
Ensemble Pruning via Constrained Eigen-Optimization

Linli Xu, Bo Li, Enhong Chen
School of Computer Science and Technology

University of Science and Technology of China
Hefei, Anhui

linlixu@ustc.edu.cn, lib3@mail.ustc.edu.cn, cheneh@ustc.edu.cn

Abstract—An ensemble is composed of a set of base learners
that make predictions jointly. The generalization performance
of an ensemble has been justified both theoretically and in
practice. However, existing ensemble learning methods some-
times produce unnecessarily large ensembles, with an expense
of extra computational costs and memory consumption. The
purpose of ensemble pruning is to select a subset of base
learners with comparable or better prediction performance.
In this paper, we formulate the ensemble pruning problem
into a combinatorial optimization problem with the goal to
maximize the accuracy and diversity at the same time. Solving
this problem exactly is computationally hard. Fortunately, we
can relax and reformulate it as a constrained eigenvector
problem, which can be solved with an efficient algorithm that
is guaranteed to converge globally. Convincing experimental
results demonstrate that this optimization based ensemble
pruning algorithm outperforms the state-of-the-art heuristics
in the literature.

Keywords-ensemble pruning; optimization

I. INTRODUCTION

Ensemble methods have been a very active research field
in the machine learning and data mining communities during
the past decade. By definition, an ensemble is composed of
a set of base learners that make predictions jointly. The en-
semble methods have achieved significant empirical success
in many applications, which arises largely from the well-
accepted fact that an ensemble usually generalizes better
than a single classifier given the same amount of training
information. According to Krogh and Vedelsby [1], the
performance of an ensemble relies on the accuracy as well as
the diversity of its members. That is, the members of an ideal
ensemble should produce highly accurate predictions while
making different errors as much as possible. On the other
hand, an increase in the accuracies of ensemble members
implies lower diversity, therefore constructing an effective
ensemble involves taking care of the tradeoff between accu-
racy and diversity.

A number of approaches have been proposed to generate
ensembles effectively, such as bagging [2], boosting [3],
random forests [4]. One issue with ensemble methods is the
tendency to construct ensembles with unnecessarily large
sizes. This comes with two costs – the memory required
to store all the base learners, and the processing time to
get a prediction for an unlabeled test example based on

all the base learners. These computational overhead can
be critical for large scale problems or online applications
[5], [6]. On the other hand, having a large number of
models in an ensemble does not guarantee good predictive
performance. For example, an ensemble that contains many
similar models may have reduced diversity and capability
for error correction.

Selecting a fraction of the base learners from the ensemble
is typically considered an appropriate recipe to address
the issues above. This technique is known as ensemble
pruning or ensemble selection, where a subensemble is
carefully chosen with a smaller size according to a given
criterion. Besides a reduction in the computational overhead,
comparable or even better predictive performance is also a
potential benefit after pruning.

Ensemble pruning can be thought of as a special case
of weighted ensemble learning with 0-1 weights. The goal
of the general weighted ensemble learning problem is to
optimize over a set of weight values of the base learners
with the goal to enhance the generalization performance
of the weighted ensemble [1], [7], [8]. These weight-based
approaches sometimes can produce sparse solutions and
reduce the size of the ensemble. However, the reduced size
of the ensemble is not explicitly predefined. This is also
a subtlety to be noted in various ensemble pruning and
selection techniques.

Assuming the generalization performance of an ensemble
can be estimated in terms of a cost function measured
on the training set, to select a subensemble with the best
performance from 𝑚 classifiers, intuitively one need to
search in the space of 2𝑚−1 non-empty subensembles. This
problem is proven to be NP-complete [9], and therefore it
is not practical to produce a globally optimal solution.

The majority of the efforts in ensemble pruning are
then devoted to solving the problem approximately, where
many approaches have been proposed. A straightforward
heuristic proposed in [10] starts with training a library of
about 2000 classifiers which consist of different models
with different parameter settings, and then iteratively adding
member classifiers from the library to the ensemble to
maximize the performance according to some predefined
metric. This method is simple and intuitive, however, it
fails to consider the overall information of the original

2012 IEEE 12th International Conference on Data Mining

1550-4786/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDM.2012.97

576

2012 IEEE 12th International Conference on Data Mining

1550-4786/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDM.2012.97

715

ensemble. Besides that, there are three rough categories of
ensemble pruning techniques: 1) Clustering based: models
with similar predictive behaviors are clustered together, each
cluster is pruned separately to reduce the overall size of
the ensemble [11], [12]; 2) Ordering based: models in the
ensemble are ordered based on some predefined evaluation
measures, members of the subensemble are then selected
according to this order [13]. Examples in this category
include Kappa pruning [5], margin distance minimization
[14], orientation ordering [15], and individual contribution
ordering [16]; 3) Optimization based: ensemble pruning can
be viewed as a combinatorial optimization problem with the
goal to find a subset of the original ensemble that optimizes
a predefined criterion which is an estimate of the generaliza-
tion performance of the subensemble. Unlike the previous
heuristic approaches, using a mathematical formulation, one
can model the performance of the subensemble in a more
principled way. Unfortunately, as discussed above, solving
the optimization problem globally is hard. Therefore, genetic
algorithms [17], [7] and semidefinite relaxations [18] have
been proposed to solve the problem approximately. However,
although the time complexity of these methods is no longer
exponential, they still suffer from low scalability.

