbalance. 1) Rela-
tive Performance Steering: Updates are steered by the relative
performance metric (𝜇𝑡,𝑖 − 𝜇𝑡 ), and e𝑖 is preferentially updated to-
wards alignment with tokens where expert 𝑖 outperforms its peers
in loss reduction. This leads to expert specialization but also con-
centrates tokens around already-competent experts. 2) Probability
Amplification: The expert concentration is amplified by the prob-
ability amplification factor p𝑡,𝑖 in Eq. (6), as experts already deemed
more suitable for certain tokens receive proportionally stronger
gradient updates, creating a multiplicative effect that rapidly am-
plifies small initial advantages. 3) Hard Gating Exclusion: The
Top-K selection mechanism exacerbates the imbalance by com-
pletely blocking updates for non-selected experts. This prevents
adaptation for less-utilized experts and can lead to permanently
underutilized or “dead” experts, especially during distribution shifts
in training.

In conjunction, the mechanisms of performance biased steering,
probability amplified updates, and hard gating interact to create a
powerful positive feedback loop that systematically reinforces ini-
tial imbalances across the expert pool. Experts gaining an early lead
attract more tokens and stronger updates, solidifying their domi-
nance, while less favored experts become progressively starved of
both data and meaningful gradients, leading to severe and poten-
tially irreversible load imbalance. This “rich-get-richer” dynamic
demonstrates that load imbalance is fundamentally intertwined
with optimizing routing directly via task performance feedback.

3.3 The Specialization-Balance Dilemma
To counteract the inherent load imbalance described previously,
the standard practice in sMoE models involves incorporating an
auxiliary load balancing loss [10, 19, 22, 30, 32]. One of the most
prominent form is:

LBalance = 𝛼

𝑁∑︁
𝑖=1

𝑓𝑖p𝑖 (9)

(a) Routing Probability of MoE LLaVA

(b) Routing Probability of IDA MoE

Figure 3: Routing probability heatmaps of the last MoE layer
for the same input sequence. The x-axis represents token
indices, the y-axis represents expert indices, and the color in-
tensity indicates the probability of assigning the 𝑖-th token to
the 𝑗-th expert. Note how IDA-MoE (b) exhibits significantly
more decisive routing patterns with clearer token-expert
affinities compared to the conventional approach (a).

𝑓𝑖 =
𝑁

𝐾𝑇

𝑇∑︁
𝑡=1

𝛿𝑡,𝑖 (10)

p𝑖 =
1
𝑇

𝑇∑︁
𝑡=1

p𝑡,𝑖 (11)

where 𝑁 is the total number of experts, 𝐾 is the number of experts
selected for each token, 𝑓𝑖 represents the fraction of tokens routed
to expert 𝑖 , and 𝛼 is a hyper-parameter controlling the strength of
the auxiliary loss.

This balancing loss introduces a fundamental specialization-
balance dilemma: while effective expert specialization requires
the router to make decisive assignments through sharply peaked
routing probabilities p𝑡,𝑖 (directing each token confidently to its
most appropriate experts), the auxiliary loss actively counteracts
this tendency by penalizing concentrated allocations to achieve
more balanced token distribution across the expert pool.

Specifically, auxiliary loss seeks to balance the workload 𝑓𝑖 across
experts primarily by penalizing high routing probabilities p𝑡,𝑖 . As
illustrated in Fig. 2, this loss redistributes tokens from overloaded
experts to underutilized ones by pushing them across decision
boundaries. However, this redistribution creates an unintended side
effect: tokens tend to accumulate near routing decision boundaries
(Fig. 2b), leading to ambiguous expert assignments and suboptimal
performance during both training and inference.

Specifically, during training, tokens near boundaries may fre-
quently switch assigned experts due to the competing pressures
of task optimization and the load balancing loss, hindering both
training stability and expert specialization. During inference, as
illustrated in Fig. 3, auxiliary losses typically produce high-entropy
routing distributions, where token-expert assignment probabilities
appear less distinct compared to an ideal sharp routing (Fig. 3b).
Such ambiguous routing creates inherent robustness issues. As
prior research [53, 57] suggest, models with less decisive routing
are more susceptible to performance degradation under input noise
or distribution shifts, as small perturbations can easily alter routing
decisions and consequently change model behavior.

