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Abstract—The task of feature selection is to select a subset
of the original features according to certain predefined criterion
with the goal to remove irrelevant and redundant features, im-
prove the prediction performance and reduce the computational
costs of data mining algorithms. In this paper, we integrate fea-
ture relevance and redundancy explicitly in the feature selection
criterion. Spectral feature analysis is applied here which can
fit into both supervised and unsupervised learning problems.
Specifically, we formulate the problem into a combinatorial
problem to maximize the relevance and minimize the redundancy
of the selected subset of features at the same time. The problem
can be relaxed and solved with an efficient extended power
method with global convergence guaranteed. Extensive experi-
ments demonstrate the advantages of the proposed technique
in terms of improving the prediction performance and reducing
redundancy in data.

Keywords-spectral feature selection; relevance; redundancy;
eigen-optimization; supervised/unsupervised learning

I. INTRODUCTION

The problem of handling high-dimensional data is one of the
fundamental challenges in data mining. Given a large number
of features, one is often confronted with the problems of
overfitting and incomprehensible models. Moreover, irrelevant
and redundant features may deteriorate the generalization
performance of learning algorithms. To address these issues,
feature selection has been considered as an effective method
to reduce the dimensionality and remove the irrelevant and
redundant features [1], [2].

Specifically, feature selection refers to the process of ob-
taining an optimal subset from the original feature space,
according to some predefined criterion. Given the selected
features, traditional data mining models can be applied as
normal. By discarding the “bad” features from data and
reducing the dimensionality, one can benefit from a reduction
in the computational overhead, as well as potentially better
predictive performance. Comparing to general dimensionality
reduction methods, feature selection is preferable when one
wants to preserve the original feature representation.

Numerous approaches have been proposed for the feature
selection task, which can generally be categorized into su-
pervised or unsupervised depending on whether the label
information is available or not in the data. For supervised
feature selection, the relevance of a feature is usually evaluated
based on its correlation with the class label. Examples include
Pearson correlation coefficients [3], Fisher score [4], ReliefF

[5], mutual information [3], [6], [7], [8], [9] and trace ratio
[10]. In the unsupervised scenario, it is usually harder to
select features in the absence of label information. Among the
existing methods, exploiting data variance may be the simplest
yet effective way to evaluate feature relevance.

In recent years, researchers start to exploit feature selection
methods using the spectrum of the graph induced from the
pairwise instance similarities. Relevant features are identified
by evaluating the capability of features on producing separa-
bility of the instances. These methods generally fall into two
classes. The first class of methods select features according
to some evaluation criteria which is a function of the graph
Laplacian. Specifically, the features are ranked according to
some scores computed independently. Representative exam-
ples include Laplacian score [11], spectral feature selection
[12], trace ratio [10], eigenvalue sensitive feature selection
[13], etc. An obvious limitation of the ranking based methods
is treating features independently without considering possible
correlation between features, which implies the possibility
of selecting redundant features with high relevance that can
adversely affect the predictive performance. To address this
problem, the second class of methods formulate the feature se-
lection problem as regression problems, where sparse weights
are introduced for all the features indicating whether they are
selected or not, and the objective is to minimize the difference
of the spectrum of the graph Laplacian with the span of
the selected features. To enforce the sparsity of the feature
weights, as well as the cardinality of the selected subset of
features, it is necessary to introduce various sparsity inducing
norms into the formulation. This type of methods treat features
as a group and therefore are able to handle feature redundancy.
Methods MRSF [14], MCFS [15] and JELSR [16] belong to
this category.

In this paper, we follow a different direction and consider
the feature selection problem in terms of two essential factors:
relevance and redundancy. That is, features with high rele-
vance will be selected while highly correlated features being
discouraged. We design a criterion that explicitly incorporates
the relevance as well as the redundancy of the selected subset
of features at the same time, and formulate the problem of
finding this subset as a combinatorial optimization problem
to maximize the criterion. We show that the combinatorial
problem can be relaxed and efficiently solved with a linearly
constrained eigen-optimization technique that is guaranteed to
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converge globally. As a consequence, we achieve a framework
of global feature subset optimization that incorporates the
factors of both relevance and redundancy.