In this paper, we propose a new optimization based
approach to solve the ensemble pruning problem. The goal
is to efficiently optimize a criterion that integrates accuracy
and diversity at the same time. Unlike the genetic algorithms
and semidefinite relaxations discussed above, we formulate
the problem as a linearly constrained eigen-optimization
problem, which can be solved with an efficient algorithm
that is guaranteed to converge globally. More importantly,
we can achieve a significant improvement in computational
efficiency with comparable or even better predictive perfor-
mance. This novel optimization based approach is tested on
38 UCI repository data sets and shown to outperform the
original ensemble and subensembles produced by the state
of the art ensemble pruning methods.

The rest of the paper is organized as follows. We first
formulate our problem as a combinatorial optimization
problem, and show how to reformulate and relax it into
a constrained eigenvector optimization problem which can
be solved with an iterative algorithm that is guaranteed
to converge to a global solution. After that some related
work is discussed, followed by the experimental results to
demonstrate the effectiveness of the proposed approach. The
paper is then concluded with possible directions for future
work.

II. ENSEMBLE PRUNING WITH A CONSTRAINED

EIGENVECTOR COMPUTATION

As shown in the literature, a good ensemble should satisfy
the condition that its member classifiers be both accurate and
diverse [19]. That is, the member classifiers should not only
be accurate by themselves, but also make different errors.

On the other hand, with the increase of the accuracies of
the member classifiers, the diversity of the ensemble will
decrease, which implies a trade-off that we should take into
account when selecting a subset from the original ensemble.

To handle the accuracy and diversity at the same time in a
mathematical formulation, we follow the recipe proposed by
[18], which is based on the observation that the performance
of an ensemble can be measured by a linear combination
of its members’ individual accuracy and pairwise diversity.
Therefore, one could first record the predictive accuracies
of the individual basic learners as well as the comparative
performance of the member pairs, and integrate them with
a linear combination as an approximation of the ensemble’s
predictive performance, which will be used as an objective
in the optimization problem.

Let 𝐿 = {(x𝑖, 𝑦𝑖)∣𝑖 = 1, ..., 𝑡} be our training set, where
x𝑖 is the input feature vector of the 𝑖-th example, and 𝑦𝑖 ∈
{1, ..., 𝑐} is the corresponding class label. We start with an
ensemble trained on the training data 𝐿 with 𝑚 member
classifiers, and the goal is to select 𝑘 classifiers out of them
and form a new subensemble.

To achieve that, firstly a matrix 𝑀 is used to record the
performance of all the member classifiers on the training set:

𝑀𝑖𝑗 =

{
1, if 𝑗th classifier makes an error on the data 𝑖
0, otherwise

Thus, 𝐺 = 𝑀⊤𝑀 is a matrix with the interesting properties
that the diagonal entries 𝐺𝑖𝑖 represent the misclassification
errors made by each classifier 𝑖 on the training data, while
the off-diagonal entries 𝐺𝑖𝑗 correspond to the number of
common errors made by classifier 𝑖 and 𝑗. Normalization is
then applied on 𝐺 to make its elements on the same scale

�̃�𝑖𝑖 =
𝐺𝑖𝑖

𝑡
, �̃�𝑖𝑗 =

1

2

(
𝐺𝑖𝑗

𝐺𝑖𝑖
+

𝐺𝑗𝑖

𝐺𝑗𝑗

)
(1)

where 𝑡 is the number of training examples. It is obvious
that �̃�𝑖𝑖 is the misclassification error rate of classifier 𝑖,
and �̃�𝑖𝑗 measures the amount of overlapping errors between
classifier 𝑖 and 𝑗. Intuitively, smaller �̃�𝑖𝑖 corresponds to a
more accurate member classifier, while smaller �̃�𝑖𝑗 implies a
more different classifier pair. Therefore, it is straightforward
that a small value of

∑
𝑖𝑗 �̃�𝑖𝑗 implies a good ensemble;

consequentially, to find an ideal subensemble, we would like
to select those member classifiers with small values of �̃�𝑖𝑖

and �̃�𝑖𝑗 as well.
Based on the discussion above, in the optimization model,

selecting a subensemble of size 𝑘 with both accuracy and
diversity can now be formulated as

min
w

w⊤�̃�w

s.t.
∑

𝑖 𝑤𝑖 = 𝑘

𝑤𝑖 ∈ {0, 1}. (2)

The binary variable 𝑤𝑖 serves as a 0-1 weight or an indicator:
when 𝑤𝑖 = 1, the 𝑖th classifier will be selected and its

577716

corresponding diagonal and off-diagonal entries in �̃�𝑖𝑗 will
be counted in the objective. The parameter 𝑘 controls the
size of the pruned subensemble and needs to be specified
beforehand.

The problem (2) is a standard 0-1 optimization problem,
which is NP-hard in general. However, we will show that
after some reformulation and relaxations, it can be solved
in an efficient way.

