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Abstract—Multi-label learning deals with the problem where
each training example is associated with a set of labels
simultaneously, with the set of labels corresponding to multiple
concepts or semantic meanings. Intuitively, the multiple labels
are usually correlated in some semantic space while sharing the
same input space. As a consequence, the multi-label learning
process can be augmented significantly by exploiting the label
correlations effectively. Most of the existing approaches share
the limitations in that the label correlations are typically
taken as prior knowledge, which may not depict the true
dependencies among labels correctly; or they do not adequately
address the issue of missing labels. In this paper, we propose
an integrated framework that learns the correlations among
labels while training the multi-label model simultaneously.
Specifically, a low rank structure is adopted to capture the
complex correlations among labels. In addition, we incorporate
a supplementary label matrix which augments the possibly
incomplete label matrix by exploiting the label correlations.
An alternating algorithm is then developed to solve the op-
timization problem. Extensive experiments are conducted on
a number of image and text data sets to demonstrate the
effectiveness of the proposed approach.

Keywords-low rank; label correlation; multi-label learning;
missing labels;

I. INTRODUCTION

Multi-label learning deals with the problem where each
data example exhibits multiple concepts or semantic mean-
ings and is associated with a set of labels simultaneously. For
example, in gene and protein function prediction, multiple
functional labels are associated with each gene and protein
[1]; in text categorization, a document can be assigned to
multiple topics [2]; similarly in image annotation, an image
can be tagged with several related keywords [3].

In multi-label learning, each example in the training set is
represented by a feature vector and associated with a set of
labels. Straightforwardly, one can tackle the problem by di-
viding the multi-label learning task into a set of independent
binary classification problems [3], [4]. This strategy enjoys
the advantages of conceptual simplicity and high efficiency.
However, it may also lead to degraded performance due to
the ignorance of correlations among labels.

Intuitively, the multiple labels are usually correlated in
some semantic space while sharing the same input space,

and it is essential to exploit the correlations among dif-
ferent labels to facilitate the multi-label learning process.
For instance, consider the task of automatically annotating
images with textual tags, where each annotation can be
treated as a separate class label. As shown in Fig. 1, initially
it may be difficult to decide the labels “ocean” and “sky”
independently based on the color features, since they are
very similar in colors. However, if we are confident that an
image should be annotated with “fish”, as in Fig. 1(a), then
it is more likely that a region of blue in the same image
should be annotated with “ocean” rather than “sky”. The
same principle applies for Fig. 1(b) that has been tagged
with “grass”, and one can naturally annotate the blue region
in the image with “sky”.

(a) “ocean”, “fish” (b) “sky”, “grass”
Figure 1. Label correlations in image annotation: Both images have large
regions colored with blue. To decide the labels “sky” and “ocean”, one
can exploit the relations between “ocean” and “fish”, “sky” and “grass”
respectively.

Many approaches have been proposed to explore various
types of label correlations in multi-label learning [5], [6].
Among them, the label ranking methodology considers cor-
relations between pairs of labels and works by transforming
the task into a ranking problem to order the proper labels
before the improper labels for each instance [7], [8]. On the
other hand, a number of approaches tackle the problem by
exploiting high-order correlations among labels, where each
label is influenced by the rest of the labels. Representatives
include the methods of transformed label space, which work
by projecting the original label vectors to low-dimensional
label spaces [9], [10]. The major issue of these approaches
is the separation of the label projection and model training
steps, which implies the possibility that the reduced output
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representation may not augment the trained model.
Alternatively, there have been emerging interests in recent

multi-label methods that take the correlation information as
prior knowledge. For example, a label correlation matrix
S can be calculated as the cosine similarity between label
vectors and incorporated to enhance the multi-label clas-
sification performance [11]–[13]. Specifically, in the work
proposed in [11], the matrix S is integrated in the objective
function to enhance the prediction of label assignments;
while a sparsity-inducing term based on the matrix S is
proposed to regularize the multi-label model in [12].