Specifically, in our framework, we evaluate feature rele-
vance following the spectral feature selection (SPEC) principle
which is applicable to both supervised and unsupervised
learning tasks. Therefore, our algorithm naturally fits into both
supervised and unsupervised scenarios and selects a subset of
features that maximizes the relevance while minimizing the
redundancy at the same time.

The rest of the paper is organized as follows. We first
present our framework of feature selection with integrated
relevance/redundancy optimization (FSIR2) in Section II. Af-
ter that some related work is discussed in Section III. Next
we conduct extensive experiments with feature selection in
both classification and clustering tasks to demonstrate the
effectiveness of the proposed method in Section IV. The paper
is then concluded in Section V.

II. FEATURE SELECTION WITH INTEGRATED RELEVANCE

AND REDUNDANCY OPTIMIZATION

To integrate relevance and redundancy at the same time in a
mathematical formulation, we need to first define the relevance
and redundancy criteria.

Let 𝑋 = (x1,x2, ...,x𝑁 ) = (f1, f2, ..., f𝑀 )
⊤ be a data set

of 𝑁 instances, and f1, f2, ..., f𝑀 denote the 𝑀 feature vectors.
For supervised learning, class labels 𝑌 = (𝑦1, 𝑦2, ..., 𝑦𝑁 ) are
also given.

A. Spectral Feature Relevance

To measure the relevance of features, one can exploit the
graph spectrum induced from the pairwise instance similarities
as proposed in [12]. Specifically, similarities of instances can
be calculated with an RBF kernel function:

𝑆𝑖𝑗 = 𝑒−
∥x𝑖−x𝑗∥2

2𝜎2 , (1)

while in the supervised case, label information can be used
and the similarity measure can be defined as:

𝑆𝑖𝑗 =

{
1
𝑁𝑙

, 𝑦𝑖 = 𝑦𝑗 = 𝑙

0, otherwise.
(2)

where 𝑁𝑙 is the number of data points in class 𝑙.
Given the similarity measure, one can construct a graph 𝔾

with vertices corresponding to data instances, and the weight
between the 𝑖-th vertex and the 𝑗-th vertex 𝑊𝑖𝑗 is defined by
the similarity between the 𝑖-th and 𝑗-th instances 𝑆𝑖𝑗 . That is,
the adjacency matrix 𝑊 associated with the graph 𝔾 is equal
to the similarity matrix 𝑆.

Spectral feature relevance is defined based on the assump-
tion that a feature which separates data better is more relevant
to the target, where the target is usually reflected by the
structure of 𝔾. Therefore, one can evaluate features according
to the graph structure, or by analyzing the spectrum of the
graph.

Several feature relevance score measures are defined in [12].
In our framework for simplicity we will adopt the following
function to evaluate the relevance of the 𝑖-th feature:

Rel𝑖 = f̂𝑖
⊤ℒf̂𝑖 = f⊤𝑖 𝐿f𝑖

f⊤𝑖 𝐷f𝑖
. (3)

In the equation, 𝐷 is the degree matrix: 𝐷 = diag(𝑊e) where
e is a vector of all 1’s, 𝐿 is the Laplacian matrix: 𝐿 = 𝐷−𝑊 ,
while ℒ is the normalized Laplacian matrix: ℒ = 𝐷−

1
2𝐿𝐷−

1
2 ;

and f̂𝑖 is the normalized weighted feature vector: f̂𝑖 =
𝐷

1
2 f𝑖

∥𝐷 1
2 f𝑖∥

.

It can be derived that if the eigen-system of ℒ is
(𝜆𝑗 ,v𝑗), 𝑗 = 1, ..., 𝑁 , and 𝛼𝑗 = cos 𝜃𝑗 where 𝜃𝑗 is the angle
between f𝑖 and v𝑗 , the feature relevance (3) can be rewritten
as

Rel𝑖 =
𝑁∑
𝑗=1

𝛼2
𝑗𝜆𝑗 , where

𝑁∑
𝑗=1

𝛼2
𝑗 = 1. (4)

One should notice that for the 𝑖-th feature a small Rel𝑖
value indicates good separability, since f̂𝑖 aligns closely with
the nontrivial eigenvectors corresponding to small eigenvalues.