First use z = 2w − 1 to replace w, we have z ∈
{−1,+1}𝑚, and the problem (2) can be rewritten as

min
z

(z+ 1)⊤�̃�(z+ 1)

4
s.t. z⊤1 = 2𝑘 −𝑚

𝑧𝑖 ∈ {−1, 1}. (3)

Now we make a transformation of the variables by letting

ẑ(𝑚+1)×1 =

[
1
z

]

and

�̃�′(𝑚+1)×(𝑚+1) =

[
1⊤�̃�1 1⊤�̃�
�̃�1 �̃�

]
, (4)

where 1 is a vector of all 1’s. Note here in the new
optimization formulation we need to explicitly constrain that
the first entry of ẑ equals to 1. Now we can write problem
(3) in a more concise form:

min
ẑ

ẑ⊤�̃�′ẑ

s.t ẑ ∈ {−1,+1}𝑚+1

ẑ⊤1 = 2𝑘 −𝑚+ 1

𝑧1 = 1.

This can be further reformulated as

min
v

v⊤�̃�′v

s.t v ∈ {− 1√
𝑚+1

, 1√
𝑚+1

}𝑚+1

v⊤1 = 2𝑘−𝑚+1√
𝑚+1

𝑣1 = 1√
𝑚+1

(5)

where v = ẑ√
𝑚+1

, and positive values in v2:𝑛 indicate the
corresponding classifiers being selected in the subensemble.

The problem above is non-convex and NP-hard, and the
NP-hardness is caused by the discrete constraints v ∈
{− 1√

𝑚+1
, 1√

𝑚+1
}𝑚+1. This is where we make our only

relaxation: we replace the discrete constraints with a norm
constraint ∥v∥ = 1. This gives us

min
v

v⊤�̃�′v

s.t ∥v∥ = 1

v⊤1 = 2𝑘−𝑚+1√
𝑚+1

𝑣1 = 1√
𝑚+1

. (6)

The linear constraints above on vector v can be written in
a more compact way as 𝐴v = b, where

𝐴 =

[
1 0 ... 0
1 1 ... 1

]

and

b =
1√

𝑚+ 1

[
1

2𝑘 −𝑚+ 1

]
.

Problem (6) is still non-convex. Fortunately, we will see
that it can be solved exactly in an efficient way.

First we switch the minimization formulation in problem
(6) to a maximization problem without affecting the solution:

max
v

v⊤(𝛼𝐼 − �̃�′)v

s.t ∥v∥ = 1

𝐴v = b (7)

where 𝛼 is sufficiently large such that 𝛼𝐼 − �̃�′ is a
semidefinite positive matrix. Now the problem is similar
to a maximum eigenvalue computation, except that now
we have some additional inhomogeneous linear constraints,
which complicates the optimization problem. Fortunately, a
recent technique called Projected Power Method [20] can
be applied here to find the exact solution to problem (7)
through an iterative procedure with convergence to global
solution guaranteed. The overall procedure is summarized
in Algorithm 1.

Algorithm 1 Ensemble Pruning via Constrained Eigen-
Optimization

Input: Matrix 𝑀 recording the results produced by the
ensemble members.

Calculate the matrix �̃�′ according to (4)
Solve the optimization problem (7):
𝐻 = 𝛼𝐼 − �̃�′

𝑃 = 𝐼 −𝐴⊤(𝐴𝐴⊤)−1𝐴, 𝑖 = 0
n0 = 𝐴⊤(𝐴𝐴⊤)−1b
𝛾 =

√
1− ∥n0∥2

v0 = 𝛾 𝑃𝐻n0

∥𝑃𝐻n0∥ + n0

repeat
u𝑖+1 = 𝛾 𝑃𝐻v𝑖

∥𝑃𝐻v𝑖∥
v𝑖+1 = u𝑖+1 + n0

𝑖 = 𝑖+ 1
until v converges
return v

The proposed algorithm is an efficient technique to solve
the ensemble pruning problem. More importantly, the itera-
tive approach is guaranteed to converge to a global optimum
according to [20]. Once v is returned, one can apply different
rounding schemes to v2:𝑛 and recover the relaxed solution
of z or w, and the ensemble can be pruned according to

578717

that. In this paper, we simply keep the 𝑘 base learners with
higher values in v2:𝑛 to construct the pruned ensemble.

III. RELATED WORK

Before presenting the experimental results, we give a brief
review of some related work on ensemble pruning. The
methods that we are going to discuss here fall into the cat-
egories of ordering-based and optimization-based ensemble
pruning.

A representative of the ordering based ensemble pruning
methods is Orientation Ordering (OO) [15], where a sig-
nature vector is first defined for each classifier to indicate
whether the classifier is correct on the training examples.
A reference vector is then used to measure the direction
towards which the signature vector of the ensemble should
be modified to achieve a perfect classification performance
on the training data. Classifiers are ordered by increasing
angles of their signature vectors with the reference vector.
Members of the pruned subensemble can then be selected
according to this order.

Another ordering based approach is Ensemble Pruning
via Individual Contribution (EPIC) [16] where a metric that
considers both accuracy and diversity is defined to evaluate
each member classifier’s contribution, and ordering is based
on decreasing individual contribution of each classifier.