However, there still exist some potential issues that need
further concerns. First, in many real applications, it is diffi-
cult to get the complete label information for each instance,
and only a “partial” set of labels are available. As a result,
the methods based on modeling the original label matrix
may not accurately capture the relations between labels and
features due to the missing labels. Second, the commonly
used measures of label correlation such as normalized cosine
are usually calculated in a one-to-one way; whereas the
correlations among labels can be complex and global with
direct and indirect label dependencies, which keeps the one-
to-one correlation measure from accurately capturing the
real label relations. Third, most of the existing approaches
decouple the label correlations from model training in the
sense that they either first transform the label space or ex-
plicitly calculate the label correlations, followed by training
the model. This may result in suboptimal models due to the
lack of mutual adaptation of the two steps.

To address the above issues, in this paper, we model
the global correlations among labels based on one-to-all
reconstruction and propose an integrated framework which
learns the correlations among labels while training the multi-
label model simultaneously. A low rank structure is adopted
to capture the local label correlations based on the intuition
that a subset of labels can be closely related to each other
with similar semantic contexts, while being independent of
the rest. Furthermore, to address the issue of incomplete
label matrices, we define a supplementary label matrix which
augments the original label matrix by exploiting the label
correlations. The new supplementary label matrix generally
captures richer information regarding label dependence than
the original label matrix. With these components, we are
able to expand the forms of label correlations and achieve
a novel multi-label classification method that captures more
complex and flexible dependencies among labels. An alter-
nating algorithm is developed for the optimization. Extensive
experiments are conducted on diverse multi-label data sets
to demonstrate the effectiveness of the proposed framework.

II. THE UNIFIED FRAMEWORK

In multi-label learning, we are given a data matrix of n
training examples X = [x1, ...,xn]

� ∈ R
n×d and a label

matrix Y = [y1, ...,yn]
� ∈ R

n×c where c is the number of

labels and yi ∈ {0, 1}c is a binary label vector indicating the
label assignments of the i-th instance. Following traditional
supervised learning discipline, a general classification model
can be trained by solving the following problem:

min
W

L(X,W, Y ) + λΩ(W ) (1)

where L(·) is a loss function, the regularization term Ω(W )
is usually used to capture the specific structures of features
and labels with various norms.

In multi-label learning, key challenges exist in the aspects
of label correlations and the possibility of incomplete labels.
On one hand, it is essential to exploit potential correlations
among labels to cope with the exponential-sized output space
in the multi-label setting; on the other hand, in real problems
with large numbers of labels, it can be difficult to collect the
complete label information for each instance, which makes it
more complex to capture the label correlations. Specifically,
with an incomplete label assignment, the absence of a label
does not necessarily mean the lack of association of an
instance with that label. As a consequence, approaches that
directly model the original label matrix Y as in formulation
(1) may not accurately capture the relations among labels
and features.

To tackle this problem, we propose to learn the label cor-
relations which can be exploited to augment the incomplete
label matrix and obtain a new supplementary label matrix
Ŷ ∈ R

n×c with essentially richer information regarding
label correlations. By exploiting the co-occurrence and de-
pendency of related labels, we assume that the predictive
confidence Ŷ is determined by the available original label
information Y and the correlations among different labels,
which is modeled by the correlation matrix S ∈ R

c×c.
Formally, motivated by the idea of label dependency prop-
agation [14], the original label matrix can be supplemented
by directly multiplying with the label correlation matrix S:

Ŷi,j = Yi,1 × S1,j + Yi,2 × S2,j + ....+ Yi,c × Sc,j

=

c∑
t=1

Yi,t × St,j (2)

where the element Ŷij can be regarded as the predictive
confidence of the instance xi being associated with the j-th
label, which is influenced by the prior information of all the
other labels in the original label matrix.

