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Abstract. We focus on the problem of correlation clustering, which is to par-
tition data points into clusters so that the repulsion within one cluster and the
attraction between clusters could be as small as possible without predefining the
number of clusters k. Finding the optimal solution to the problem is proven to
be NP-hard, and various algorithms have been proposed to solve the problem ap-
proximately. Unfortunately, most of them are incapable of handling large-scale
data. In this paper, we relax the problem by decoupling the affinity matrix and
cluster indicator matrix, and propose a pseudo-EM optimization method to im-
prove the scalability. Experimental results on synthetic data and real world prob-
lems including image segmentation and community detection show that our tech-
nique achieves state of the art performance in terms of both accuracy and scala-
bility.

Keywords: Correlation clustering, Unsupervised learning, Large scale, Pseudo-
EM algorithm

1 Introduction

Clustering is one of the most fundamental problems in machine learning, with the goal
to partition data points into groups such that the points within clusters are more similar
to each other than those in different clusters. The clustering problem has received a
significant amount of attention during the past few decades, and numerous methods
have been proposed to solve it. However, most of them need the number of clusters k
as a priori. Correlation Clustering [1] makes an exception, which is able to select k
automatically. Moreover, this “model selection” property can be theoretically justified
with a probabilistic interpretation [2], and theoretical analysis has been conducted for
correlation clustering with error bounds derived [3].

Correlation clustering is a graph-based problem, where vertices correspond to the
data points, and each edge (u,v) is labeled either “+” or “-” depending on whether ver-
tices u and v are similar or not. Given this complete binary affinity graph, the task
of correlation clustering is to minimize the “-” edges (repulsion) within clusters and
“+” edges (attraction) between clusters, which is also known as minimizing disagree-
ments. An equivalent optimization problem is to maximize agreements — maximize
the “+” edges within clusters and “-” edges between clusters. The correlation clustering
problem is proven to be NP-complete [1], and the majority of efforts are then devot-
ed to solving it approximately [1, 4–7]. Among them, convex continuous relaxation is
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frequently applied. A linear programming (LP) formulation in [4] results in a factor 4-
approximation algorithm for minimizing disagreements. For maximizing agreements,
several relaxations based on semi-definite programming (SDP) are achieved [4, 6]. To
make the problem more flexible, [4, 5] extend the binary graphs to general weighted
graphs, which contain both positive and negative edges.

Despite the large amount of theoretical analysis conducted on correlation cluster-
ing, most of the existing algorithms are impractical for real-world applications which
are relatively large-scale [8, 9]. For example, there are O(n3) constraints in the LP
relaxation for minimizing disagreements, while the SDP formulation with O(n2) vari-
ables for maximizing agreements is known to be computationally expensive and hard
to scale up. Some recent work has focused on the computational issue and tried to
address it. In [10], a more effective relaxation is proposed by exploiting the special
problem domain. Discrete energy minimization algorithms are adopted in [2] to scale
up the computational procedure. Although these approaches do improve the efficiency
of correlation clustering, they are still insufficient for real-world problems.

In this paper, we reformulate correlation clustering with a new perspective of de-
coupling the affinity matrix and cluster indicator matrix. A pseudo-EM optimization
method is proposed by relaxing the new formulation. Beyond that, to further improve
the performance, we adopt online updates and extend the algorithm to adapt to sparse
data by appending a sparsity factor. Experiments are performed on synthetic data and
practical tasks including pixel-level image segmentation and community detection in
real information networks, and convincing results are achieved to demonstrate the ad-
vantages of our proposed technique in terms of both accuracy and scalability.

The remainder of the paper is organized as follows. In the next section we give a
brief introduction to the correlation clustering problem. In Section 3 we show how to
reformulate and solve it with effective alternating minimization routine. Experimental
results are presented to demonstrate the effectiveness of the proposed algorithms in
Section 4 and in Section 5 we conclude the paper with possible directions for future
work.

2 Correlation Clustering

Correlation clustering is defined on a complete graph G = (V,E), with n vertices
corresponding to the data points to be clustered and an edge between every pair of
nodes. Each edge is assigned with a label e(u, v) ∈ {+,−} where e(u, v) = + if u and
v are similar, e(u, v) = − otherwise. In this paper, we will focus on the minimizing
disagreements objective of correlation clustering.