B. Integrated Relevance/Redundancy Criterion

Next we incorporate redundancy into our framework. To
measure the pairwise redundancy between the 𝑖-th and 𝑗-th
features, we simply use the squared cosine distance between
the normalized feature vectors f̂𝑖 and f̂𝑗 . Given that, along
with the feature relevance measure discussed above, we can
construct an 𝑀 ×𝑀 matrix 𝑅 to record the relevance and
redundancy values for all features:

𝑅𝑖𝑗 =

{
Rel𝑖, if 𝑖 = 𝑗

cos2(f̂𝑖, f̂𝑗), otherwise.

Further to make all the entries of the 𝑅 matrix on the
same scale, we observe that Rel𝑖 as shown in (4) corresponds
to a weighted sum of 𝜆1, ...𝜆𝑁 , while all the weights sum
up to 1, which implies a rough estimate of 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(Rel𝑖)

over all features being
∑

𝑖 𝜆𝑖

𝑁 . On the other hand, the value
of cos2(f̂𝑖, f̂𝑗) is upper bounded by 1. Therefore, we can
normalize the 𝑅 matrix by

�̃�𝑖𝑗 =

{
Rel𝑖, if 𝑖 = 𝑗
∑

𝑖 𝜆𝑖

𝑁 cos2(f̂𝑖, f̂𝑗), otherwise.
(5)

The constructed �̃� matrix integrates both the relevance and
the pairwise redundancy of features. In particular, a small
value on the diagonal �̃�𝑖𝑖 indicates a highly relevant feature
while a small entry off the diagonal �̃�𝑖𝑗 implies a pair of
diverse features. Intuitively for a good subset of features,
all entries in �̃� should be small, implying a small value of∑

𝑖𝑗 �̃�𝑖𝑗 .
Therefore, the problem of selecting a fixed-size subset of

features with both high relevance and low redundancy can be
formulated as

min
w

w⊤�̃�w

s.t.
∑

𝑖 𝑤𝑖 = 𝑑

𝑤𝑖 ∈ {0, 1},∀𝑖. (6)
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where 𝑑 is the number of features to be selected, which
needs to be specified in advance. The binary variable 𝑤𝑖

indicates whether the 𝑖-th feature will be selected; if so,
its corresponding diagonal and off-diagonal elements will be
added to the objective.

C. Optimization

Solving the quadratic integer programming problem (6) is
NP-hard. However, we will show that if we relax the problem
to the real value domain, an approximate solution can be found
efficiently.

First using the fact that z = 2w − 1 ∈ {−1,+1}𝑀×1, one
can reformulate the problem (6) as

min
z

1

2
z⊤�̃�z+ e⊤�̃�z

s.t. z⊤e = 2𝑑−𝑀,

z ∈ {−1,+1}𝑀×1 (7)

where e is a vector of all 1’s.
Due to the discrete constraints on z, the problem above

is non-convex and NP-hard. So we replace the discrete con-
straints with a relaxed norm constraint ∥z∥ = √𝑀 , and rewrite
(7) as

min
z

1

2
z⊤�̃�z+ e⊤�̃�z

s.t. z⊤e = 2𝑑−𝑀,

∥z∥ =
√
𝑀 (8)

which is still non-convex.
To solve the feature subset optimization problem (8), we

design an iterative procedure called extended power method
to solve the general problem

max
z

1

2
z⊤𝐴z+ b⊤z s.t. ∥z∥ = 𝑟,𝐵z = c (9)

where 𝐴 is a semidefinite positive matrix.

