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Abstract. Non-autoregressive generation (NAR) methods, which can
generate all the target tokens in parallel, have been widely utilized in var-
ious tasks including text summarization. However, existing works have
not fully considered the unique characteristics of the summarization task,
which may lead to inferior results. Specifically, text summarization aims
to generate a concise summary of the original document, resulting in
a target sequence that is much shorter than the source. This poses a
challenge of length prediction for NAR models. To address this issue,
we propose an edit-based keywords-guided model named EditKSum: it
utilizes the prominent keywords in the original text as a draft and then
introduces editing operations such as repositioning, inserting, and delet-
ing to refine them iteratively to get a summary. This model can implicitly
achieve length prediction during the editing process and avoid the bias
introduced by the imbalance of different editing operation frequencies
during the training process. EditKSum is based on an encoder-decoder
framework which is trained in an end-to-end manner and can be easily
integrated with pre-trained language models. When both are equipped
with pre-trained models, the proposed framework largely outperforms
the existing NAR baselines on two benchmark summarization datasets
and even achieves comparable performance with strong autoregressive
(AR) baselines.
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1 Introduction

Non-autoregressive (NAR) generation [12,20] was first proposed in the neural
machine translation task. Different from autoregressive (AR) models which gen-
erate tokens one by one and from left to right, NAR models can generate all
the target tokens in parallel, which brings a significant increase in the gener-
ation speed. Benefiting from this, the NAR models have received considerable
attention in recent years and have been applied to many other natural language
generation tasks [15,52] including text summarization [25].
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Text summarization [41,51] aims at creating a short summary that conveys
the key information from a long document. Existing NAR models simply treat
text summarization as a general text generation task [3,44] while ignoring its
unique characteristics, which may lead to inferior results. In detail, text summa-
rization is different from other text generation tasks from the following aspects:
1) the target sequence is much shorter than the source sequence, and 2) the
source document explicitly or implicitly contains the information that the tar-
get needs.

The significant difference in lengths between input and output poses a chal-
lenge for length prediction, which is an important step in NAR models [46]. Some
previous works adopt static [49] or dynamic [44] length prediction strategies, the
performance of which can potentially impact the quality of generated summaries.
Another line of research involves edit-based approaches and implicitly achieves
length prediction during the process of applying editing operations. However,
they generate summaries by editing from either the long original document [1]
or an empty sequence [11], both of which suffer from the imbalanced frequency of
different operations. For example, given the original document/empty sequence,
the model will learn to delete/insert in most cases, which brings biases into
model training. We verify the statement quantitatively by analyzing the corre-
lation between the balance of different operations when generating a summary
and the final performance as shown in Table 1.

Table 1. Results on the balance ratio and Rouge scores of models with different ini-
tial sequences y0. “Rand Words” indicates randomly selected words that has the same
length as keywords. “Rep.” and “Ins.” indicate the frequency of reposition and inser-
tion, while “Bal.” is the balance ratio between them.

y0 Rep. Ins. Bal. R-1 R-2 R-L

Empty 135 407 0.33 37.61 16.73 34.77

Keywords 48 48 0.99 44.19 20.00 40.61

Rand Words 116 94 0.81 32.70 9.17 29.25

Source 1289 10 0.01 24.74 10.96 22.47

To deal with the length prediction challenge in text summarization, we exploit
the fact that the source contains the target information explicitly or implicitly
in summarization. Previous studies [7,23] demonstrate that prominent keywords
in the original text encompass crucial information required for generating sum-
maries. So, we can regard the sequence of the keywords as the initial draft to
edit from. Due to the closer alignment between the keyword sequence and the
target sequence, this approach can effectively address the issue of imbalanced
operation frequencies in previous editing-based methods.