Therefore, while conventional auxiliary losses successfully en-
force load balance, they do so by fundamentally compromising the
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ℎ1 ℎ2 ℎ1 ℎ2

Router Router

FFN1 FFN2 FFN3 FFN4

Add + NormalizeAdd + Normalize

FFN1 FFN2 FFN3 FFN4

Encoder Encoder

𝑢1 𝑢1 𝑢2𝑢2

Figure 4: Comparison between IDA-MoE and traditional MoE routing. (Left) IDA-MoE: Input token representations (u1,u2 )
are projected into a lower-dimensional routing space where their distribution is modeled into distinct clusters. Tokens are
routed to specific experts based on their cluster index, effectively decoupling routing decisions from task-specific optimization.
(Right) Traditional MoE: A learned router module directly calculates token-expert affinities (classification-style) to determine
expert assignments, typically trained end-to-end with the task objective.

model’s ability to specialize effectively. The resulting trade-off nega-
tively impacts both training stability and inference robustness. This
highlights the critical need for alternative routing strategies that
can achieve balanced computation by directly addressing the input
space structure, thereby preserving the sharpness and integrity of
specialized expert routing.

4 Method
We propose Input Domain-Aware Mixture of Experts (IDA-MoE), a
novel approach designed to achieve effective expert specialization
and natural load balancing by decoupling routing decisions from
task optimization and instead grounding them in the inherent struc-
ture of the input token distribution. Our method consists of three
key components: (1) A Gaussian Mixture Model that captures the
underlying distribution of input tokens in a low-dimensional space,
(2) A component-based expert routing mechanism that leverages
this probabilistic distribution model to make more informed and
stable routing decisions, and (3) A component reactivation strat-
egy that accelerates model convergence by addressing the uneven
learning dynamics.

4.1 Decoupled Input Distribution Modeling
To efficiently model the input distribution while avoiding the curse
of dimensionality, we first project the token representations 𝑢𝑙−1

into a lower-dimensional latent space using a simple autoencoder
network:

z𝑡 = Encoder(sg(u𝑙−1)) (12)

where sg() stand for stop gradient. This encoder is trained concur-
rently with the main model using a reconstruction loss to preserve
the underlying input structure:

LAE = ∥sg(u𝑙−1) − Decoder(z𝑡 )∥2 (13)

Within this compressed routing space, we model the input data
distribution using a Gaussian Mixture Model (GMM). To enable
experts to capture the intricacy of the underlying input structure,
we associate the input domain of each expert with𝑀 fine-grained
GMM components rather than a single Gaussian distribution. Thus,
the overall distribution of the routing space can be formulated as:

𝑝 (z𝑡 ) =
𝑁∑︁
𝑖=1

𝑀∑︁
𝑚=1

𝝅𝑖,𝑚N(z𝑡 |𝝁𝑖,𝑚, 𝚺𝑖,𝑚) (14)

where 𝝅𝑖,𝑚 denotes the mixing coefficient, and 𝝁𝑖,𝑚 , 𝚺𝑖,𝑚 are the
mean and covariance of the𝑚-th component for the 𝑖-th expert.

The GMM is trained jointly with the backbone model by mini-
mizing the negative log-likelihood of the observed token represen-
tations under the mixture distribution:

LGMM = −
𝑇∑︁
𝑡=1

log

(
𝑁∑︁
𝑖=1

𝑀∑︁
𝑚=1

𝝅𝑖,𝑚N(sg(z𝑡 ) |𝝁𝑖,𝑚, 𝚺𝑖,𝑚)
)

(15)