In this paper, we are interested in ensemble pruning
by solving an optimization problem. Unlike the heuristic
approaches discussed above, a mathematical formulation is
used to model the expected performance of the ensemble in
a more principled way. Representatives include genetic algo-
rithms that evolve voting weights of the member classifiers
towards a higher value of fitness that approximates the gen-
eralization performance of the ensemble [17], [7]. Another
example is a regularized selective ensemble algorithm that
solves for the weights of the base classifiers to minimize
a regularized risk function, which can be formulated as a
quadratic program with an ℓ1-norm constraint on the weight
vector [8].

A more recent and related optimization-based approach
reformulates the combinatorial optimization problem (2) in
a different way:

min
ẑ

ẑ⊤�̃�′ẑ

s.t. ẑ ∈ {−1,+1}𝑚+1

ẑ⊤𝐷ẑ = 4𝑘

𝑧1 = 1

where 𝐷 =

[
𝑚 1⊤

1 𝐼

]
. Note the different quadratic

reformulation of the ensemble size constraint: ẑ⊤𝐷ẑ = 4𝑘,
this facilitates applying semidefinite relaxations and solving
the problem approximately with a semidefinite program
(SDP) [21]. More specifically, after substituting 𝑍 = ẑẑ⊤

and replacing the constraints with relaxations, the SDP
formulation can be written as:

min
𝑍

trace(�̃�𝑍)

s.t. trace(𝐷𝑍) = 4𝑘

diag(𝑍) = 1

𝑍 ર 0 (8)

In general, this is a tighter relaxation than the proposed
formulation (6). However, although the global solution to
an SDP can be found in polynomial time, the complexity is
𝑂(𝑞2𝑝2.5) [22] where 𝑝 is the size of the matrix variable and
𝑞 is the number of the constraints. Therefore, the complexity
for solving the SDP relaxation of ensemble pruning is
𝑂(𝑚4.5), which is intensive for large problems. Memory
is also a big issue. In practice, solving the problem with an
ensemble of size 200 is usually computationally prohibitive
for a standard workstation.

On the other hand, the relaxation proposed in this paper
(6) can be solved with an iterative procedure with 𝑂(𝑚2)
complexity for each loop [20], and it converges quickly in
practice. This implies a significant improvement in scalabil-
ity.

Regarding the numerical performance, the relaxations
made by the SDP formulation and our approach are different,
which results in different numerical solutions. In the follow-
ing section, we will design some experiments to compare
the numerical performance between SDP and the proposed
approach, including the quality of optimization as well as
running time.

IV. EXPERIMENTAL RESULTS

In this section we conduct a series of experiments to
compare the performance of different ensemble pruning
methods discussed above. Data sets are taken from the
UCI machine learning repository [23]. In the experiments
we use bagging as the original ensemble considering its
prediction performance, robustness, and little tuning required
in general [24]. More specifically, the base learner we use in
the experiments is J48, a Java implementation of C4.5 [25]
in Weka [26]. We should note that although here we use
bagging as the original ensemble, the proposed method is
not limited to bagging, and can be applied to any ensemble
methods.

A. Numerical Comparison

To investigate the numerical effects of different relax-
ations made to the discrete optimization problem (5), we
randomly generate a problem of size 25, that is an ensemble
of 25 base classifiers, and set the pruning ratio to 30%. We
first find the optimal solution to problem (5) by enumerating
all possible selections of the base classifiers with size 8,
which implies 𝐶8

25 = 1, 081, 575 possible subensembles, and
choose the one with minimum objective value. We then run

579718

Table I
NUMERICAL COMPARISON OF THE EXACT SOLUTION AND THE SDP/EIGCONS RELAXATIONS.

Exact solution SDP relaxation Eigcons relaxation
Objective 4.28 4.26 4.08
Pruning mistakes – 0.44 ±0.50 0.96±0.57

the SDP algorithm and the proposed approach to compare
with the optimal solution. SDP is implemented with the
semidefinite programming package SeDuMi [27]. The pro-
cedure is repeated 50 times. Table I shows the results, where
we compare the SDP algorithm and the constrained eigen-
optimization approach (EigCons) in terms of the objective
values, and the difference of the subensembles found by the
two relaxed solutions to the optimal one.

According to optimization theory, the objective value of
a relaxed minimization problem should be smaller than or
equal to that of the original problem since the solution
space is less constrained. This is clearly shown in Table I.
Meanwhile, we can see that the objective value of the SDP
algorithm is greater than that of the constrained eigen-
optimization approach, which is not surprising since the
SDP relaxation is tighter. As a consequence, when we
compare the subensembles found by the two algorithms to
the optimal one, we can see that the proposed constrained
eigen-optimization method produces more pruning mistakes
than the SDP algorithm, which demonstrates a tradeoff be-
tween precision and scalability. However, from the following
experiments on real data sets, we will see that the difference
in precision here is tolerable especially when we take the
issue of computational efficiency into consideration.