Based on the above analysis, we propose an edit-based text summarization
model that edits from prominent keywords, named EditKSum. Specifically, we
build the model based on the encoder-decoder framework. The encoder takes the
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source document as input, encodes its hidden representations as well as extracts
keywords from it, which is achieved by inserting Feed-Forward Layers (FFN)
on top of the encoder and introducing the corresponding keyword extraction
loss functions. The decoder takes the extracted keywords as input and generates
the summary by iteratively applying the editing operations including insertion,
deletion, and repositioning. These operations can further modify and refine the
extracted keywords, making the generated summary more coherent, fluent, and
accurate.

Following previous works [3,26] that utilize pre-trained language models to
boost the performance, we incorporate BERT [6] into the framework by first
initializing the encoder and decode with a single BERT model, and then adding
light-weight and specialized adapters on the encoder and decoder sides to learn
the extraction and generation modules accordingly. The framework is jointly
trained by optimizing the extraction and generation loss functions in an end-to-
end manner, where the parameters of the pre-trained language model are frozen
and only the adapters are tuned.

We evaluate our model on two benchmark datasets for text summarization,
including CNN/DM [34] and Gigaword [41]. When equipped with pre-trained
language models, the proposed model achieves 44.19/20.00/40.61 ROUGE-1/2/L
scores on CNN/DM and 40.15/18.05/35.88 ROUGE-1/2/L scores on Gigaword,
which outperforms the NAR baseline models with large margins. The proposed
model also performs comparably with PEGASUS [50] and even better than AR
baselines such as Transformer [45] and BertSum [26].

Fig. 1. The model architecture of EditKSum.
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2 Related Works

2.1 Text Summarization

Text summarization is a widely studied task in natural language processing,
which aims at generating a short summary that contains the key information
from a long document. Generally, the existing works of text summarization can
be classified into extractive summarization [47,51] and abstractive summariza-
tion [9,27,28].

The text summarization models are usually based on the encoder-
decoder framework, which takes various forms including recurrent neural net-
works (RNN) at first [33,41] and Transformer [45] layers recently. With the rise
of large-scale pre-trained models, both general [22,31] and specific [39,50] pre-
trained models are widely utilized in the text summarization task, achieving
impressive results thanks to the powerful representation ability of pre-trained
models.

Most of the previous works generate summaries in an AR manner i.e., word-
by-word and from left to right. However, AR generation faces the problem of slow
inference. Recently, NAR generation methods [12] have been proposed, which can
generate all tokens in the target sequence in parallel therefore greatly speeding
up the generation process. However, when applied to the text summarization
task [3,44], these models still underperform their AR counterparts significantly.
In this paper, we propose an edit-based keywords guided model, which greatly
improves the performance of NAR summarization models.

2.2 Non-autoregressive Generation

Non-autoregressive (NAR) generation is first proposed in the neural machine
translation task [10,12,20]. Unlike AR models that generate tokens sequentially,
NAR models typically predict the target sequence length first and then proceed
to generate tokens in parallel. NAR models improve the inference speed at the
potential price of a decrease in accuracy. Therefore, numerous research efforts
[13,17,40,42] have been proposed to narrow the gap between NAR models and
AR models in terms of the generation quality. Among these works, edit-based
generation models can balance the inference speed and quality, as well as achiev-
ing length prediction implicitly by constructing output sequences through a series
of atomic operations such as insertion [43], deletion [11], and reposition [48].

Owing to the considerable success of NAR models in machine translation,
numerous researchers have recently extended this approach to a wider array of
text generation tasks. These include grammatical error correction [37], automatic
speech recognition [15], dialogue [52], and summarization [3,25,44].

On the task of text summarization, previous works do not take into account
the discrepancy in lengths between the input and output sequences. As a result,
difficulties are encountered in the step of length prediction, which in turn affect
the summarization quality. In contrast, we generate summaries by editing from
the keywords extracted from the source, which alleviates the above issues in
principle.
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3 Methodology

We introduce the proposed model EditKSum in this section, including an anal-
ysis of the editing operations in the existing edit-based methods, and the archi-
tecture of EditKSum. We start with the problem definition.

3.1 Problem Definition

Two sub-problems exist in our framework: text summarization and keyword
extraction.