4.2 Component-Based Expert Routing
Standard MoE layers typically route each token to 𝑘 ≥ 1 experts.
To implement top-𝑘 routing, IDA-MoE employs 𝑘 independent
sets of expert-associated GMM parameters as described in Sec-
tion 4.1. Each GMM set 𝑗 ∈ {1, . . . , 𝑘} contains parameter triplets
(𝝅 𝑗,𝑖,𝑚, 𝝁 𝑗,𝑖,𝑚, 𝚺 𝑗,𝑖,𝑚) and is trained using an independent NLL loss
LGMM𝑗

. This allows IDA-MoE to make 𝑘 distinct expert selections
for each token based on potentially different distributional perspec-
tives captured by each GMM set. This implementation introduces
minimal overhead due to the low dimensionality of z𝑡 . The routing
process for a token u𝑡 with latent representation z𝑡 proceeds as
follows:
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Calculate Posteriors: For each selection rank 𝑗 , we use the corre-
sponding 𝑗-th GMM parameter set to compute the posterior proba-
bility 𝑃 𝑗 (𝑖,𝑚 |z𝑡 ). This posterior quantifies the likelihood that the
latent token z𝑡 belongs to component𝑚 associated with expert 𝑖:

𝑃 𝑗 (𝑖,𝑚 |z𝑡 ) =
𝝅 𝑗,𝑖,𝑚N(z𝑡 |𝝁 𝑗,𝑖,𝑚, 𝚺 𝑗,𝑖,𝑚)∑𝑁

𝑖′=1
∑𝑀
𝑚′=1 𝝅 𝑗,𝑖′,𝑚′N(z𝑡 |𝝁 𝑗,𝑖′,𝑚′ , 𝚺 𝑗,𝑖′,𝑚′ )

(16)

Select Top Experts: For each rank 𝑗 , we determine the expert 𝑖∗
𝑡, 𝑗

whose components maximize the posterior probability for z𝑡 .

𝑃∗𝑗 (𝑖, z𝑡 ) = max
𝑚∈{1,...,𝑀 }

𝑃 𝑗 (𝑖,𝑚 |z𝑡 ) ∀𝑖 ∈ {1, . . . , 𝑁 } (17)

𝑖∗𝑡, 𝑗 = arg max
𝑖∈{1,...,𝑁 }

𝑃∗𝑗 (𝑖, z𝑡 ) (18)

This yields a set of 𝑘 selected expert indices I𝑡 = {𝑖∗
𝑡,1, . . . , 𝑖

∗
𝑡,𝑘

}
and a corresponding vector of their maximum posterior scores
P∗𝑡 = [𝑃∗1 (𝑖

∗
𝑡,1, z𝑡 ), . . . , 𝑃

∗
𝑘
(𝑖∗
𝑡,𝑘
, z𝑡 )].

Calculate Gating Weights: We compute the final gating weights
by applying the softmax function across the vector of maximum
posterior scores P∗𝑡 corresponding to the 𝑘 selected experts:

G𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (P∗𝑡 ) (19)

Final Output Calculation: The output of the IDA-MoE layer for
token u𝑡 is the weighted sum of the outputs from the 𝑘 selected
expert networks, using the calculated gating weights:

MoE(u𝑡 ) =
𝑘∑︁
𝑗=1

G𝑡, 𝑗 · FFN𝑖∗
𝑡,𝑗
(u𝑡 ) (20)

These gating weights are derived directly from the input distribu-
tion via the GMM posteriors, ensuring that routing remains de-
coupled from the final task optimization, breaking the problematic
feedback loop described in Section 3.2.

4.3 Component Reactivation Strategy
GMM training via minimizing the NLL loss (Eq.(15)) can suffer from
uneven convergence rates across mixture components. Consider
the gradient with respect to the mean 𝝁𝑘 of a specific component
𝑘 = ( 𝑗, 𝑖,𝑚):

𝜕LGMM
𝜕𝝁𝑘

= −
𝑇∑︁
𝑡=1

(
𝝅𝑘N(z𝑡 |𝝁𝑘 , 𝚺𝑘 )

𝑝 (z𝑡 )

)
︸                   ︷︷                   ︸

p𝑡𝑘 : Posterior

𝚺
−1
𝑘

(z𝑡 − 𝝁𝑘 ) (21)

As shown in Eq.(21), the gradient for component 𝑘 is weighted by
its posterior probability given the data z𝑡 . Components initialized
in sparse regions of the feature space may consistently yield very
low posterior probabilities (p𝑡𝑘 ≈ 0),leading to extremely slow
convergence for those parameters, hindering the GMM’s ability to
fully capture the complete input distribution efficiently.