B. Comparison with the SDP formulation on UCI data

We then further investigate the different behavior of the
two optimization based pruning methods: the SDP formula-
tion and the proposed algorithm (EigCons). Here, due to the
high complexity of solving an SDP, we only use one data set
for illustration. We take the “autos” data set from the UCI
repository, randomly split it into a training set and a testing
set, try different ensemble sizes (𝑚 values) and set pruning
ratio to 30%, then run the two algorithms. This procedure
is repeated 5 times and we take the average of the results
to compare. Table II and Table III show the classification
errors and the running time of the SDP approach and our
proposed algorithm respectively.

Although the experiment is not repeatedly run on many
different trials due to the computational expenses of SDP
optimization, from Table II, we could roughly say that the
performance of the constrained eigen-optimization technique
is comparable to the SDP formulation given the different
relaxations taken by the two approaches.

Table III summarizes the running time of the two al-
gorithms with different ensemble sizes, where one could

Table II
COMPARISON ON THE PERCENTAGES OF CLASSIFICATION ERROR WITH

DIFFERENT NUMBER OF CLASSIFIERS.

Number of classifiers 50 100 150
SDP 33.04 27.83 27.54
EigCons 33.33 28.41 24.64

Table III
NUMERICAL COMPARISON ON THE RUNNING TIME (SECONDS) WITH

DIFFERENT NUMBER OF CLASSIFIERS.

Number of classifiers 50 100 150
SDP 40.3 2599.6 27819.8
EigCons 0.9 1.6 3.0

observe remarkable difference of the two algorithms in
terms of computational efficiency. In fact, when the number
of classifiers gets over 200, the SDP approach enters a
bottleneck of memory space, therefore we are not able to
get results with 𝑚 values bigger than 150. Obviously in
practice, the SDP approach is too expensive to be applied
to real problems with large ensemble sizes.

C. Comparison with the ordering based pruning methods

Here we mainly focus on comparing the proposed con-
strained eigen-optimization technique (EigCons) with the
two ordering based pruning methods discussed above: ori-
entation ordering (OO) and individual contribution ordering
(EPIC). We use 38 UCI data sets summarized in Table IV
and follow the experimental setting proposed by the EPIC
paper [16]: first randomly divide each data set into three
subsets with equal sizes, which include a training set, a
pruning set and a testing set respectively. An ensemble is
learned based on the training set, and a pruning set is used
to evaluate the performance of the member classifiers, then
ensemble pruning techniques are applied. After that, the
performance of the pruned subensemble is evaluated on the
testing set. There are six possible permutations of the three
subsets, which implies six sets of sub-experiments. Each
set of sub-experiments consists of 50 trials; in every trial,
a bagging ensemble of 100 decision trees is trained and
pruned, the subensemble is then evaluated. Overall on each
data set, there are 300 repeats of experiments. In each repeat
we change the random seed to ensure the generated bagging
is not the same as previous.

580719

Table IV
A BRIEF DESCRIPTION OF THE DATA SETS USED IN THE EXPERIMENTS.

Data set Classes Dimensions Size
Anneal 6 38 898
Arrhythmia 16 279 452
Audiology 24 69 226
Auto-mpg 4 7 398
Autos 7 25 205
Balance Scale 3 4 625
Balloons 2 4 76
Breast-w 2 9 699
Bridges2 6 11 108
Clean1 2 166 476
Cmc 3 9 1473
Credit-g 2 20 1000
Dermatology 6 34 366
Flag 6 27 194
Glass 7 9 214
Hayes-roth 3 4 132
Heart-h 5 13 294
Hypothyroid 4 29 3772
Letter 26 16 20000
Lymph 4 18 148
Machine 8 7 209
Mfeat-factors 10 216 2000
Mfeat-fourier 10 76 2000
Mfeat-karhunen 10 64 2000
Mfeat-morphological 10 6 2000
Mfeat-pixel 10 240 2000
Mfeat-zernike 10 47 2000
Primary-tumor 22 17 339
Promoters 2 57 106
Segment 7 19 2310
Sonar 2 60 208
Soybean 19 35 683
Splice 3 61 3190
Tae 3 5 151
Tic-tac-toe 2 9 958
Vehicle 4 18 846
Vowel 11 13 990
Wine 3 13 178

Table V summarizes the results of different pruning al-
gorithms and the original bagging ensembles. Means and
standard deviations of the prediction errors over 300 trials of
each experiment on each data set can be found in the table.
Here we only report the results of the pruning algorithms
with pruning ratio equal to 30% to be clear. Results of bag-
ging ensembles are evaluated with the complete ensembles.

In Table V, the proposed constrained eigen-optimization
technique with pruning ratio 30% is compared to the other
pruning methods (OO, EPIC) with the same pruning ratio
and the full-size bagging ensemble. Statistical significance of
the comparison is evaluated. In Table V, the ⊕ sign denotes
EigCons outperforms the comparing method at significance
level of 95%, similarly ⊙ implies comparable results, and
⊖ corresponds to the case that EigCons is outperformed by
the competing technique with statistical significance.

From Table V we can observe that in most cases, the
ensemble pruning methods outperform the full bagging en-
semble, which justifies the motivation of ensemble pruning.
Among all the pruning techniques, the proposed constrained
eigen-optimization method is superior to the comparing
methods most of the times.