Text Summarization. Given a parallel training dataset 〈X ,Y〉 which consists
of pairs of source documents and reference summaries 〈X,Y 〉 ∈ 〈X ,Y〉. Text
summarization aims at generating the summary Y conditioned on the source
document X. Model parameters θ are trained to maximize the conditional like-
lihood of the outputs.

arg max
θ

∑

〈X,Y 〉∈〈X ,Y〉
log p(Y |X; θ) (1)

Keywords Extraction. Given a source sequence X = (x1, x2, ..., xn), the keyword
extractor outputs keywords G = (g1, g2, ..., gl), gt ∈ X from the source. Since
there is no golden label to train the keyword extractor, we use the overlap of
the original document and the reference summary as pseudo keyword labels to
train the keyword extractor.

3.2 Analysis of Operations

We first conduct a detailed analysis on the relation between the balance of dif-
ferent operations and the model performance. Specifically, we train a model with
three operations including insertion, deletion and repositioning following [48] on
the CNN/DM dataset, and generate summaries by editing from different initial
sequences, including empty, keywords, the full source document, as well as a
baseline setting which is the randomly sampled words from the source document
with the same number of words as that of keywords.

We evaluate the performance of the generated summary and calculate the
frequency of different operations executed in each sample, and define the balance
as the frequency ratio between insertion and reposition (we ensure the ratio is
in [0, 1] by taking the inverse if it is greater than 1). Since deletion is a special
case of reposition, we treat them as one operation. The frequency is calculated
as an average among the test set. The results are listed in Table 1.

As can be observed in Table 1, when generating summaries from keywords,
the balance ratio is 0.99, indicating that the two operations are well balanced,
and the model also achieves the best results.

In other cases, when generating from empty, the full source or the baseline set-
ting, the operations are heavily biased with degraded performance. Specifically,
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the Pearson correlation coefficient between the balance ratio and the Rouge-1
score is 0.76, indicating that the performance of edit-based models is highly co-
related with the balance of operations. Moreover, the gap between generating
from keywords and generating from random words underscores the role that
keywords play in the task of text summarization.

3.3 Model Architecture

In this section, we will introduce the architecture of EditKSum. As illustrated
in Fig. 1, our model is based on the encoder-decoder framework [2,45], where
the encoder is utilized to encode the source document X, followed by a keyword
extractor module. The decoder generates the target sequence Y conditioned on
the source X and the decoder input y0 (which will be introduced later) in an
iterative edit-based manner.

Keyword Extractor. In this paper, we simply utilize two feed-forward layers
as the keyword extractor, which can be viewed as an adapter, to keep consistent
with the whole framework. Specifically, given a sequence of hidden states H =
(h1, h2, ..., hn) which is encoded from the source document X = (x1, x2, ..., xn),
the extractor calculates the informativeness of each token by:

Hext = W2 · σ(W1 · H + b1) + b2 (2)

where H ∈ R
n×dh and Hext ∈ R

n×2, W and b indicates the parameters of two
FFN layers, σ(·) indicates the activation function which is ReLU [32] in this
paper, and dh is the dimension of the hidden representation.

Given Hext which contains the informativeness of each token in the document,
the extractor is expected to predict whether each token is a keyword or not. We
introduce two loss functions to achieve that. The first is a binary classification
loss based on cross-entropy:

L1
ext = −

1∑

c=0

yc log σ(Hc
ext) (3)

where σ(·) indicates the softmax function. And yc is the real label of each class.
Besides predicting keywords directly, an alternative is to rank the positive

examples ahead of the negative ones according to the informativeness scores Hext

of each token:
L2
ext =

∑

p−,p+∈T

max(0, 1 − H
p+
ext + H

p−
ext) (4)

where p+ and p− denote the keywords and non-keywords respectively.
Then the loss function of the extractor can be written as:

