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Abstract—Crowdfunding is an emerging online fundraising
mechanism for creators to launch campaigns (projects) to solicit
funds or expand their influence. Tracking the dynamics, i.e., daily
funding amounts can be of great help to campaign creators as
well as contributors. Previous works on this subject either fit
the fluctuations of time-series with predefined stochastic process
or apply a regularization term to constrain learned tendencies,
resulting in limited generalization abilities. Patterns of funding-
amount sequences in crowdfunding are often exclusive and non-
linear, making previous predictors suboptimal. To tackle this
problem, we propose a novel method based on synthesized bases
which can be composed into arbitrary patterns. Concretely,
we build a large set of candidate basis from which we select
based on reliability, diversity and latent structures. We use
representations of sequences in this basis space as a predictor,
and adopt a dual-graph to exploit neighbouring information to
enhance its prediction quality. Experimental results demonstrate
the effectiveness of our method.

Keywords—crowdfunding; time-series forecasting

I. INTRODUCTION

As an emerging Internet-based fundraising mechanism,

crowdfunding provides a revolutionary way of raising mon-

etary contributions and attracting publicity through collecting

many small amounts of money from the crowds. Generally it

has three sorts of actors: the campaign creators who propose

the campaigns (projects) to be funded, campaign contributors

who give the campaign financial support (contributions), and

crowdfunding platforms. While maintaining a strong growth

momentum in fundraising, crowdfunding also motivates a

surge of interest in the context of technology [4] and medical

treatment [8], etc.

Since most of current crowdfunding platforms only enable

creators to solicit funds in a certain time duration, many

works focus on predicting the success or failure of campaigns

[10]. However, almost all of them do not tackle the prob-

lem of tracking the dynamics, i.e., daily funding amounts

in crowdfunding, which is beneficial to all the three actors

in the sense that it can provide a guidance for creators to

adjust their campaign settings in time, for backers to make

a comprehensive decision, and for platforms to make better

recommendations to potential customers.

The problem of tracking the dynamics for specific cam-

paigns is first studied in [17], which employs the exponential

function to model the rise and the Hazard function to model

the decay of the funding dynamics, and uses ‘clustering’

techniques by learning several sets of parameters, one for

each cluster to improve the prediction accuracy. However, it

could be inadequate to fit a single pattern to approximate daily

funding amounts for different campaign tasks, considering

the following three reasons: (1) Different campaigns can

exhibit quite different patterns, making it hard to use one

simple synthetic influence/decay function to depict them; (2)

Other than the overall patterns, it also has noisy fluctuations

caused by incidents or just irregular outliers, which further

complicates the problem; (3) Contribution records of many

campaigns are sparse. Trading amounts can be zero for many

days, making extracted patterns unstable and unreliable, with

poor generalization ability.
Despite these difficulties, the ability to discover the intrinsic

patterns is crucial to accurately predict the future of a funding-

amount sequence. Considering the challenges in directly mod-

eling various funding-amount trends, we propose to handle it

from a reverse view, through synthesizing a set of basic styles,

which are easy to predict and can be composed together into

arbitrary patterns. However, implementing the above idea in

funding amount forecasting is not trivial with three problems

to solve: (1) choosing a proper non-linear projection which

can extract arbitrary patterns from precedent funding amounts,

(2) choosing proper basic styles that are both expressive and

are easy to predict, (3) refining the forecasting results as it is

possible that tendencies are not perfectly captured.
In this paper, we adopt the Fourier transformation as the

projection function considering its effectiveness and simplicity.

To select a proper set of basic types that can be expressive

as well as discriminative to capture the trends of different

patterns, we build a large candidate set and select from it.

After the basic types are chosen, we decompose the dynamics

of crowdfunding campaigns into the selected bases, and make

predictions with them. We also employ a tightness dual

graph to measure the similarities among different campaigns

and leverage the information from neighbors to refine the

forecasting results. The main contributions of this paper are

as follows:

• We propose a novel idea to cast the challenging prob-

lem of dynamic tracking and pattern discovery as basis

synthesis.