Algorithm 1 Extended power method to solve problem (9)

1: n0 = 𝐵⊤(𝐵𝐵⊤)−1c
2: 𝛾 =

√
𝑟2 − ∥n0∥2

3: 𝑃 = 𝐼 −𝐵⊤(𝐵𝐵⊤)−1𝐵
4: z0 = n0, 𝑘 = 0
5: repeat
6: u𝑘+1 = 𝛾 𝑃 (𝐴z𝑘+b)

∥𝑃 (𝐴z𝑘+b)∥
7: z𝑘+1 = u𝑘+1 + n0

8: 𝑘 = 𝑘 + 1
9: until z converges

Output: z

Algorithm 1 works by updating z along the gradient direc-
tion (𝐴z+b) of the current estimate in each iteration, followed
by a projection step into the null space of 𝐵 (line 6) where 𝑃
is the projection matrix, and a “pulling” step with n0 which is
the vector from the origin to its projection onto the hyperplane
𝐵z = c to enforce the constraints. Notice that Algorithm 1

is similar to the projected power method [17] and it solves a
more general problem with a linear term b⊤z in the objective.
When b = 0 Algorithm 1 is equivalent to the projected power
method. Global convergence can be derived similarly as in
[17].

Proposition 1: Algorithm 1 is guaranteed to converge to the
global solution of the optimization problem (9).
The proof can be sketched as follows. In each iteration, for the
new solution z𝑘+1 and the current estimate z𝑘, the inequality
holds if the convergence has not been reached yet:

z⊤𝑘+1(
1

2
𝐴z𝑘+1 + b) > z⊤𝑘+1(

1

2
𝐴z𝑘 + b) > z⊤𝑘 (

1

2
𝐴z𝑘 + b)

which implies monotonically increasing objective values dur-
ing updates until convergence. The fixed point at the conver-
gence satisfies 𝑃z = z − n0 = 𝛾 𝑃 (𝐴z+b)

∥𝑃 (𝐴z+b)∥ , which corre-
sponds to the conditions of a critical point of the optimization
problem (9):

(𝑃𝐴− 𝜆𝐼)𝑃z = −𝑃 (𝐴n0 + b), ∥𝑃z∥ = 𝛾 (10)

for 𝜆 = ∥𝑃 (𝐴z+b)∥
𝛾 . And the global optimum of (9) is reached

at the largest feasible 𝜆 for (10).
The overall procedure for feature selection with integrated

and redundancy optimization (FSIR2) is summarized in Algo-
rithm 2. Notice we need to switch the minimization problem
(9) to a maximization problem.

Algorithm 2 FSIR2

Input : Data set 𝑋 , class labels 𝑌 if available, 𝑑.

1: Build the similarity matrix 𝑆 based on 𝑋 (and 𝑌 );
2: Calculate relevance and redundancy for all the features,

construct the matrix �̃� according to (5);
3: 𝐴 = 𝜂𝐼 − �̃� where 𝜂 is an arbitrary constant such that

𝐴 ર 0 without affecting the solutions
4: b = −�̃�e, 𝐵 = e⊤, c = 2𝑑−𝑀 , 𝑟 =

√
𝑀

5: Solve the problem (9) according to Algorithm 1
Output: z

The computation of Algorithm 1 mainly lies in the matrix-
vector multiplication step, which costs 𝑂(𝑀2) in each itera-
tion. It provides an efficient approach for solving problem (9)
considering that the complexity of quadratic programming or
eigen-computation is 𝑂(𝑀3) in general.

Once z is returned, one can easily apply various rounding
schemes to it and select features accordingly. This can also
be regarded as partitioning the features into a “selected”
subset and a “discarded” subset according to their 𝑧 values
with a cardinality constraint, which corresponds to selecting 𝑑
features with higher values in z.

III. RELATED WORK

Relevance and redundancy are two important factors for the
feature selection problem. To address them, various methods
have been proposed, which include the minimum Redundancy
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Maximum Relevance (mRMR) principle [9], quadratic pro-
gramming feature selection (QPFS) [18], feature selection with
redundancy-constrained class separability [19], etc. However,
these methods are all designed for feature selection in su-
pervised learning. Among them, mRMR and QPFS resemble
in that they both use mutual information as the similarity
measure, while mRMR selects features in a greedy way, and
QPFS formulates the problem as a quadratic program. In the
experimental investigation, we will compare to mRMR and
QPFS in the supervised scenarios.