A simple example is shown in Fig. 2, where we assume
that the only available label information of Image 1 in
Fig. 1(a) is “fish”. By exploiting the label correlations, a
supplementary matrix Ŷ is obtained where the predictive
confidence of label “ocean” for Image 1 is high due to a
strong correlation between the labels “fish” and “ocean”,
and the predictive confidence of label “sky” is low because
of a weak dependence from label “fish” to label “sky”. As a
consequence, given the supplementary label matrix Ŷ , one
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can augment the label assignment of Image 1 to “fish” and
“ocean” from the original label “fish”.
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Figure 2. A supplementary label matrix Ŷ obtained by multiplying the
label correlation matrix S with the original label matrix Y

The example above is based on the assumption that the
correlation matrix S can accurately capture the real rela-
tions shared among different labels, which will lead to the
supplementary matrix Ŷ with richer label information. To
model the complementary influence of Ŷ and S, we propose
a unified framework that learns the label correlations while
training the classification model simultaneously. Without
loss of generality, we adopt the least square loss

min
W,S,E,Ŷ

‖XW − Ŷ ‖2F + λ1‖W‖2F + λ3‖E‖2,1
s.t. Ŷ = Y S; Y = Ŷ + E

(3)

where in the objective function the original label matrix Y
is replaced by the supplementary label matrix Ŷ = Y S.
In the meantime, the constraint Y = Ŷ + E and the
regularization term on E work together and control the
difference between Y and Ŷ . Specifically, to regularize the
difference between Y and Ŷ while facilitating a label-wise
(i.e., column-wise) sparsity on E, we adopt the convex �2,1
norm as regularization, which can be defined as ‖E‖2,1 =∑c

j=1

√∑n
i=1(Eij)2.

The formulation above can then be further rewritten as

min
W,S,E

‖XW − Y S‖2F + λ1‖W‖2F + λ3‖E‖2,1
s.t. Y = Y S + E

(4)

based on which we can observe that the correlation Sij of
label pair (i, j) is influenced by all the other labels in (4),
which implies a high-order one-to-all dependency rather than
a one-to-one correlation. This helps to capture the complex
and global correlations that arise from direct and indirect
label dependencies.

Besides the global characteristics, the label correlations
encoded in S should also capture some local patterns as
well. For example, there usually exists grouping of labels
such that the labels within a group are strongly correlated
with each other, while being independent of the rest. These
local patterns essentially imply a low-rank or even a block-
diagonal structure of the S matrix, which can be incorpo-
rated into the model as follows:

min
W,S,E

‖XW − Y S‖2F + λ1‖W‖2F + λ2 rank(S) + λ3‖E‖2,1
s.t. Y = Y S + E

Unfortunately, the rank function is hard to optimize, the
nuclear norm ‖ · ‖∗ is therefore employed here as a convex
approximation of the rank function. The framework of learn-
ing low-rank label correlations for multi-label classification
with missing labels can then be formulated as

min
W,S,E

‖XW − Y S‖2F + λ1‖W‖2F + λ2‖S‖∗ + λ3‖E‖2,1
s.t. Y = Y S + E

(5)

By solving (5), one can not only learn the correlation
matrix S, but also train a multi-label classification model
by exploiting the label correlations.

III. OPTIMIZATION

The optimization problem in (5) is convex and therefore
can be optimized globally. In this section, we propose an al-
ternating iterative algorithm to solve for the label correlation
matrix S and the multi-label parameters W .

A. Computing W Given S, E

With S and E given, W is the only variable and the
problem turns into:

min
W

‖XW − Y S‖2F + λ1‖W‖2F (6)

which is a classic ridge regression problem with a closed-
form solution:

W = (X�X + λ1I)
−1X�Y S (7)

B. Computing S Given W

Compared to the closed-form solution of W given S, it
is not trivial to optimize S given W due to the two non-
smooth regularization terms in (5). Here we first introduce
an auxiliary variable Z to make the objective function
separable. Problem (5) can then be rewritten as:

min
Z,S,E

‖XW − Y S‖2F + λ2‖Z‖∗ + λ3‖E‖2,1
s.t. Y = Y S + E, S = Z.

(8)

By introducing augmented Lagrangian multipliers and
incorporating the equality constraints into the cost function,
the problem is transformed into:

min
S,Z,E,Λ1,Λ2

‖XW − Y S‖2F + λ2‖Z‖∗ + λ3‖E‖2,1

+
ρ

2
‖Y − Y S − E +

Λ1

ρ
‖2F −

1

2ρ
‖Λ1‖2F

+
ρ

2
‖S − Z +

Λ2

ρ
‖2F −

1

2ρ
‖Λ2‖2F .