To accelerate the convergence of these slowly updating com-
ponents, we introduce a targeted reactivation strategy. We first
identify potentially inactive components signaled by their low mix-
ing coefficient 𝝅𝑘 , which often correlate with low average posterior
probabilities, using a stochastic check:

is_slow(𝑘) ∼ Bernoulli(ReLU(1 − 𝑁 ×𝑀 · 𝝅𝑘 )) (22)

For the subset 𝑆 𝑗 of components flagged as slow within each GMM
set 𝑗 , we apply a targeted reactivation loss term:

Lreact, 𝑗 = −
𝑇∑︁
𝑡=1

log ©­«
∑︁
𝑘∈𝑆 𝑗

𝝅𝑘N(sg(z𝑡 ) |𝝁𝑘 , 𝚺𝑘 )
ª®¬ (23)

By calculating gradients based on Eq.(23), wemathematically renor-
malize the posterior probabilities within the subset 𝑆 𝑗 . The
new objective Lreact provides substantial gradient updates to slow-
updating components, pulling them towards relevant data points
more quickly than LGMM alone could, thus accelerating their con-
vergence. Unlike conventional auxiliary losses that impose explicit
balancing penalties and potentially disrupt expert specialization,
this reactivation technique merely accelerates the natural conver-
gence of the GMM towards a better fit of the input distribution.
This approach preserves the specialized nature of expert routing
while ensuring all components actively contribute to the model.

Training Objectives. The entire IDA-MoE model, including the
backbone, autoencoder, and GMMparameters, is trained end-to-end
by minimizing the composite loss function L𝑡𝑜𝑡𝑎𝑙 :

L𝑡𝑜𝑡𝑎𝑙 = L𝐶𝐸 + 𝛼 · L𝐴𝐸 + 𝛽 ·
𝑘∑︁
𝑗=1

(L𝐺𝑀𝑀,𝑗 + L𝑟𝑒𝑎𝑐𝑡,𝑗 ) (24)

where L𝐶𝐸 is the cross-entropy loss for language modeling. The
hyperparameters 𝛼 and 𝛽 control the relative weight of the repre-
sentation learning and distribution modeling objectives.

5 Experiments
5.1 Experimental Setup
Model & Training Setup.Our IDA-MoEmodel builds upon LLaVA
architecture [37, 38]. The MoE layers use top-2 routing, a latent
dimensionality of 32, and 16 GMM components per expert with
diagonal covariance for efficiency. We set both 𝛼 and 𝛽 to 0.01.
Training follows the three-stage protocol detailed in MoE-LLaVA
[30]. We bootstrap the dense model and GMMs in Stages 1 & 2
using LLaVA-1.5-558k [36], SViT [66], LVIS [52], LRV [35], and
MIMIC-IT [23]. In Stage 3, we finetune IDA-MoE follow the same
data pipeline as LLaVA-mix-665k[36]. Further configuration and
training specifics are detailed in the SupplementaryMaterial Section
1 & 2.