Assuming cluster assignments can be represented with natural numbers, the goal of
correlation clustering is to find a cluster assignment C : V → N by solving the follow-
ing problem: minC

∑
e(u,v)=+ 1[C(u) ̸= C(v)] +

∑
e(u,v)=− 1[C(u) = C(v)]. One can

further extend the complete graph with binary affinity to a general graph. This graph
can be described with an affinity matrix W ∈ Rn×n:

W

> 0 : u and v attract each other by |Wuv|
< 0 : u and v repel each other by |Wuv|
= 0 : the relation between u and v is uncertain

,
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and the clustering objective for the general graph can be written as

min
C

∑
Wuv>0

1[C(u) ̸= C(v)]Wuv −
∑

Wuv<0

1[C(u) = C(v)]Wuv .

By introducing a matrix D in which Duv = 1 if u and v are in the same cluster and
Duv = −1 otherwise, we can notice that D encodes an equivalence relation, namely
that it is transitive, reflexive and symmetric. Thus the minimizing disagreements prob-
lem can be rewritten as

min
D

− (
∑

Wuv>0
Duv<0

WuvDuv +
∑

Wuv<0
Duv>0

WuvDuv)

s.t. Duv ∈ {−1, 1}, ∀u, v; Duu = 1, ∀u;
Duv = Dvu, ∀u, v; Duv +Dvs ≤ Dus + 1, ∀u, v, s

. (1)

One should notice that any feasible D matrix in (1) corresponds to an equivalence
relation, and therefore it is straightforward to recover a clustering from the solution to
(1).

Correlation Clustering Optimization Solving (1) exactly is NP-complete [1]. A nat-
ural way out is then to relax the hard equivalence relation constraints on D. Actually,
simply by relaxing the discrete constraints D ∈ {−1, 1}n×n to be continuous, the prob-
lem can be reformulated as a linear program with O(n3) linear constraints [4, 5]. Due
to the cubic number of constraints, the time complexity of the LP formulation grows
rapidly with the problem size.

Another relevant piece of work is to start with maximizing agreements problem with
similar objective and constraints, and apply semi-definite relaxation to a linear transfor-
mation of the D variable. As a consequence, a semi-definite optimization problem with
an n × n matrix variable and O(n2) linear constraints can be formulated. As a convex
optimization problem, it can be solved with polynomial time. However the time com-
plexity of solving an SDP with a matrix variable of size p and q constraints is up to
O(q2p2.5) [11], which is prohibitive for even medium-size data.

From the discussion above, we can conclude that although convex relaxations have
the nice property that global optimum can be found for the relaxed problems in polyno-
mial time, unfortunately they are not practical for large-scale problems.

Another possible direction is to trade convexity for scalability. Recently, [2] takes
a new perspective and treats correlation clustering optimization as a special discrete
energy minimization problem without unary terms. Based on techniques in energy min-
imization [12, 13], several algorithms are proposed including Expand-and-Explore,
Swap-and-Explore and Adaptive-label ICM. Compared to the continuous convex re-
laxations discussed above, significant improvements in scalability are achieved in this
framework, which are chosen as the rival algorithms in our experiments.

3 Pseudo-EM Algorithm

Instead of the indirect routine of solving correlation clustering by first computing the
relaxed cluster equivalence relation matrix D and then recovering the cluster assign-
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ments based on D, we take a more intuitive and straightforward perspective, which is
to fixate on the cluster label assignments directly.

We first define a clustering indicator matrix L which describes the cluster assign-
ments of the vertices. Specifically, Liu = 1 means that vertex u is in cluster i, Liu = −1
otherwise. L encodes a valid clustering if it satisfies the following: a data point belongs
to one and only one cluster; each cluster contains at least one data point. That is,

Q : {L ∈ {−1, 1}k×n;
k∑

i=1

Liu = 2− k, ∀u;
n∑

u=1

Liu > −n, ∀i} , (2)

where k is the number of clusters and not predefined in correlation clustering.

Proposition 1. The correlation indicator vector Du,: is the same as the cluster indica-
tor vector LC(u),: for any vertex u, where C(u) denotes the cluster assignment of u.

Based on Proposition 1, it is possible to replace D with L in (1) and solve for L
directly. Moreover, W and L can be treated as general variables without any inherent
physical meaning in the new objective. As a result, a new reformulation and correspond-
ing relaxation by decoupling W and L are derived with a two-step effective alternating
optimization method, which is similar to expectation-maximization (EM) algorithm:
compute a latent variable C based on L in the first step and optimize L according to C
in the following step.