• As a concrete realization of this idea, we show how to

select good bases for pattern modeling. We propose an
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effective formulation taking into account the reliability

and the diversity, as well as the latent structures of the

selected bases simultaneously.

• Interestingly, the design of decomposition for each cam-

paign can be regarded as feature representation and used

to measure the similarity among campaign tasks. And

we use that to further improve the prediction accuracy.

Experiments validate the effectiveness of this method.

II. RELATED WORK

Crowdfunding Analysis The research on crowdfunding

is still in its infancy. Most of the previous works can be

grouped into three categories: predicting the funding results,

i.e., whether a campaign will succeed or not [10], identifying

the influential factors [3] and designing product supplies

[11], etc. Recently, some researchers begin to pay attention

to the dynamics in crowdfunding. For example, [9] studies

the fundraising dynamics of campaigns in their complete

funding durations from statistical and empirical perspectives.

The authors of [17] first study the problem of tracking the dy-

namics for specific campaigns and further develop a regression

method accommodating to predefined rise and decay functions,

and attempt to enhance the prediction performance through

learning a set of parameters for each cluster of campaigns and

fitting the model on two levels before fusing them together.

However, patterns of funding amounts are often complex and

non-linear, straying a lot from predefined patterns, which limits

their effectiveness on real-world data. Besides, to the best

of our knowledge, the literature on tracking the dynamics in

crowdfunding platforms from the data-driven perspective is

relatively sparse.

Time Series Forecast Time series forecast is a classi-

cal machine learning problem and has been explored exten-

sively [5, 20]. In this field, stochastic processes, as a pow-

erful mathematics tool, has been applied in many works and

achieves good performances. For example, Gaussian process

regression (GPR) models are applied in [7] to predict the cost

of a complete trajectory. [12] designs a new scheme where the

combined effects of the past events on future events can be

superadditive, subadditive, or even subtractive. These methods

presume an underlying pattern revealed in time series, and

learn model parameters from the given distribution. Conse-

quently, they can only extract a certain tendency variation,

which may fail to generalize to realistic data or do not work

well when the given distribution is not aligned with the real

distribution.

Another important group of time-series forecasting meth-

ods focus on incorporating a specific regularizer [18, 19] to

capture temporal variations. For example, considering that the

significant temporal transitions in traffic usually appear in a

few specific time periods, [6] adopts the l1,∞ norm to depict

the spurs in travel time prediction problem. [14] assumes

that the future predictor is generated from a set of ensemble

predictors, and employs a graph Laplacian regularizer to

ensure consistency of the predicted time series. However, these

methods have certain limitations in capturing latent patterns

of time series, and also lack the capacity to generalize to

aperiodic forecasting problems. The clear distinction between

the proposed method and previous techniques lies in that the

existing methods either fit the fluctuations of time-series with

predefined stochastic processes or apply a regularizaton term

to constrain the learned tendencies, while we propose a base-

synthesized way to capture the latent tendencies.

III. PROPOSED METHOD

A. Preliminary

For the task of funding amount forecasting, N campaigns

{x1,x2, ...,xN} are collected where xi ∈ R
M represents

the sequence of funding amounts for campaign i within M
funding days. The problem can then be then formally defined

as predicting the funding amounts in the following days given

the historical daily funding amounts {x1
i , ...,x

M
i }.

To effectively model the dynamics of crowdfunding, several

challenges need to be tackled. Specifically, it is necessary

to model various dynamic patterns of crowdfunding tasks,

to capture the overall dynamic trends while filtering out

the irregular noisy fluctuations, and to cope with issue of

data sparsity. To handle the above challenges, we creatively

propose a BAsis- Synthesis Approach (BASA) to discover the

dynamic patterns of funding-amount sequences, along with

their amplitude weights dominances. Concretely, to select a

proper set of bases, we leverage the reliability and diversity

as well as the structural information of its members. When

predicting, a funding-amount sequence is first projected into

the basis space to extract it as a feature extraction process,

forecasting is then achieved by performing predictions on

each basis, the results are next recalibrated by leveraging the

neighboring information.