(9)

Then the inexact ALM (IALM) method is applied to solve
for each variable in (9) iteratively with blockwise coordinate
descent procedures. Each iteration of IALM involves updat-
ing one variable, with the other variables fixed to their most
recent values [15]. The updating rules are as follows:
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[Update Zk+1] According to singular value thresholding
[16], the solution is given by

Zk+1 = Jλ2
ρ
(Sk +

Λk
2

ρ
) (10)

where Jλ(A) = UASλ(ΣA)V
�
A is the singular value opera-

tor with A = UAΣAV
�
A being the singular value decompo-

sition of A, and Sλ(Aij) = sign(Aij)max(0, |Aij | − λ) is
the soft-thresholding operator.

[Update Sk+1] Taking the derivative of the objective and
setting it to zero, we have:

Sk+1 = [(2 + ρ)Y �Y + ρI]−1T (11)

where

T = 2Y �XW + ρ(Y �Y − Y �Ek + Zk+1) + Y �Λk
1 − Λk

2 .

[Update Ek+1] According to the �2,1 minimization op-
erator [17], the solution can be computed as follows:

Ek+1(:, i) =

⎧⎨
⎩
‖qk

i ‖−λ3
ρ

‖qk
i ‖

qk
i if ‖qk

i ‖ > λ3

ρ

0 otherwise
(12)

where Qk = Y − Y Sk+1 +
Λk

1

ρ , qk
i is the i-th column of

Qk and Ek+1(:, i) is the i-th column of the optimal solution
Ek+1.

[Update Multipliers Λk+1
1 ,Λk+1

2 ] Λk+1
1 ,Λk+1

2 can be
updated directly by

Λk+1
1 = Λk

1 + ρ(Y − Y Sk+1 − Ek+1)

Λk+1
2 = Λk

2 + ρ(Sk+1 − Zk+1)
(13)

Note that all the updates above are in closed forms and
the iterative updates for all the variables in the inexact ALM
algorithm are outlined in Algorithm 1.

Algorithm 1 Solve Problem (8) via Inexact ALM
Input: data matrix X , label matrix Y , weight matrix W ,
parameter λ1, λ2, λ3

Output: S, Z , E
Initialize Z = S = 0, E = 0, Λ1 = 0, Λ2 = 0, ρ = 10−6,
maxρ = 1010, μ = 1.1, ε = 10−6

while not converged do
fix S,E and update variable Z according to (10)
fix Z,E and update variable S according to (11)
fix Z, S and update variable E according to (12)
fix S,Z,E and update the multipliers Λ1 and Λ2

according to (13)
update the parameter ρ byρ = min(ρμ,maxρ)
check the convergence conditions:
‖Y − Y S − E‖∞ < ε,‖Z − S‖∞ < ε

end while

The overall procedure of learning low-rank label cor-
relations for multi-label classification (ML-LRC) can be
summarized in Algorithm 2.

Algorithm 2 The ML-LRC Framework

Input: training data set {X , Y }, parameter λ1, λ2, λ3

Output: W , S
Initialize S = I
repeat

fix S and update W according to (7)
fix W and solve for S using Algorithm 1

until convergence

Table I
CHARACTERISTICS OF THE DATA SETS

Data set |D| dim(D) L(D) F (D) LC(D) Domain
Emotions 593 72 6 numeric 1.869 music

Birds 645 260 19 numeric 1.014 audio
Enron 1702 1001 53 nominal 3.378 text
Image 2000 294 5 numeric 1.236 image
Scene 2407 294 6 numeric 1.074 image

Pascal06 5304 960 10 numeric 1.263 image
Bibtex 7395 1836 159 nominal 2.402 text

IV. EXPERIMENTS

A. Experimental Setup

1) Data Sets: Experiments are run on 7 real-world multi-
label data sets from diverse domains. The characteristics of
the data sets are summarized in Table I. For each data set D,
we use |D|, dim(D), L(D), F (D), LC(D) to denote the
number of instances, number of features, number of possible
labels, feature types and label cardinality which corresponds
to the average number of labels per instance.