3.1 The Basic Pseudo-EM Routine

Consider the correlation clustering problem in a general graph (1). According to Propo-
sition 1, the following relations are true:

Duv, ∀u, v ⇐⇒ LC(u)v,∀C(u) ∈ {1, 2, ..., k}, ∀v;
Duu = 1, ∀u ⇐⇒ LC(u)u = 1, ∀u;
{Duu = 1,∀u; Duv = Dvu, ∀u, v; Duv +Dvs ≤ Dus + 1, ∀u, v, s} ⇐⇒ Q .

Thus we can replace D with L according to the equivalence mentioned above and
rewrite (1) as a summation of loss produced by each row of W and L, which can be
expressed as

min
L,C,k

−
∑
u

∑
v

WuvLC(u)v<0

WuvLC(u)v

s.t. C(u) ∈ {1, 2, ..., k}, ∀u; Q; LC(u)u = 1, ∀u
. (3)

Notice in the optimization problem above, apart from the variables including the
cluster indicator matrix L and the number of clusters k, we introduce an auxiliary vari-
able C which corresponds to the cluster assignment. These variables are coupled with
each other through the constraints. Despite the redundancy of the variables, we benefit
from treating them separately in the optimization procedure as we will see shortly.
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The reformulated problem is still computationally hard to solve. However, we can
first relax the constraint LC(u)u = 1 (which means u is in cluster C(u) physically) and
fix L, leaving C the only variable to be optimized. In this way, we can minimize the
objective in an iterative manner: assume at iteration t, we have a feasible candidate for
L: Lt = [ℓ1, ℓ2, ..., ℓk]. By fixing Lt, we can optimize over C, where the best Ct+1(u)
for vertex u can be simply computed by enumerating all possible class assignments for
u, and solve the following optimization problem:

Ct+1(u)
∗
= argmin

C(u)∈{1,2,...,k}

∑
v,WuvLt

C(u)v
<0

−WuvL
t
C(u)v . (4)

Once the cluster assignment for all the vertices C is completed, it is straightforward to
update L accordingly: we first set k to the number of unique clusters in C and reassign
C to take values from {1, ..., k}. L can then be updated by starting from a k × n matrix
of all -1’s and setting LC(u)u = 1. This optimization routine works like expectation-
maximization (EM) algorithm in the sense that it computes the latent variable C in the
first step and optimizes L in the second step, therefore we call it pseudo-EM. Notice
that it is possible some clusters contain no vertices at some iteration, and they would
disappear after the iteration, which makes the number of clusters be selected to adapt to
a lower loss. To improve the convergence rate and optimization quality, this procedure
can be conducted in an online way, that means when deciding the cluster assignments
for new vertices, the existing assignments are already in effect. This iterative procedure
is shown in Algorithm 1.

Given a candidate for L, Algorithm 1 chooses the best cluster assignment for every
u in each iteration to minimize the objective, and therefore the loss will decrease until
convergence. Due to the property of selecting k automatically in Algorithm 1, there is
no need to predefine the number of clusters. As we can observe from (4), vertices with
similar affinity vectors will be likely in the same cluster. This implies that although we
remove the constraint LC(u)u = 1, which is equivalent to the strong equivalence rela-
tion encoded in D, the nature of correlation clustering is preserved due to the intuitive
optimization procedure.

Theorem 1. Algorithm 1 is guaranteed to converge.

Proof. First notice that in each iteration Lt = [ℓ1, ℓ2, ..., ℓk] corresponds to a clustering
of all the vertices Ct, and the optimization problem (4) is equivalent to

Ct+1(u)
∗
= argmin

C(u)∈{1,2,...,k}

∑
Wuv>0

1[C(u) ̸= Ct(v)]Wuv−
∑

Wuv<0

1[C(u) = Ct(v)]Wuv ,

where the objective can be treated as a measurement of diversity between two cluster
assignments C and Ct. More specifically, define a function

f(C1, C2) =
∑
u

[ ∑
Wuv>0

1[C1(u) ̸= C2(v)]Wuv −
∑

Wuv<0

1[C1(u) = C2(v)]Wuv

]
,

it is easy to prove that f is non-negative: f(C1, C2) ≥ 0 and f is symmetric: f(C1, C2) =
f(C2, C1). By the end of each iteration, the clustering of all the vertices is updated to
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Algorithm 1 Basic Pseudo-EM Routine