On the other hand, in this paper we mainly focus on the
algorithms that are applicable to both supervised learning
and unsupervised learning, and the proposed FSIR2 model is
formulated as a constrained eigen-optimization problem. In our
experiments below, we will compare the proposed algorithm
to the representative approaches including the ranking based
Laplacian score, spectral feature selection (SPEC), eigenvalue
sensitive feature selection (EVSC), as well as the regression
based multi-cluster feature selection (MCFS) and minimum
redundancy spectral feature selection (MRSF).

IV. EXPERIMENTS

We now empirically evaluate the performance of the algo-
rithm FSIR2 in both supervised and unsupervised learning.

A. Data sets

Data sets used in our experiments are briefly described in
Table I. The first 4 data sets with relatively fewer numbers of
features are taken from UCI ML repository [20]. In addition
we also include 6 high-dimensional data sets which have been
widely used to evaluate spectral feature selection methods.
They are 2 image data sets: PIE10P, PIX10P; and 4 Microarray
data sets: GLI-85, CLL-SUB-111, SMK-CAN-187 and TOX-
171.

TABLE I
SUMMARY OF THE DATA SETS

Data set Size Features Classes
Austra 690 14 2
Clean 476 166 2
Heart 270 13 2
Vote 435 16 2

CLL-SUB-111 111 11340 3
GLI-85 85 22283 2
PIE10P 210 2420 10
PIX10P 100 10000 10

SMK-CAN-187 187 19993 2
TOX-171 171 5748 4

B. Evaluation of selected features

In the experiments, 5 representative spectral feature selec-
tion algorithms are chosen as baselines for both unsupervised
and supervised investigation: Laplacian Score, SPEC, EVSC,
MCFS and MRSF. For Laplacian Score, SPEC, MRSF and
FSIR2, different similarity measures are applied in unsuper-
vised and supervised cases. In unsupervised senarios, similar-
ity measure is calculated using the RBF kernel function de-

fined by (1), and we set 𝜎2 =
∑

𝑖,𝑗(xi−xj)
2

𝑁2 in the experiments;

while in supervised learning, 𝑆 is calculated according to (2).
Furthermore, in supervised tasks, we also compare to 2 mu-
tual information based redundancy minimization approaches,
mRMR and QPFS, which have been developed exclusively for
supervised learning.

In supervised setting, algorithms are evaluated with (i)
classification accuracy and (ii) squared cosine redundancy rate
(RED). Assume 𝐹 is the set of the 𝑑 selected features, and
𝑋𝐹 only contains features in 𝐹 , the redundancy rate is defined
as:

RED(𝐹 ) =
1

𝑑(𝑑− 1)
∑

f𝑖,f𝑗∈𝐹,𝑖 ∕=𝑗

cos2(f𝑖, f𝑗) ,

The measurement assesses the average similarity among all
feature pairs and takes values in [0, 1]; a large value indicates
potential redundancy in 𝐹 .

For unsupervised cases, two evaluation measurements are
used: (i) clustering accuracy (AC) and (ii) normalized mutual
information (NMI).

1) Study of Unsupervised Cases: In this experiment, we
investigate the performance of various feature selection al-
gorithms in clustering. We perform k-means clustering (the
number of clusters is obtained from the ground truth) by
using the selected features and compare the results of different
algorithms. On the high-dimensional data sets, 5% of features
are selected; while on the UCI data sets, since the numbers
of features are generally quite small, we simply set 𝑑 to
the number of features selected by Weka [21]1. The results
are averaged over 100 repeats. Tables II and III present
the clustering accuracy and normalized mutual information
achieved by different algorithms on the benchmark data sets,
where the last column records the results on the data sets
without using any feature selection methods. The last row
of the tables records the average clustering performance over
10 data sets for each method. In the tables, the bold values
indicate the best performance that is statistically significant
with 95% confidence. We can observe that the performance
of the proposed FSIR2 method is superior to the rest of the
algorithms on most of the data sets in terms of both clustering
accuracy and NMI. An interesting thing to observe is that
our method uses the same spectral feature relevance as SPEC,
and produces better performance on a majority of the data
sets, which demonstrates the advantage of integrating feature
redundancy into the framework.