Evaluation & Baselines.We assess the performance across a
comprehensive benchmark suite including MME [29], MMB [40],
VizWiz [15], GQA [18], TextVQA [51], MM-Vet [64], ScienceQA
[41], and POPE [26]. Load balance is quantified using the mean Co-
efficient of Variation (CVmean) of expert utilization (lower indicates
better balance). For fair comparison with state-of-the-art VLMs, we
selected models based on comparable parameter scales and sim-
ilar training data size and methodologies. To further isolate the
impact of our routing strategy, we also compare against different
routing methods using identical backbone model and training data.
Results for the dense baseline and MoE-LLaVA [30] are reported
from [30], while other MoE implementations (xMoE [7], st-MoE
[70], DeepSeek-MoE [8], AuxFree-MoE [53]) are reproduced by us
for fair comparison. Metric calculation details and reproduction
specifics are provided in the Supplementary Material Section 3.
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Table 1: Comparison with state-of-the-art MLLMs on the commonly-used multimodal benchmarks for MLLMs. Vis. refers to
the vision encoder and image resolution, Act. refers activated parameters during inference, The best result for model sizes
around 2B is shown in bold, and the second-best result is underlined.

Method LLM Vis. Act. GQA PoPE VisWiz SQAI TextVQA MME MMB MMVET

VILA-7B[31] LLaMA-7B CLIP-336 7B 62.3 - 57.8 68.2 64.4 1533.0 68.9 -
InstructBLIP[38] Vicuna-13B Vit-224 13B 49.5 - 33.4 63.1 50.7 1212.8 - -
Qwen-VL-Chat[1] Qwen-7B Vit-448 7B 57.5 - 38.9 68.2 61.5 1487.5 60.6 -
LLaVA-1.5-7B[36] Vicuna-1.5-7B CLIP-336 7B 62.0 86.7 50.0 68.4 58.2 1476.9 61.5 30.2

Bunny-3B[17] Phi-2-2.7B SigLIP-384 3.1B 62.5 86.8 43.8 70.9 56.7 1488.8 68.6 -
LLaVA-Phi[69] Phi-2-2.7B CLIP-336 2.8B - 85.0 35.9 68.4 48.6 1335.1 59.8 28.9
VILA-3B[31] LLaMA-2.7B SigLIP-384 2.7B 61.5 - 53.5 69.0 60.4 - 63.4 -
Mini-Gemini[28] Gemma-2B SigLIP-384 2.7B 60.7 - 41.5 63.1 56.2 1341 59.8 31.1
MoE-LLaVA[30] Phi-2-2.7B CLIP-336 3.6B 61.4 86.3 43.9 68.5 51.4 1423.0 65.2 34.3

Imp-2B[46] Qwen-1.5-1.8B SigLIP-384 1.9B 61.9 86.7 39.6 66.1 54.5 1304.8 63.8 -
Bunny-2B[17] Qwen-1.5-1.8B SigLIP-384 1.9B 59.6 85.8 34.2 64.6 53.2 1300.8 59.1 -
MoE-LLaVA[30] Qwen-1.8B CLIP-336 2.2B 61.5 87.0 32.6 63.1 48.0 1291.6 59.7 25.3
MoE-LLaVA[30] Stablelm-1.6B CLIP-336 2.0B 60.2 85.7 36.2 62.6 50.1 1318.1 60.2 26.9
IDA-MoE(ours) Stablelm-1.6B CLIP-336 2.0B 58.2 86.8 43.1 65.1 51.9 1372.0 63.2 29.5
IDA-MoE(ours) Qwen2-1.5B SigLIP-384 2.0B 62.1 86.8 38.6 71.1 58.7 1402.8 66.7 33.4

Table 2: Performance comparison of MoE approaches. All methods use Stablelm-1.6B and CLIP-336 as base models.

Method MMVet MME-per PoPE GQA SQAI TextVQA VizWiz MMB CV𝑚𝑒𝑎𝑛

Dense 26.6 1337.3 85.6 60.6 62.7 49.9 38.9 58.2 -
MoE LLaVA[30] 26.9 1318.2 85.7 60.2 62.6 50.1 36.2 60.2 0.128
xMoE[7] 28.5 1353.8 85.6 60.9 62.7 50.5 37.3 60.1 0.117
st-MoE[70] 29.3 1364.5 85.4 60.9 61.3 50.3 38.2 59.5 0.105
DeepSeek-MoE[8] 28.7 1354.5 85.6 60.7 61.2 49.2 38.4 60.4 0.530
AuxFree-MoE[53] 29.4 1329.9 84.7 61.1 63.1 50.3 41.7 60.3 0.431
IDA-MoE(ours) 29.5 1372.0 86.8 58.3 65.1 51.9 43.1 63.2 0.143