Input : Affinity matrix Wn×n, initial L0, Online
Output: Cluster assignments of all the vertices
1: t = 0;
2: repeat
3: for u ∈ {1, ..., n} do
4: compute optimal Ct+1(u) according to (4);
5: if Online == True then
6: Lt(Ct(u), u) = −1;Lt(Ct+1(u), u) = 1;
7: end if
8: end for
9: Update Lt+1 determined by Ct+1;

10: t = t+ 1;
11: until the partition determined by C does not change
12: return C

Ct+1 = argminC f(C, Ct), therefore, we have 0 ≤ f(Ct+2, Ct+1) = minC f(C, Ct+1) ≤
f(Ct, Ct+1) = f(Ct+1, Ct), which guarantees that the function value of f or the sum-
mation of the objective value in (4) monotonically decreases while being lower-bounded
by 0. As a consequence, Algorithm 1 is guaranteed to converge. ⊓⊔

3.2 Discussion

In the above, we are motivated by solving for the cluster label assignments directly, and
propose the basic pseudo-EM routine for correlation clustering optimization. However,
the proposed algorithm works by starting with an initial L. In this section we will in-
troduce how to initialize L. Apart from that, we will also look into the sparsity issue in
data set. At last, we will analyse the computational complexity.

In principle, any L which satisfies (2) is legal. An example is to initialize L with
2In×n − 1. On one hand, it is not difficult to find that the number of clusters decreases
along with iterations in our method, therefore one may want to set the number of rows of
initial L (i.e. the initial number of clusters) to a relatively large value. On the other hand,
as the number of rows of initial L grows, the time complexity of the algorithm increases
and the speed of convergence decreases. Here we describe a heuristic initialization of
L based on the positive degree of vertices. First, all vertices are sorted in a list by the
positive degree in descending order. Starting from the first vertex u in the list, a cluster
indicator vector l is constructed by setting l(v) = 1 if vertex v has a positive relation
with u and is currently in the list, l(v) = −1 otherwise, then the vertex u and v that
l(v) = 1 are removed from the list. These steps are repeated until the list is empty. Then
we get a initial L.

However, the sparsity of the affinity matrix leads to ineffectiveness when merg-
ing cluster indicator vectors, which will result in a relatively large number of clus-
ters. To address this problem caused by sparse data, we append a sparsity factor of
sum(Lt

C(u),: + 1)/2 (the size of current cluster C(u)) to the objective to discourage
small clusters when optimizing for C(u)∗ in (4). In our experiments when dealing with
sparse data, we follow this routine.
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Algorithm 2 Initialize L

Input : Affinity matrix Wn×n

Output: Cluster indicator matrix L
1: L = ∅; ∀i, j, Gij = 2(Wij > 0)− 1; ∀i, Gii = 1;
2: pdegree = sum(G, 2); list = sort(pdegree,descend);
3: while list is not empty do
4: u = list.pop(); ℓ1×n = −1;
5: for v ∈ list do
6: if G(u, v) == 1 then
7: ℓv = 1; list.remove(v);
8: end if
9: end for

10: L = L ∪ ℓ;
11: end while
12: return L

The computational complexity of our algorithm is linear in each iteration as we will
see. Let n, a and r denote the number of vertices, the number of attraction edges and the
number of repulsion edges respectively. The cost of initializing L is O(a+nlogn), while
the proposed algorithm involves complexity of O(a+ r+n) in each iteration, which is
linear with the sum of the number of edges and the number of vertices. Obviously, it can
be seen that the more sparse W is, the less time complexity it will achieve. This is a very
useful property to be exploited, especially for large-scale problems in real applications.
The number of iterations taken to convergence is relatively small from experience.

A related algorithm to pseudo-EM is the LocalSearch method proposed in the Clus-
tering Aggregation framework [14]. The two algorithms are similar in the sense that
they both can be used to optimize correlation clustering. However, the fundamental dif-
ference is that LocalSearch is based on a greedy vertex-wise manner, while ours works
like EM algorithm.