Next, we investigate the influence of the pruning ratio
on the performance of the pruned subensemble. Here, we
use the same experimental setting as above, except that due
to the concern of computational expenses, we reduce the
number of trials in each sub-experiment to 30. We vary the
sizes of subensembles from 1 to the size of the full ensemble,
100, and then plot the error curves of various algorithms with
the increase of the number of decision trees included in the
subensemble. On each data set we also plot the error curve of
the bagging subensemble which is constructed by including
decision trees incrementally from the original ensemble. We
do not report the standard deviations here to be clear.

Fig. 1-2 summarize the results on 12 representative
data sets: “Autos”, “Arrhythmia”, “Balance Scale”, “Cmc”,
“Flag”, “Glass”, “Hayes-roth”, “Primary-tumor”, “Sonar”,
“Vehicle”, “Vowel” and “Wine”. From the curves we can
first observe that as the number of classifiers increases, the
error of a bagging ensemble generally decreases, and the
decreasing rate gets smaller and smaller when the number
of classifiers gets large. We can also note that in general
all the pruning methods outperform the bagging algorithm
(except for the comparable performance of OO and bagging
on the “Flag” data set), which agrees with what is observed
in Table V.

From Fig. 1-2 we can observe that on most of the data
sets, the error curves of the constrained eigen technique are
below those of the competing pruning methods including
EPIC and OO. It can also be noted that on a few data
sets, OO can produce small subensembles with relatively
lower error rates. Specifically, on the data sets “Arrhythmia”,
“Autos”, “Glass” and “Primary-tumor”, the error curves
produced by OO drop below the other curves when the
number of classifiers is small (roughly less than 10), after
that our constrained eigen technique starts to outperform OO
as the size of the subensemble grows. On the “Cmc” data
set, OO performs quite well with small subensembles, and
is comparable to the constrained eigen technique when the
number of classifiers increases. When comparing to EPIC,
the proposed constrained eigen technique is consistently
better on all the data sets.

Overall from the curves one could observe that generally
the best performance of ensemble pruning is achieved with
pruning ratio between 15% and 30%. Therefore, given an
original ensemble, it is safe in general to set the pruning
ratio between the values of 15% and 30%.

581720

Table V
PERCENTAGES OF CLASSIFICATION ERROR OF THE FULL-SIZE BAGGING ENSEMBLE AND DIFFERENT ENSEMBLE PRUNING METHODS WITH PRUNING

RATIO OF 30%. ⊕ DENOTES EIGCONS OUTPERFORMS THE COMPARING METHOD AT SIGNIFICANCE LEVEL OF 95%, ⊙ IMPLIES COMPARABLE

RESULTS, AND ⊖ REPRESENTS THAT EIGCONS IS OUTPERFORMED BY THE COMPETING TECHNIQUE WITH STATISTICAL SIGNIFICANCE.