We further investigate the influence of the number of
selected features on the clustering performance. Figure 1
illustrates the curves of the clustering accuracy and normalized
mutual information versus the number of selected features for
each algorithm. Due to the space limit, we only plot the results
on Vote and PIE10P. The results show a clear advantage of
FSIR2. Especially on PIE10P when the number of features
is large, the performance of FSIR2 demonstrates stable and
significant superiority.

1weka.attributeSelection.AttributeSelection
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TABLE II
STUDY OF UNSUPERVISED CASES: CLUSTERING ACCURACY (THE HIGHER

THE BETTER). THE “ALL” COLUMN CORRESPONDS TO LEARNING WITH

ALL THE FEATURES.

Data set FSIR2 SPEC LScore EVSC MCFS MRSF All
Austra 0.56 0.60 0.60 0.56 0.56 0.56 0.56
Clean 0.50 0.50 0.50 0.50 0.51 0.50 0.49
Heart 0.60 0.60 0.60 0.53 0.60 0.60 0.60
Vote 0.88 0.82 0.82 0.56 0.75 0.75 0.88

CLL-SUB-111 0.37 0.54 0.54 0.55 0.53 0.55 0.55
GLI-85 0.56 0.53 0.51 0.51 0.54 0.49 0.55
PIE10P 0.37 0.18 0.19 0.24 0.24 0.22 0.23
PIX10P 0.65 0.59 0.60 0.57 0.62 0.65 0.67

SMK-CAN-187 0.58 0.52 0.52 0.53 0.50 0.55 0.52
TOX-171 0.41 0.37 0.38 0.37 0.38 0.38 0.39

AVG 0.55 0.52 0.52 0.49 0.51 0.52 0.54

TABLE III
STUDY OF UNSUPERVISED CASES: NORMALIZED MUTUAL INFORMATION

(THE HIGHER THE BETTER). THE “ALL” COLUMN CORRESPONDS TO

LEARNING WITH ALL THE FEATURES.

Data set FSIR2 SPEC LScore EVSC MCFS MRSF All
Austra 0.01 0.02 0.02 0.01 0.01 0.01 0.01
Clean 0.00 0.03 0.03 0.00 0.00 0.00 0.00
Heart 0.02 0.02 0.02 0.01 0.02 0.02 0.02
Vote 0.49 0.33 0.34 0.05 0.29 0.24 0.49

CLL-SUB-111 0.11 0.24 0.23 0.19 0.16 0.19 0.19
GLI-85 0.08 0.00 0.00 0.07 0.04 0.06 0.11
PIE10P 0.44 0.12 0.12 0.22 0.32 0.26 0.26
PIX10P 0.86 0.83 0.83 0.78 0.85 0.84 0.88

SMK-CAN-187 0.02 0.00 0.00 0.01 0.00 0.01 0.00
TOX-171 0.10 0.11 0.11 0.12 0.10 0.12 0.14

AVG 0.25 0.19 0.20 0.17 0.21 0.20 0.21

2) Study of Supervised Cases: In supervised scenarios, for
each data set we randomly sample 60% of all the data points
as the training data and the rest for test. This process is
repeated for 100 times and results are averaged over them.
Linear SVM is used for classification with parameters chosen
by cross-validation. The classification accuracies are reported
in Table IV, where the last column records the results on the
data sets without using any feature selection methods. The last
row records the average accuracy over 11 data sets. Similarly
bold numbers in the table indicate the best performance with
statistical significance.

Figure 2(a)-(b) show the classification accuracy versus the
number of selected features on Vote and PIE10P respectively
for each algorithm. From Figure 2(a)-(b) and Table IV, we
can observe that FSIR2 produces superior classification per-
formance comparing to SPEC, Laplacian Score, MRSF and
mRMR, while being comparable to MCFS and QPFS.

To evaluate the effect of reducing redundancy in the selected
features of the proposed algorithm, Table V presents the
redundancy rates of the feature subsets selected by different
algorithms. Figure 2(c)-(d) show the curves of redundancy
rates versus the number of selected features on Vote and
PIE10P. The results show that FSIR2 attains low redundancy,
which suggests that the redundancy reducing mechanism in
our method is effective. In addition, one can notice that among

TABLE IV
STUDY OF SUPERVISED CASES: CLASSIFICATION ACCURACY (THE HIGHER

THE BETTER). THE “ALL” COLUMN CORRESPONDS TO LEARNING WITH

ALL THE FEATURES.