2) Evaluation Metrics: As discussed in [6], the general-
ization performance of a multi-label classification method
is not only measured from a classification perspective, but
also measured from a label ranking perspective. In this paper,
Ranking loss, One-error, Coverage, and Average AUC are
used to measure the performance of multi-label algorithms
from different aspects. For Average AUC, the larger the
values the better the performance, while for the other three
metrics, smaller values indicate better performance.

3) Baselines: To examine the effectiveness of our frame-
work, ML-LRC is firstly compared with Ridge Regression,
which can be considered as a degenerated version of ML-
LRC without exploiting label correlations. ML-LRC is also
compared with 3 state-of-the-art multi-label methods: ML-
KNN [4] which adapts the k-nearest neighbor principle to
generate a set of independent classifiers; and MLLS [18]
which models the correlations among labels by a common
subspace shared by all the classifiers. Finally, in order to
verify the mutual reinforcement of calculating the label
correlations and training the model simultaneously in our
framework, we compare with LSG21 [12] which decouples
the two steps.

4) Parameter Settings: For the competing algorithms, we
use parameter configurations as suggested in the correspond-
ing papers. Furthermore, the regularization parameters of all
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the methods are tuned using 5-fold cross validation.

B. Classification Results

All the algorithms are run on the data sets with 5-fold
cross validation, where Tables II to V report the results of
various algorithms in terms of different evaluation metrics.
For the larger data set “Bibtex”, LSG21 [12] has not trained
a predictive model in a reasonable time, and is marked as
DNF (Did Not Finish) in the tables. On each data set, the
mean of the evaluation metrics is recorded. A bold number
indicates the best performance on the corresponding data
set.

From the results shown in Table II to Table V, we can
observe that the proposed framework achieves better or
comparable performance in terms of all the 4 measures on
all the data sets. Specifically, when comparing to Ridge
Regression, which is a degenerated version of ML-LRC
without exploiting label correlations, the performance of our
approach is significantly superior by 15.51% and 12.94%
averaged on all data sets in terms of RankLoss and Coverage
respectively, with only slight advantages of 3.85%, 2.46%
regarding the other two measures, verifying the effectiveness
of exploiting label correlations for boosting the classification
performance.

In the meantime, the proposed ML-LRC outperforms
ML-KNN and MLLS by 15.90% and 7.45% respectively,
averaged over all the data sets and all the measures. The
lower performance of ML-KNN may be due to the limitation
that ML-KNN handles the classification tasks independently.
On the other hand, the comparison between our method
and MLLS indicates more accurate label dependencies are
encoded in the correlation matrix S in our framework than
the shared subspace in [18].

Last, the performance of ML-LRC is comparable with
LSG21 regarding Average AUC, with an improvement of
15.17%, 7.17% and 12.57% in terms of RankLoss, One-
error and Coverage respectively. This verifies that simulta-
neously calculating the label correlations and training the
model in our framework can facilitate the classification
performance.

C. Label Correlations

Besides evaluating the multi-label classification perfor-
mance, we also examine the label correlations that are
learned simultaneously. We first take the correlation matrix S
learned from “Pascal06” which is a data set for visual object
recognition with 10 class labels including bicycle, bus, car,
cat, cow, dog, horse, motorbike, person and sheep; and
then obtain a relational matrix A after some post-processing
steps such as normalization, thresholding etc. The relational
matrix A can be further represented in a semantic relational
graph G = {V,E} shown in Fig. 3, where nodes in V are the
annotation labels and weights of the edges in E correspond
to the correlation values between labels.

Table II
SUMMARY OF PERFORMANCE IN TERMS OF ranking loss.