5.2 Main Results
Comparison with State-of-the-Art Models. Table 1 presents a com-

prehensive comparison of IDA-MoE with recent state-of-the-art
VLMs across multiple benchmarks. Despite having significantly
fewer activated parameters, our 2B parameter models achieve com-
petitive performance with much larger dense models. Our Qwen2-
1.5B variant performs well against 7B models like LLaVA-1.5-7B
and Qwen-VL-Chat, while outperforming several 3B models such as
LLaVA-Phi ,Mini-Gemini and MoE-LLaVA-Phi on multiple bench-
marks despite using only 2B activated parameters. Within the 2B
parameter category, IDA-MoE with Qwen2-1.5B clearly demon-
strates state-of-the-art performance, ranking first on six bench-
marks and second on PoPE. While our StableLM-1.6B variant also
shows strong results, particularly on VisWiz benchmark.

Comparison Across MoE Implementations. As shown in Table 2,
we compare different MoEmethods on the same LLaVA backbone to
isolate the impact of routing and balancing mechanisms. Methods
that enforce strict auxiliary losses, such as MoE-LLaVA, xMoE, and
st-MoE, consistently produce low CVmean values, indicating excel-
lent load balance. However, MoE-LLaVA, which adopts standard
auxiliary loss, shows only marginal performance gains over the
dense baseline. st-MoE introduces router-z loss to stabilize train-
ing, and xMoE employs dimensionality reduction combined with

cosine-similarity-based routing to address representation collapse.
Although these enhancements allow st-MoE and xMoE to yield bet-
ter results than the vanilla MoE setup, their fundamental reliance
on the auxiliary balancing objective still prevents them from fully
exploiting the potential capacity benefits inherent in the MoE ar-
chitecture. In contrast, DeepSeek-MoE uses a significantly smaller
load balancing coefficient (0.001 vs. the typical 0.01), while AuxFree-
MoE eliminates auxiliary losses entirely, relying instead on prior
distribution correction for load balancing. These methods relax
balancing constraints to yield better task performance but suffer
from substantial load imbalance (high CVmean). IDA-MoE stands
out by achieving superior performance across most benchmarks
while maintaining effective load balance (CVmean: 0.1437) without
relying on auxiliary losses. This demonstrates the effectiveness of
our distribution-driven, decoupled routing strategy in mitigating
the specialization-balance dilemma.

5.3 Ablation Study
Impact of routing dimensionality. Table 3 illustrates impact of

the routing space dimensionality on model performance and load
balance. First, we observe that routing requires sufficiently high
dimensionality to maintain discriminative power. While lower di-
mensions (4-8) produce slightly more balanced expert utilization,
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Table 3: Ablation study on dimensionality reduction.

Centers Dim MME TextVQA VizWiz SQAI CVmean

16 4 1340.7 49.95 36.77 61.73 0.1391
16 8 1363.4 50.53 36.84 62.22 0.1430
16 16 1365.4 50.40 38.40 62.82 0.1434
16 32 1372 51.86 43.11 65.05 0.1437
16 64 1364.1 50.29 40.61 63.61 0.1492

they significantly compromise performance across all benchmarks.
This suggests that overly simplified representations lack the ca-
pacity to effectively distinguish between different input patterns,
which make the token allocation more even but also leading to
suboptimal expert assignment. Second, we find that performance
gains saturate and eventually decline as dimensionality increases
beyond an optimal point. This aligns with the well-known curse of
dimensionality in mixture models, where high-dimensional spaces
become increasingly sparse, making density estimation less reliable
for routing decisions. This results identify 32 dimensions as the
sweet spot that maximizes model performance while maintaining
effective load distribution across experts and minimum overhead.

Table 4: Ablation study on the number of GMM centers.