Lext = L1
ext + L2

ext. (5)
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Edit-Based Generation. We introduce the edit-based generation algorithm
in this subsection. We regard it as a Markov Decision Process (MDP), which
is defined by a quintuple (Y;A; E ;R; y0), where Y is a set of discrete sequences
(y0, y1, ..., yn). Each sequence yi ∈ Y is a state in the iterative refinement process,
and y0 indicates the initial state. A denotes the set of actions, which includes
operations of deletion, insertion, reposition and so on in text generation task. At
each decoding iteration, the environment E receives an input yi ∈ Y, chooses an
action a ∈ A, outputs the refined sequence yi+1 = E(yi, a) and gets a reward r. R
denotes the reward function. Generally, R measures the distance D between the
generated output and the ground-truth sequence, R(y) = −D(y, y∗). The goal
of edit-based generation is to learn a policy π that maps the current sequence yi

to a probability distribution over A, i.e., π : yi → P (A).
It is worth mentioning that y0 is crucial in edit-based generation. As shown

in Table 1, the initial state y0 affects the balance between actions as well as the
final performance of the model. In this paper, y0 is a sequence consisting of
keywords rather than an empty sequence or a complete document as in previous
summarization works.

Actions. We mainly follow previous works to determine the atomic opera-
tions [48], including reposition, deletion and insertion. These operations are
suitable for handling keywords. Specifically, the reposition operation is able to
change the order of each token. For each token yt

i in a subsequence yt, the repo-
sition policy πrep(r|i, yt) predicts an integer r and moves the r-th token into
the current index, i.e., yt

r will be placed in the i-th position after the operation.
The deletion is a special case of reposition, i.e., when the policy predicts 0, the
i-th token yt

i will be deleted. As for the insertion operation, it is divided into
two steps. Firstly, the placeholder policy πplh(p|i, yt) predicts the number of
placeholders p (the [UNK] symbol in implementation) to be inserted in each slot
between yi and yi+1. Then, the token prediction policy πtok(j|i, yt) replace the
placeholder by predicting the content token yt

j .
All of the three policies are implemented by the corresponding policy classi-

fiers which are inserted on the top of decoder layers. Specifically, the reposition
and deletion policy can be written as:

πrps
θ (r|i, y) = softmax(hi · [e0; e1; ...; en]), (6)

where ej denotes the embedding of the j-th token in the current subsequence, e0
represents the deletion embedding, and [·; ·] represent the concatenation function.
The placeholder and token prediction policy can be written as:

πplh
θ (p|i, y) = softmax([hi;hi+1] · WT

plh), (7)

πtok
θ (j|i, y) = softmax(hi · WT

tok), (8)

where Wplh ∈ R
(K+1)×2dmodel and Wtok ∈ R

|V |×dmodel are the parameters of the
two policies to be trained, K is a hyper-parameter that represents the maximum
number of tokens that can be inserted in each slot, |V | is the vocabulary size
and dmodel is the hidden size of the model.
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Adapters on Encoder and Decoder. Recent text summarization works [26,
50] show that large-scale pre-trained language models such as BERT [6] are able
to improve the comprehension and generation capabilities of the summarization
model. We incorporate BERT into our framework by first initializing the encoder
and decoder with one pre-trained BERT model, and adding light-weight adapters
into each pre-trained layer. We only fine-tune the adapters and freeze the pre-
trained model while training, in order to reduce the scale of trainable parameters
and alleviate the catastrophic forgetting problem [4,16].

Specifically, we mainly follow AB-Net [14] and design different adapter mod-
ules on the encoder and decoder sides, i.e., the encoder adapter is based on FFN
layers, while the decoder adapter consists of a multi-head cross-attention module
as well as two FFN layers. The keyword extractor can also be considered as an
adapter on the encoder side.

3.4 Training and Inference

We utilize imitation learning to train the edit-based model, which consists of
a roll-in policy πin and a roll-out policy πout. The roll-in policy generates an
initial sequence to be edited from, and the roll-out policy provides the oracle
demonstration to be learned from. In this paper, the roll-in policy for training
reposition/insertion predictor is a stochastic mixture of the outputs of the inser-
tion/reposition predictor and a noised version of the reference y∗ with random
word dropping and shuffle.