4 Experiments

In this section, we evaluate the performance of our proposed algorithm pseudo-EM
using both synthetic and real data. To investigate the numerical performance, we first
conduct comparison with the optimal solution to the correlation clustering problem (1)
and the SDP relaxation [6] on toy data. We then compare them to the algorithms in-
cluding Swap-and-Explore, Expand-and-Explore and Adaptive-label ICM proposed in
[2], which aims at large-scale correlation clustering. In synthetic experiments, we al-
so compare with k-means which is the representative of traditional clustering methods.
To generate general affinity matrices and the ground truth of clustering, we follow the
recipe in [2]. In terms of real data, we conduct experiments on image segmentation
and community detection tasks. To evaluate the quality of clustering with the ground
truth, we use F1-measure and recovery levels of k. F1-measure takes value from [0, 1],
and a larger value implies higher quality of clustering; while the recovery level of k is
the difference ratio of the selected k to the ground truth, where smaller values indicate
better recovery of the number of clusters.
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4.1 Numerical Comparison

To investigate the numerical performance of the proposed optimization methods, we
randomly generate a problem with 20 vertices and 2 clusters. We first find the exact so-
lution to problem (1) by searching over all possible clustering assignments, which adds
up to

∑20
i=1 C

i
20 = 1, 048, 575 clusterings, and choosing the one with the minimum

objective value. We then compare the SDP relaxation and the proposed methods with
the optimal solution. SDP is implemented with the semi-definite programming package
SeDuMi [15] and the YALMIP toolbox1. A subtlety here is that the SDP objective is
to maximize agreements, therefore a postprocessing step is taken following the SDP
procedure to convert the result to the minimal disagreements solution.

Table 1 summarizes the comparison in terms of the loss objectives given the dis-
cretized solutions and time costs of optimization. We can first observe that the SDP
relaxation is more effective than solving the problem exactly. However, the loss objec-
tive based on the discretized solution of the relaxed continuous result produced by SDP
is greater than the exact loss. In the meantime, our proposed methods including pseudo-
EM (P-EM) and online pseudo-EM (OP-EM) find solutions with loss objectives closer
to the optimal one and significant improvements in time complexity.

4.2 Synthetic Data

To generate synthetic affinity matrix W , n vertices are assigned to c clusters with dif-
ferent sizes (size ratio between the largest and smallest clusters is 100) randomly. For
each vertex, we sample the same number of neighbors with nonzero affinities. Then the
adjacency matrix of ground truth is corrupted with noise both on the signs and values
to get a real affinity matrix.

Due to the high computational complexity of Expand-and-Explore, Swap-and-Exp-
lore and k-means, we only compare with them as well as adaptive-label ICM on small
scale data with the following parameters setting: #Clusters = 30, #Neighbors = 20,
Balance = 0.5, Noise = 0.1, where Balance is the ratio of the number of inter
and intra cluster neighbors. The parameter k for k-means is set as the ground truth.
Fig. 1 shows the F1-measure and running time of different algorithms as the number
of vertices increases. It can be seen that our methods produce more accurate clustering
than the competing algorithms. On the other hand, although being provided with the true
number of clusters, the clustering quality produced by k-means is not comparable to the
rest of the algorithms. Another observation is that as the number of vertices grows, the
clustering quality increases, which makes sense in that one can obtain better knowledge
of the underlying distribution given more data. In addition, as mentioned above, the
computational costs of Expand-and-Explore, Swap-and-Explore and k-means are high,
therefore we will not include them in the following comparison on real data sets.

We further investigate the ability of different algorithms to automatically select the
number of clusters k, which is illustrated in Fig. 2. As can be seen, the proposed meth-
ods are shown to be significantly more effective at selecting k. Similarly, we can observe
that more data makes the estimate of k more accurate; while the difficulty of selecting
k increases with the number of clusters given the same amount of data.

1 http://users.isy.liu.se/johanl/yalmip/
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Table 1. Loss comparison of exact optimum and SDP/P-EM/OP-EM
Exact solution SDP P-EM OP-EM

Loss 9.3588 78.2503 35.9834 35.9834
Time/s 858.7878 35.3129 6.1241e-4 5.6880e-4
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Fig. 1. Small scale data, #Clusters=30, #Neighbors=20, Balance=0.5, Noise=0.1. (a)
F1-measure. (b) Running time.

4.3 Image Data

To further demonstrate the scalability and quality of clustering of the proposed algo-
rithms, we conduct experiments on the pixel-level image segmentation task. We take
the image data in [16] and rescale the images to 134×200 for illustration. We use the
classical normalized cut [17] as comparison.