Centers Dim MME TextVQA VizWiz SQAI CVmean

1 32 1329.83 49.69 38.56 63.01 0.3218
4 32 1344.62 49.83 39.91 63.41 0.1974
16 32 1372 51.86 43.11 65.05 0.1437
32 32 1340.31 49.43 36.18 63.51 0.1364

Impact of GMM components per expert. Table 4 presents the im-
pact of varying the number of GMM centers for the IDA-MoE
model. The 16-center configuration achieves substantial improve-
ments over the single-center baseline: +42.17 points on MME, +2.17
points on TextVQA, +4.55 points on VizWiz, and +2.04 points on
SQA. These consistent gains across all benchmarks validate the
effectiveness of multi-center approach for modeling token distribu-
tions. However, further increasing the number of centers to 32 leads
to performance degradation across all tasks, suggesting a potential
overfitting effect where additional components may capture noise
rather than meaningful token patterns.

The CVmean metric shows a consistent decrease as the number
of centers increases, dropping from 0.3218 (1 center) to 0.1364 (32
centers). This indicates that a finer-grained partitioning of the input
space leads to more uniform expert utilization. Although the 32-
center configuration yields the most balanced expert workload
(lowest CVmean), the 16-center configuration achieves the optimal
balance between maximizing task performance and significantly
improving expert utilization compared to configurations with fewer
centers.
Table 5: Ablation study on the effect of Component Reacti-
vation Strategy.

Re.act. Centers MME TextVQA VizWiz SQAI CVmean

✓ 16 1372 51.86 43.11 65.05 0.1437
✗ 16 1360.88 51.51 41.36 65.54 0.1544

Impact of component reactivation strategy. Table 5 analyzes the
impact of the Reactivation Strategy for the IDA-MoE model (Sta-
bleLM 1.6B backbone, 16 centers). The results show that incorpo-
rating Reactivation yields performance improvements on several
benchmarks, increasing the MME score by +11.12 points, TextVQA
accuracy by +0.35 points, and VizWiz accuracy by +1.75 points.
Although a slight decrease of 0.49 points is observed on SQAI,
the strategy demonstrates a generally positive impact on model
performance across the evaluated datasets. Furthermore, as the
Reactivation Strategy is designed to accelerate the convergence of
input distribution modeling, we can see a further improved CVmean
value from 0.1544 to 0.1437. These findings suggest the Reactivation
Strategy’s overall positive contribution to both task performance
and expert load balancing for MoE routing.

5.4 Quantitative Analysis

(a) MoE LLaVA without auxiliary loss (b) IDA MoE

Figure 5: CVmean change over training.

Decoupling Routing From Task-Specific Loss Leads to Natural Load
Balance. As analyzed in Section 3.2, conventional routing mech-
anisms exhibit a persistent tendency toward imbalanced expert
utilization. As illustrated in Fig. 5a, traditional MoE Architecture
without auxiliary loss exhibits steadily increasing CVmean values,
indicating progressively worsening load imbalance as training goes.
In contrast, by decoupling the training of token allocation from
task performance, Fig. 5b demonstrates naturally declining CVmean
values throughout the training without introducing explicit auxil-
iary balancing losses. This emergent load-balancing behavior arises
from the nature of convergence Gaussian Mixture Modeling of the
input space. IDA-MoE establishes a more principled foundation
for expert specialization while maintaining balanced utilization,
all without the need for heuristic regularization terms that can
potentially compromise task performance.

6 Conclusion
In this paper, we introduce Input Domain Aware Mixture of Experts
(IDA-MoE), a novel approach that fundamentally rethinks expert
routing in vision language models. By decoupling the router train-
ing from task-specific loss functions and employing a principled
probabilistic model for token allocation, IDA-MoE naturally strikes
a balance between load distribution and model performance with-
out relying on auxiliary losses or heuristic constraints. Empirical
results demonstrate that IDA-MoE consistently outperforms previ-
ous routing and load balancing mechanisms across a diverse set of
benchmarks. This performance advantage stems frommore decisive
routing decisions and better-specialized experts, while maintaining
excellent load balance.
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