And the oracle roll-out policy is determined by the Levenshtein edit dis-
tance [21], which indicates the minimum number of editing operations required
to convert from one sequence to the other. We define the oracle policy π∗ as the
optimal action to transform y0 to y∗, and train the model policy π by minimizing
the KL divergence between the action distributions produced by π and π∗ [5]:

Lgen = DKL[π∗(a|y, y∗)||π(a|y)] (9)

In summary, we train the proposed framework by minimizing the linear com-
bination of the keyword extractor loss Lext and the the summary generator loss
Lgen:

L = Lext + Lgen. (10)

At the inference stage, we first obtain keywords from the keyword extractor
conditioned on the source document. Then, we join the keywords together with
the order in the source document to get the initial sequence. Then, we apply
a sequence of actions (a1,a2, ...) in a circulation of insertions and repositions,
e.g., as (p1, t1, r1;p2, t2, r2, ..), to refine the initial sequence iteratively. The
refinement will be terminated when either two consecutive refinement iterations
return the same output or a maximum number of iterations is reached. We
provide an illustration of the generation process in Fig. 2.



Summarizing Like Human: Edit-Based Text Summarization with Keywords 341

4 Experiments

4.1 Datasets

We conduct experiments on two mainstream public datasets of the text summa-
rization task, CNN/DM [34] and Gigaword [41].
CNN/DM is a widely used text summarization corpus consisting of pairs of
news articles and the corresponding multi-sentence summaries. We use its non-
anonymized version which contains 287112 training pairs, 13367 validation pairs
and 11490 test pairs. The source documents and the reference summaries consist
of an average number of 781 and 56 tokens respectively. We truncate the source
documents that exceed the maximum length (which is 512 in our implementa-
tion).
Gigaword is a sentence summarization corpus with short documents and sum-
maries, which contains 3.8M/190K/2K training/validation/test samples. The
average numbers of tokens in the documents and the summaries are 31.4 and
8.3 respectively.

It is worth mentioning that X-Sum [35] is also a widely used text summa-
rization dataset. However, due to its abstractive nature, i.e. the average overlap
rate between the source documents and summaries is relatively low, it is not suit-
able for the edit-based models [29]. In addition, we regard the overlap between a
given source document and the corresponding reference summary as the golden
keywords. Too few coincidence tokens also induce difficulties to train the key-

Fig. 2. An illustration of the generation process of the proposed model.
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word extractor. Based on the above reasons, we do not conduct experiments on
the X-Sum dataset.

4.2 Experimental Setup

Following previous edit-based and non-autoregressive methods [11,12,48], we
apply sequence-level knowledge distillation [18] to distill the original training
set, in order to alleviate the multi-modality problem of non-autoregressive mod-
els. Specifically, we distill CNN/DM by an autoregressive pre-trained model
bart-large-cnn and use the raw training set on Gigaword as it is much shorter.
Then we tokenize the datasets by the bert-cased tokenizer, resulting in a dic-
tionary with 30K tokens.
Evaluation Metrics. Following previous text summarization models, we used
ROUGE [24] as the automatic evaluation metric which reports the preci-
sion/recall/F scores of the 1-gram/2-gram/longest common subsequences that
are overlapped between the generated and the reference summary.
Model Configurations. We build our model based on the bert-base-cased model
(nlayers = 12, nheads = 12, dhidden = 768, dFFN = 3072). We set dFFN = 2048 and
dhidden = 768 for FFN and the attention based adapters. As for the keyword
extractor, we set dFFN = 512. Besides, we apply dropout on the encoders and
decoders with a probability of 0.1.