Before running the algorithms, one should notice that the affinity matrix for corre-
lation clustering consists of both positive and negative entries, which is different from
normalized cut. Therefore, to construct the sparse affinity matrix, we first take the affin-
ity matrix computed for normalized cut, followed by a nonlinear transformation to con-
vert the nonnegative affinities to real valued affinities. The nonlinear transformation
function is modified from y = log x

1−x proposed by [1]. To avoid the problem occurred

when x = 1, here we use the transformation y = log 1+(x−δ)
1−(x−δ) with the following prop-

erties: y > 0 when x > δ; y < 0 when x < δ and y = 0 when x = δ, where δ is a
super parameter and is fixed to 0.05 in our experiments. Another subtlety regarding the
comparison is the number of clusters k has to be predefined for normalized cut. In our
experiments we set k = 5, while our methods automatically select k.

The comparison of image segmentation results is shown in Fig. 3, where the seg-
mentation results of normalized cut are shown in the left column, while the results of
our methods including OP-EM and OP-EM-S (OP-EM with sparsity factor) are shown
in the middle and right columns respectively. From Fig. 3 we can observe that OP-EM-
S is very effective at finding segments on images while OP-EM itself performs not as
well, which justifies the idea that adding sparsity factor in (4) could be more effective
for sparse data. On the other hand, the left column shows that for normalized cut, i-
nappropriate value of k would result in improper segmentation, which is one of the
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Fig. 2. Recovery of k. (a) #Clusters=30, #Neighbors=20, Balance=0.5, Noise=0.1. (b)
#Vertices=500, #Neighbors=20, Balance=0.5, Noise=0.1.

disadvantages of traditional clustering methods. As comparison, correlation clustering
does not need to predefine the k value, which would alleviate the problems caused by
unknown number of clusters in the data.

Fig. 3. Image segmentation on Berkeley Segmentation Dataset. Left to right column:
Normalized cut, online pseudo-EM (OP-EM) and online pseudo-EM with sparsity fac-
tor (OP-EM-S).

4.4 Social Network Data

Another natural application of clustering is community detection in networks. Here we
conduct experiments on Amazon product co-purchasing network with a ground truth
distribution of communities2. The original network contains 334,863 nodes and 925,872
edges. The number of communities in the network is 151,037 and average community

2 http://snap.stanford.edu/data/com-Amazon.html
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size is 19.78. Here we preprocess the data by keeping the top 5,000 communities and
removing the redundant clusters and duplicate nodes. As a result we get a network with
16,685 nodes and 1,145 communities for our investigation.

We adopt the commonly used Jaccard’s coefficient metric to measure the similarity
between two nodes in the network [18], then convert the similarities to construct an
affinity matrix as described in 4.3. Given the affinity matrix, we apply correlation clus-
tering to detect the communities. We use the following metrics to evaluate the quality
of the communities detected: F1-measure, Rand Statistic and Jaccard Coefficient. All
of these measures take value from [0, 1], and larger values imply higher quality of clus-
tering. Fig. 4 summarizes the comparison of the algorithms in terms of recovery of k
and quality of clustering, which shows a clear advantage of our algorithms.

Al−ICM OP−EM P−EM P−EM−S OP−EM−S
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ev

oe
ry

 o
f k

(a) Recovery of k

Al−ICM OP−EM P−EM P−EM−S OP−EM−S
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

F1−measure

Rand Statistics

Jaccard Coefficient

(b) Clustering evaluation

Fig. 4. Community detection on Amazon network data.

5 Conclusion

In this paper we propose algorithms for solving general correlation clustering which
could handle large-scale data from a different perspective by decoupling the affinity
matrix and the cluster indicator matrix followed by a pseudo-EM optimization. To fur-
ther improve the quality of optimization and alleviate the problem of local minimum,
we adopt online udpates and append a sparsity factor for sparse data. Experimental
results on both synthetic and real data demonstrate the effectiveness of the proposed
techniques.

Correlation clustering is based on graphs with two types of edges: positive and nega-
tive, while in many real problems such as social networks or protein-protein interaction
networks, the types of edges can be more diverse. Therefore, an interesting direction
for future work will be to further generalize the proposed methodology to graphs with
more diverse relations or interactions. Another important problem to look into is the
theoretical analysis of the optimization quality of the proposed methods.
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