Bagging Eigcons+30% OO+30% EPIC+30%

Anneal 2.78±0.97⊕ 2.51±0.96 2.62±1.05⊙ 2.7±1.03⊕
Arrhythmia 28.84±3.62⊕ 27.58±3.43 27.77±3.84⊙ 28.69±3.82⊕
Audiology 32.16±4.5⊕ 30.85±5.2 32.34±6.07⊕ 32.36±4.5⊕
Auto-mpg 29.2±4.32⊕ 26.84±5.12 27.66±4.63⊕ 28.39±4.33⊕
Autos 36.36±5.48⊕ 31.92±4.21 34.02±5.23⊕ 35.15±4.84⊕
Balance Scale 20.17±1.14⊕ 18.20±1.41 18.45±1.39⊕ 19.71±1.51⊕
Balloons 38.4±11.83⊕ 29.87±8.20 31.48±9.69⊕ 34.10±11.05⊕
Breast-w 4.3±1.18⊕ 4.07±1.08 4.32±1.16⊕ 4.38±1.02⊕
Bridges2 45.13±6.04⊕ 40.69±6.29 42.24±6.27⊕ 42.19±6.54⊕
Clean1 19.51±2.78⊕ 16.64±2.49 16.9±2.58⊙ 18.91±2.94⊕
Cmc 49.36±0.99⊕ 48.97±1.30 48.78±1.19⊙ 49.3±1.27⊕
Credit-g 26.42±1.83⊕ 25.95±1.73 25.8±1.89⊙ 26.47±1.74⊕
Dermatology 6.91±2.11⊕ 3.83±1.18 4.87±1.34⊕ 5.28±2.11⊕
Flag 43.80±4.67⊕ 41.58±3.88 44.3±4.23⊕ 44.17±4.6⊕
Glass 38.12±6.32⊕ 36.0±5.73 37.22±7.41⊕ 37.64±6.54⊕
Hayes-roth 30.08±8.81⊕ 25.90±5.15 27.15±6.27⊕ 27.06±5.87⊕
Heart-h 20.27±2.33⊕ 19.0±2.34 19.59±2.75⊕ 19.46±2.43⊕
Hypothyroid 0.54±0.16⊕ 0.48±0.15 0.46±0.12⊙ 0.5±0.14⊕
Letter 10.21±0.41⊕ 9.84±0.31 9.97±0.31⊕ 10.81±0.43⊕
Lymph 21.10±3.83⊙ 20.71±4.05 22.61±3.47⊕ 22.32±3.52⊕
Machine 18.25±4.76⊕ 15.50±4.11 15.82±3.82⊙ 16.55±4.24⊕
Mfeat-factors 7.89±1.8⊕ 7.06±1.6 7.33±1.64⊕ 8.22±1.76⊕
Mfeat-fourier 21.87±2.05⊕ 21.41±2.09 21.62±2.0⊙ 22.2±2.03⊕
Mfeat-karhunen 12.46±1.49⊕ 11.4±1.44 11.81±1.43⊕ 13.12±1.51⊕
Mfeat-morphological 28.25±0.93⊕ 28.04±0.92 27.9±0.95⊙ 28.33±1.05⊕
Mfeat-pixel 21.41±4.29⊕ 19.04±4.19 20.1±4.27⊕ 21.78±3.91⊕
Mfeat-zernike 25.35±1.41⊙ 25.14±1.43 25.46±1.47⊕ 25.82±1.41⊕
Primary-tumor 64.23±3.18⊕ 62.71±2.87 63.0±3.28⊙ 64.03±3.03⊕
Promoters 26.50±5.88⊕ 17.21±6.61 21.32±7.03⊕ 23.82±6.36⊕
Segment 4.60±0.58⊕ 4.06±0.6 4.05±0.55⊙ 4.5±0.63⊕
Sonar 25.51±2.95⊕ 24.11±3.58 24.44±4.29⊙ 25.03±3.89⊕
Soybean 13.34±2.61⊕ 11.32±2.62 11.63±2.59⊙ 12.53±2.35⊕
Splice 7.7±1.1⊕ 7.3±0.88 7.25±0.87⊙ 7.65±1.01⊕
Tae 55.02±6.02⊕ 53.02±6.4 55.41±7.62⊕ 54.70±6.6⊕
Tic-tac-toe 18.95±2.09⊕ 15.71±2.42 16.6±2.22⊕ 18.31±2.29⊕
Vehicle 28.58±3.08⊕ 27.91±2.88 28.13±2.86⊙ 28.83±3.14⊕
Vowel 22.69±3.16⊕ 21.16±2.92 22.41±2.95⊕ 23.77±3.18⊕
Wine 13.44±4.03⊕ 9.15±4.07 11.4±3.34⊕ 12.21±3.46⊕
win/tie/loss 36/2/0 23/15/0 38/0/0

V. CONCLUSION

This paper presents a novel and efficient algorithm for
pruning an ensemble to achieve comparable or even better
prediction performance with a smaller number of base clas-
sifiers. We formulate the task as an optimization problem,
and the pruning criterion for our technique is to maximize
the individual accuracy and the pairwise diversity of the
subensemble members, which are two important factors that
influence the performance of an ensemble. We derive a
novel relaxation of the original integer programming into
a constrained eigen-optimization problem, which can be
solved efficiently with an iterative algorithm with global con-
vergence guarantee. This approach can be applied to general

ensemble techniques. Experimental results demonstrate the
effectiveness of the proposed method.

This paper mainly focuses on supervised learning on
labeled data. A possible direction for further investigation is
to augment the proposed approach by exploiting unlabeled
data to help selecting the classifiers. Automatic selection
of the pruning ratio is also an interesting research topic.
Moreover, applying the pruning technique on data with more
complex structure is another direction to pursue.

ACKNOWLEDGMENT

Research supported by the National Natural Science Foun-
dation of China (No. 61003135, 60775037) and NSFC Major
Program (No. 71090401/71090400)

582721

0 20 40 60 80 100

0.3

0.32

0.34

0.36

0.38

0.4

0.42

Number of classifiers

E
rr

or

eigcons
oo
epic
bagging

(a) Arrhythmia

0 20 40 60 80 100
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

Number of classifiers

E
rr

or

eigcons
oo
epic
bagging

(b) Autos

0 20 40 60 80 100
0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

Number of classifiers

E
rr

or

eigcons
oo
epic
bagging

(c) Balance Scale

0 20 40 60 80 100
0.47

0.48

0.49

0.5

0.51

0.52

0.53

Number of classifiers

E
rr

or

eigcons
oo
epic
bagging

(d) Cmc

0 20 40 60 80 100
0.42

0.44

0.46

0.48

0.5

0.52

0.54

Number of classifiers

E
rr

or

eigcons
oo
epic
bagging

(e) Flag

0 20 40 60 80 100
0.32

0.34

0.36

0.38

0.4

0.42

0.44

Number of classifiers

E
rr

or

eigcons
oo
epic
bagging

(f) Glass

Figure 1. Comparison of prediction errors on data sets “Arrhythmia”, “Autos”, “Balance Scale”, “Cmc”, “Flag” and “Glass”.