We train our framework on 4 Nvidia 3090 GPUs for 100 epochs and it takes
2˜3 days to converge. The batch size is set as 8000 tokens. The Model is optimized
with Adam [19] with a beta value of (0.9, 0.98). We set the learning rate to 5e-4
and use 10% of the epochs to warm-up with the initial learning rate as 1e-7. We
implement our model and baselines on fairseq [38]. The code and pre-trained
models will be released upon acceptance.
Baselines. To make a comprehensive comparison, we consider the following base-
lines. NAUS [25] is a specialized unsupervised NAR model designed for text
summarization tasks; BERT+CRF-NAT [44] employs BERT as the back-
bone of a NAR model and proposes an elegant decoding mechanism to help
length prediction; BANG [3] is a large-scale pre-trained model which simul-
taneously supports AR, NAR and semi-NAR generation. We finetune the pre-
trained model provided for another 20 epochs on the CNNDM and Gigaword
datasets; LevT [11] is a classical edit-based generation model which applies
deletion and insertion operations on empty sequences to generate the targets;
EDITOR [48] is an edit-based model with reposition, insertion and deletion
operations. We compare with it to show the effectiveness of introducing key-
words. We also initialize the encoder of EDITOR with BERT to make a fair
comparison; Transformer [45] serves as a widely used AR baseline; BertSum
[26] is an AR summarization model with the encoder initialized with BERT;
PEGASUS [50] is a powerful AR baseline specifically designed as a pre-trained
model for summarization. It may not be fair for EditKSum to compare with
PEGASUS, but we chose it to demonstrate our strong capabilities of EditK-
Sum.
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Table 2. The main results on the CNNDM and the Gigaword datasets. “w/ BERT” or
“w/o BERT” indicates whether the model’s encoder and decoder are initialized with a
single BERT model or not. he top scores are highlighted in bold, while the second-best
scores are underlined. † signifies that the results for at least one dataset are sourced
from the original papers or public leaderboards.

Model CNNDM Gigaword

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

NAUS [25] † - - - 28.55 9.97 25.78

Bert+CRF-NAT [44]† - - - 35.05 16.48 33.28

BANG [3] 35.77 12.87 33.07 - - -

LevT [11] † 36.35 15.56 33.72 36.14 17.14 34.34

EDITOR [48] 37.61 16.74 34.77 36.89 16.30 34.28

EDITOR w/ BERT 38.84 17.63 35.93 38.10 17.50 35.43

Transformer [45]† 39.50 16.06 36.63 37.57 18.90 34.69

BERTSum [26]† 42.00 19.44 38.98 - - -

PEGASUS [50]† 44.17 21.47 41.11 39.12 19.86 36.24

EditKSum w/o BERT 43.02 18.94 39.39 38.22 16.57 34.35

EditKSum 44.19 20.00 40.61 40.15 18.05 35.88

4.3 Main Results

The main results on the CNN/DM and Gigaword datasets are summarized in
Table 2. The upper group of the table shows the results of NAR (including edit-
based) models, while the bottom group shows the AR model results. Overall,
the proposed EditKSum model significantly outperforms most of the NAR and
AR baselines on the two datasets, while achieving comparable performance in
ROUGE-1 with powerful AR pre-trained models PEGASUS. Among the NAR
methods, our model already outperforms the baselines with large margins with-
out the help of the pre-trained language model. When equipped with BERT, our
model achieves improvements of 5.35/2.37/4.68 Rouge scores over EDITOR w/
BERT, showing the effectiveness of editing with keywords. EditKSum also out-
performs BANG, BERT+CRF-NAT, and BERTSum, both of them are boosted
by a large-scale pre-trained model.

Table 3. The average inference latency (ms) and the number of iterations of EditKSum
and baselines. For edit-based models, one iteration corresponds to completing a cycle
of actions, whereas for AR models, the number of iterations is equal to the length of
the generated sequence.The top scores are highlighted in bold.

Datasets CNNDM Gigaword

Lat. Iter. Lat. Iter.