Data set FSIR2 SPEC LScore MCFS MRSF mRMR QPFS All
Austra 0.85 0.86 0.86 0.75 0.71 0.73 0.85 0.75
Clean 0.71 0.75 0.75 0.75 0.76 0.73 0.70 0.81
Heart 0.81 0.81 0.81 0.83 0.81 0.81 0.81 0.83
Vote 0.96 0.96 0.96 0.95 0.95 0.96 0.96 0.96

CLL-SUB-111 0.68 0.63 0.63 0.65 0.63 0.64 0.63 0.52
GLI-85 0.88 0.88 0.88 0.90 0.87 0.89 0.88 0.90
PIE10P 0.98 0.98 0.98 0.99 0.99 0.92 0.97 0.99
PIX10P 0.97 0.96 0.96 0.99 0.98 0.94 0.97 0.98

SMK-CAN-187 0.70 0.70 0.69 0.72 0.69 0.67 0.71 0.72
TOX-171 0.84 0.84 0.84 0.89 0.83 0.84 0.85 0.88

AVG 0.84 0.82 0.82 0.84 0.82 0.81 0.83 0.83

TABLE V
STUDY OF SUPERVISED CASES:

REDUNDANCY RATE

(THE LOWER THE BETTER).

Data set FSIR2 SPEC LScore MCFS MRSF mRMR QPFS
Austra 0.48 0.71 0.71 0.22 0.30 0.23 0.26
Clean 0.27 0.76 0.76 0.19 0.25 0.19 0.14
Heart 0.77 0.82 0.82 0.64 0.62 0.66 0.61
Vote 0.21 0.37 0.37 0.23 0.34 0.30 0.38

CLL-SUB-111 0.19 0.90 0.90 0.59 0.60 0.58 0.72
GLI-85 0.61 0.24 0.24 0.67 0.67 0.71 0.64
PIE10P 0.33 0.84 0.84 0.54 0.50 0.66 0.52
PIX10P 0.62 1.00 1.00 0.61 0.60 0.78 0.66

SMK-CAN-187 0.97 1.00 1.00 0.98 0.97 0.99 0.98
TOX171 0.56 0.97 0.97 0.86 0.84 0.86 0.89

AVG 0.50 0.76 0.76 0.55 0.57 0.60 0.58

the competing algorithms, the regression based methods in-
cluding MCFS and MRSF select features with lower average
redundancy than the ranking based methods, while being
comparable to the two mutual information based redundancy
minimization approaches which are developed exclusively for
supervised learning, mRMR and QPFS.

From our experimental investigation in both supervised and
unsupervised scenarios, it is demonstrated that the proposed
FSIR2 framework can select features containing less redun-
dancy and achieve superior predictive performance.

V. CONCLUSION

This paper presents a novel algorithm for feature selection.
We design a selection criterion that explicitly integrates feature
relevance and redundancy, which are two important factors that
affect the quality of selected features. We show that the op-
timization problem that maximizes the relevance/redundancy
criterion can be reformulated and relaxed, after which an
efficient extended power method is applied with global conver-
gence guaranteed. Spectral feature analysis is employed here
that is applicable to both supervised and unsupervised scenar-
ios. The resulting feature selection procedure (FSIR2) yields
superior predictive performance while reducing redundancy in
data.
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Fig. 1. Study of unsupervised cases: (a)-(b) AC vs. # of selected features on “Vote” and “PIE10P” (the higher the better); (c)-(d) NMI vs. # of selected
features on “Vote” and “PIE10P” (the higher the better).
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Fig. 2. Study of supervised cases: (a)-(b) classification accuracy vs. # of selected features on “Vote” and “PIE10P” (the higher the better); (c)-(d) redundancy
rate vs. # of selected features on “Vote” and “PIE10P” (the lower the better).
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