Data
Algorithm

ML-LRC ML-KNN Ridge-Rg LSG21 MLLS

Emotions 0.1531 0.2701 0.1830 0.1696 0.1697

Birds 0.2308 0.2820 0.2592 0.2481 0.2879

Enron 0.0789 0.0865 0.1439 0.1671 0.1311

Image 0.1626 0.1822 0.1718 0.1753 0.1676

Scene 0.0745 0.0827 0.0802 0.0826 0.0811

Pascal06 0.1392 0.1737 0.1481 0.1457 0.1436

Bibtex 0.0732 0.1094 0.0889 DNF 0.0856

Table III
SUMMARY OF PERFORMANCE IN TERMS OF one-error.

Data Algorithm
ML-LRC ML-KNN Ridge-Rg LSG21 MLLS

Emotions 0.2582 0.4518 0.3022 0.2838 0.2721

Birds 0.4814 0.7104 0.4958 0.4845 0.5724

Enron 0.2491 0.2438 0.2485 0.3247 0.2166
Image 0.3084 0.3378 0.3240 0.3281 0.3134

Scene 0.2304 0.2351 0.2361 0.2375 0.2333

Pascal06 0.4082 0.4702 0.4142 0.4126 0.4107

Bibtex 0.3459 0.4307 0.3519 DNF 0.3492

Table IV
SUMMARY OF PERFORMANCE IN TERMS OF coverage.

Data
Algorithm

ML-LRC ML-KNN Ridge-Rg LSG21 MLLS

Emotions 1.7290 2.2903 1.8855 1.8241 1.8225

Birds 6.4379 7.3257 7.1480 6.9790 7.7991

Enron 11.8582 12.6572 19.7554 21.5806 18.5457

Image 0.9249 1.0029 0.9708 0.9712 0.9446

Scene 0.4556 0.4994 0.4858 0.4991 0.4908

Pascal06 1.6699 1.9898 1.7639 1.7375 1.7274

Bibtex 22.5382 31.3515 26.8587 DNF 25.7612

Table V
SUMMARY OF PERFORMANCE OF IN TERMS OF average AUC.

Data Algorithm
ML-LRC ML-KNN Ridge-Rg LSG21 MLLS

Emotions 0.8370 0.7145 0.8195 0.8243 0.8254

Birds 0.7323 0.5661 0.7042 0.7023 0.6888

Enron 0.7635 0.6658 0.7151 0.7348 0.7081

Image 0.8319 0.8189 0.8221 0.8273 0.8296

Scene 0.9295 0.9286 0.9204 0.9234 0.9275

Pascal06 0.8606 0.8198 0.8535 0.8551 0.8578

Bibtex 0.9228 0.8134 0.9108 DNF 0.9218

People

Motor

Bike

Bus

Bicycle

Car

Horse

Dog

Sheep

Cow

Cat

0.3997

0.3449

0.1831

0.3080

0.2987

0.1725

0.2045

0.1724

0.5035

0.3722

Figure 3. The semantic relational graph obtained by ML-LRC for the
Pascal06 data set
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D. Incomplete Labels

In order to evaluate the robustness of the proposed method
to missing labels, we take the “Pascal06” data set and
mask a ratio of the labels, and then compare with Ridge
Regression, MLLS and LSG21 which all directly model
the label matrices. We vary the ratios of observed labels
in “Pascal06” data set from 30% to 80% with 10% as
the interval, and Fig. 4 to 5 present the curves of various
metrics with different ratios of observed labels. It can be
demonstrated that ML-LRC is superior to all the other
methods with different performance measures and different
levels of incomplete label information, which justifies the
capability of ML-LRC handling data with missing labels.
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Figure 4. RankLoss and OneError with different ratios of observed labels
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Figure 5. Coverage and Average AUC with different ratios of observed
labels

V. CONCLUSION

In this paper we propose an integrated framework ML-
LRC which learns the correlations among labels while
training the multi-label model simultaneously. A low rank
structure is adopted to capture the complex correlations
among labels. In the meantime, to address the issue of
incomplete labels, we incorporate a supplementary label ma-
trix which augments the original label matrix by exploiting
the label correlations. With the complementary interactions
of model training and correlation learning, the proposed
method not only exhibits a superiority in label prediction,
but also captures more complex and flexible dependencies
among labels. Moreover, scenarios of missing labels can be
handled effectively by exploiting the label correlations.
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