EDITOR 90.8 3.4 70.3 2.7

LevT 88.4 3.4 74.5 2.9

Transformer 576.6 52.3 147.1 14.2

EditKSum 68.6 2.4 60.3 2.3
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4.4 Inference Speed

In this section, we evaluate the inference speed of EditKSum. For a fair compar-
ison, all models have been configured with a beam size of 1 and a batch size of
1. Moreover, the network hyperparameters are consistent across all models.

As shown in Table 3, we measured the inference latency and the number of
iterations for different models on the CNN/DM and Gigaword test sets.

Compared with AR or NAR baseline models, thanks to editing from key-
words, EditKSum can generate summaries with fewer iterations. As a result, it
requires less inference latency to generate a summary.

It is worth noting that for the CNNDM dataset, due to the longer length of
the original text, the effect of EditKSum in improving generation efficiency will
be more pronounced. Specifically, EditKSum achieves 7.40/0.28 times speedup
over Transformer/LevT in the CNNDM dataset.

5 Analysis

5.1 Improvement of Keywords-Guided Summarization Models

For autoregressive models, the keywords are utilized by appending them to the
beginning of the summary and taking as the prompt to guide the following gener-
ation. However, in this way, the model are not able to edit if the keywords contain
errors, while the proposed edit with keywords method can alleviate this prob-
lem. To verify the statement, we compare the proposed EditKSum with three
strong keywords guided autoregressive methods, i.e., CAS [30], GSum [8]and
FROST [36]. As different models are based on different pretrained models, to
make a fair comparison, we only consider the impact of keywords by comparing
the performance of the model w/ or w/o the help of keywords. The results are
visually illustrated in Fig. 3, where the blue and orange columns represent the
ROUGE-1 scores on the CNNDM dataset of the model without and with key-
words, respectively. Obviously, the proposed model achieves the most significant
improvement over its counterparts. Specifically, EditKSum obtains an absolute
improvement of 5.35/2.37/4.68 on ROUGE-1/2/L over the initialized baseline,
with 13.77% promotion in ROUGE-1, which is far ahead of the other models.
The results show that the proposed method benefits more from keywords by uti-
lizing the prominent information contained in it, while also correcting the errors
by changing the orders as well as removing inappropriate ones.
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Fig. 3. ROUGE-1 scores of keywords-guided summarization models. Blue/orange bars
indicate the results w/ or w/o the help of keywords. (Color figure online)

5.2 Comparison of Different Keyword Extraction Strategies

In EditKSum, the keyword extractor evaluates the informativeness of all the
tokens in the source document, based on which the keywords are selected. We
adopt two different strategies to select keywords, one is to take the top N tokens
with the highest scores as keywords, the other is to set a threshold ε and select
the tokens with scores exceeding the threshold. We investigate the effect of the
keyword selection strategies and hyper-parameter settings. As we can see in
Table 4, when we adopt the threshold strategy and ε equals 1.0, the best ROUGE-
1/L scores is achieved (best ROUGE-2 scores is achieved when ε equals 0.8).
Although the best result obtained by the topN strategy is similar to the threshold
strategy, the selection of N has a great influence on the result. In contrast, the
threshold strategy is more robust. So the default setting for our experiments is
threshold-1.0.
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Table 4. Results of EditKSum on CNN/DM dataset of different keyword extraction
strategies. TopN and Threshold indicates corresponding keyword extraction strategy.
The following number represents the hyper-parameter N or ε. The highest numbers
are in bold

Strategy Hyper-Para. R-1 R-2 R-L

TopN 20 40.76 18.99 37.50

40 42.92 19.73 39.32

60 43.98 19.78 40.17

80 42.45 18.61 38.29

Threshold 0.4 43.15 19.82 39.54

0.6 43.77 19.96 40.04

0.8 44.05 19.93 40.25

1.0 44.19 20.00 40.61

5.3 The Influence the Abstractiveness of Datasets

To quantify the abstractiveness of different datasets, we measured the overlap
rate between source and target tokens among them, a lower overlap rate signifies
a higher abstractiveness level.