583722

0 20 40 60 80 100
0.26

0.28

0.3

0.32

0.34

0.36

0.38

Number of classifiers

E
rr

or

eigcons
oo
epic
bagging

(a) Hayes-roth

0 20 40 60 80 100
0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

Number of classifiers

E
rr

or

eigcons
oo
epic
bagging

(b) Primary-tumor

0 20 40 60 80 100
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Number of classifiers

E
rr

or

eigcons
oo
epic
bagging

(c) Sonar

0 20 40 60 80 100
0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

Number of classifiers

E
rr

or

eigcons
oo
epic
bagging

(d) Vehicle

0 20 40 60 80 100
0.2

0.25

0.3

0.35

0.4

0.45

Number of classifiers

E
rr

or

eigcons
oo
epic
bagging

(e) Vowel

0 20 40 60 80 100
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of classifiers

E
rr

or

eigcons
oo
epic
bagging

(f) Wine

Figure 2. Comparison of prediction errors on data sets “Hayes-roth”, “Primary-tumor”, “Sonar”, “Vehicle”, “Vowel” and “Wine”.

584723

REFERENCES

[1] A. Krogh and J. Vedelsby, “Neural network ensembles, cross
validation, and active learning,” in Advances in Neural Infor-
mation Processing Systems, 1995.

[2] L. Breiman, “Bagging predictors,” Machine Learning, 1996.

[3] Y. Freund and R. E. Schapire, “A decision-theoretic gener-
alization of on-line learning and an application to boosting,”
Journal of Computer and System Sciences, 1997.

[4] L. Breiman, “Random forests,” Machine Learning, 2001.

[5] D. D. Margineantu and T. G. Dietterich, “Pruning adaptive
boosting,” in Proceedings of the 14th International Confer-
ence on Machine Learning, 1997.

[6] A. Prodromidis and S. Stolfo, “Cost complexity-based prun-
ing of ensemble classifiers,” Knowledge and Information
Systems, vol. 3, 2001.

[7] Z.-H. Zhou and W. Tang, “Selective ensemble of decision
trees,” in Rough Sets, Fuzzy Sets, Data Mining, and Granular
Computing, ser. Lecture Notes in Computer Science, 2003,
vol. 2639.

[8] N. Li and Z.-H. Zhou, “Selective ensemble under regular-
ization framework,” in Proceedings of the 8th International
Workshop on Multiple Classifier Systems, ser. Lecture Notes
in Computer Science, 2009.

[9] C. Tamon and J. Xiang, “On the boosting pruning problem,”
in Proceedings of the 11th European Conference on Machine
Learning, 2000.

[10] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes,
“Ensemble selection from libraries of models,” in Proceedings
of the 21st international conference on Machine learning,
2004.

[11] B. Bakker and T. Heskes, “Clustering ensembles of neural
network models,” Neural Networks, vol. 16, 2003.

[12] G. Giacinto, F. Roli, and G. Fumera, “Design of effective
multiple classifier systems by clustering of classifiers,” in
Proceedings of the 15th International Conference on pattern
recognition, 2000.

[13] G. Martı́nez-Muñoz, D. Hernández-Lobato, and A. Suárez,
“An analysis of ensemble pruning techniques based on or-
dered aggregation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 31, 2009.

[14] G. Martı́nez-Muñoz and A. Suárez, “Aggregation ordering
in bagging,” in Proceedings of the IASTED International
Conference on Artificial Intelligence and Applications, 2004.

[15] G. Martı́nez-Muñoz and A. Suárez, “Pruning in ordered
bagging ensembles,” in Proceedings of the 23rd International
Conference on Machine Learning, 2006.

[16] Z. Lu, X. Wu, X. Zhu, and J. Bongard, “Ensemble pruning
via individual contribution ordering,” in Proceedings of the
16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2010.

[17] Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling neural net-
works: Many could be better than all,” Artificial Intelligence,
vol. 137, 2002.

[18] Y. Zhang, S. Burer, and W. N. Street, “Ensemble pruning via
semi-definite programming,” Journal of Machine Learning
Research, vol. 7, 2006.

[19] T. G. Dietterich, “Ensemble methods in machine learning,”
in Proceedings of the 1st International Workshop on Multiple
Classifier Systems, 2000.

[20] L. Xu, W. Li, and D. Schuurmans, “Fast normalized cut with
linear constraints,” in Proceedings of the 2009 IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition, 2009.

[21] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge U. Press, 2004.

[22] Y. Nesterov and A. Nemirovskii, “Interior-point polynomial
algorithms in convex programming,” SIAM, 1994.

[23] A. Frank and A. Asuncion, “UCI machine learning reposi-
tory,” 2010. [Online]. Available: http://archive.ics.uci.edu/ml

[24] R. Caruana and A. Niculescu-Mizil, “An empirical compari-
son of supervised learning algorithms,” in Proceedings of the
23rd international conference on Machine learning, 2006.

[25] J. R. Quinlan, C4.5: programs for machine learning. Morgan
Kaufmann Publishers Inc., 1993.

[26] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: an update,”
SIGKDD Explorations Newsletter, vol. 11, no. 1, 2009.

[27] J. Sturm, “Using SeDuMi 1.02, a Matlab toolbox for opti-
mization over symmetric cones.” Optimization Methods and
Software, vol. 11-12, 1999.

585724