Table 5. The Influence the Abstractiveness of Datasets

Datasets CNNDM Gigaword XLSum NewsRoom XSum

Overlap Rate 91.8% 58.82% 59.85% 80.61% 47.28%

PEGASUS [50] 21.47 19.86 18.28 33.39 24.56

EditKSum 20.00 18.05 7.61 29.02 0.57

Relative Gap 6.85% 9.11% 58.37% 13.09% 97.68%

As shown in Table 5, the overlap rate of CNNDM/Gigaword/XLSum/
Newsroom/XSum is 91.78%/58.82%/59.85%/80.61%/47.28% respectively. The
relative gap in ROUGE-2 score between EditKSum and PEGASUS was found
to have a high Person’s correlation coefficient (0.76) with the overlap rate, indi-
cating a strong correlation between model performance and abstractiveness level.

5.4 Case Study

In order to show the generation process and demonstrate the powerful editing
ability of our model more clearly, we selected a concrete example and display its
specific generation process in Table 6.

As the this example shows, EditKSum extracts the salient tokens in the
source document at first, then deletes the inappropriate token visit and inserts
the correct tokens including ’s, visits, j, and ##erus in the correct positions
to make a summary with high quality.
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Table 6. Case study on Gigaword dataset. “Source”, “Target” and “Hypo” represents
the source document, reference summary and generated summary respectively. “Tok-
enize” and “Extract Keywords” mean tokenizing the source document and extracting
keywords from it. Steps means the iterations of sequence. And “Untokenize” means
detokenize the final sequence to get generated summary.

Type Text

Source jordan ’s crown prince hassan ibn talal arrived tuesday for his first visit

to jerusalem and was to pay his condolences to the widow of assassi-

nated prime minister yitzhak rabin .

Target jordan ’ s crown prince makes first visit to jerusalem

Hypo jordan ’ s crown prince visits troubled jerusalem city

Tokenize j ##ord ##an ’ s crown prince has ##san ibn ta ##lal arrived t ##ues

##day for his first visit to j ##erus ##ale ##m and was to pay his con

##do ##len ##ces to the widow of assassinated prime minister y ##itz

##hak r ##abi ##n .

Extract Keywords j ##ord ##an s crown prince visit ##erus ##m

Step0 j ##ord ##an s crown prince visit ##erus ##m

Step1 j ##ord ##an s crown prince ##erus ##m

Step2 j ##ord ##an [UNK] s crown prince [UNK] [UNK] ##erus [UNK] ##m

Step3 j ##ord ##an ’ s crown prince visits j ##erus ##ale ##m

Step4 j ##ord ##an ’ s crown prince visits j ##erus ##ale ##m

Step5 j ##ord ##an ’ s crown prince visits [UNK] j ##erus ##ale ##m

Step6 j ##ord ##an ’ s crown prince visits troubled j ##erus ##ale ##m

Step7 j ##ord ##an ’ s crown prince visits troubled j ##erus ##ale ##m

Step8 j ##ord ##an ’ s crown prince visits troubled j ##erus ##ale ##m [UNK]

Step9 j ##ord ##an ’ s crown prince visits troubled j ##erus ##ale ##m city

Untokenize jordan ’ s crown prince visits troubled jerusalem city

6 Conclusion

In this paper, we propose an edit-based model with keywords named EditKSum
to slove the length predictiong issue in the text summarization task. We first con-
duct a thorough analysis validating a strong correlation between the balance of
different operations and the generation performance, i.e., more balanced opera-
tions imply better results. Considering that the salience words in the source doc-
ument can provide useful information when generating summaries, we propose
to edit from keywords by introducing a keyword extractor to extract prominent
words from the source document, which are taken as the initial state for the edit-
based decoder. In experiments, on two benchmark text summarization datasets,
we show that the proposed EditKSum can achieve significant improvements over
other NAR models, while achieving comparable performance to strong NR mod-
els with faster decoding speed. For future work, we plan to apply our method
to other text generation tasks, such as text simplification, dialogue, and story
generation.
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