B. Synthesizing Bases

There are significant difficulties in extracting typical pat-

terns from historical sequences without prior knowledge or

pattern-type assumptions. Here we tackle the problem in a

novel way by encoding the shape of arbitrary patterns in

the basis space. Inspired by the Fourier transformation [1],

a frequency representation that can recover any original time-

series sequences from basic trigonometric functions, we intro-

duce a projection operator, Φ(·): R
M → R

K to decompose

the historical sequences into a set of K discrete candidate

frequencies {wk = 2πK
k |k = 1, 2, ...K} as

Ai � Φ(xi) =
T∑

t=1

xi(t)�

⎡
⎢⎢⎢⎢⎣

cos(ω1t)
sin(ω1t)

...
cos(ωK/2t)
sin(ωK/2t)

⎤
⎥⎥⎥⎥⎦

(1)

where Ai ∈ R
K is the i-th column of matix A, corresponding

to the representation of the i-th time-series of the crowdfund-

ing task in the bases space, and � is the Kronecker product.

Note that we choose to use the Fourier basis because of its

simplicity and effectiveness, but our method is not confined to

it, any basis with sufficient expression abilities can be used.
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After building the candidate basis set, to capture the overall

dynamic trends and filter out noisy fluctuations, we propose a

method to select bases guided by its structural information.

As Eq.(1) indicates, time-series of campaign tasks can be

decomposed into a set of K candidates, which can recover

their tendency inversely as Φ−1
k (Φk(xi)). Different campaign

tasks exhibit various patterns while each pattern has its own

decompositions. So, we propose to select those bases that can

help us differentiate between various patterns and preserve the

main tendency of each pattern while removing noise. First,

we evaluate each basis according to its ability in modeling

crowdfunding dynamics and define a ranking matrix R to

represent the confidence score of campaign tasks for each

basis. The i-th column of R is learned by solving the following

equation:

min
R·,i

||xi −
∑
k

Rk,iΦ
−1
k (Φk(xi))||2F

s.t. R·,i � 0,RT
·,i1K = 1,

(2)

in which Rk,i is a scoring value, indicating the inclination of

xi to choose basis k. 1K is a vector with K elements, and Φk

refers to the k-th dimension of Φ. According to the constraint∑
k Rk,i = 1, Eq.(2) can be rewritten as

min
R·,i

RT
·,iG

iR·,i

s.t. R·,i � 0,RT
·,i1K = 1,

(3)

where Gi = [Gi
mn] ∈ R

K×K is the local gram matrix

for xi with elements Gi
mn = (xi − Φ−1

m (Φm(xi))
T (xi −

Φ−1
n (Φn(xi)). Eq.(3) is a standard quadratic programming

(QP) problem whose optimal solution can be obtained by any

off-the-shelf QP solver.

Further, to make sure the chosen bases are diverse enough,

we construct a regularization term RT
·,iWR·,i, where W ∈

R
K×K is the similarity matrix, in which each element wj,h en-

codes the correspondence between two bases, and the diagonal

elements are set to zero. Intuitively, when the similarity wj,h

is large, assigning large values to rj,h and rh,i simultaneously

implies a large loss. As a consequence, this regularization term

encourages diverse bases to be selected. The formulation can

then be augmented as

min
R·,i

RT
·,iG

iR·,i + αRT
·,iWR·,i

s.t. RT
·,i1K = 1,R·,i � 0.

(4)

To get a better measurement of basis correspondence, we

leverage our non-linear transformation operator Φ(·), which

can be regarded as a feature extractor. Given that the matrix A
is the feature representation for all tasks with Aj,i = Φj(xi),
the similarity between two bases can be measured as Wj,h =∑

i Aj,i ·Ah,i. And the formulation becomes

min
R·,i

RT
·,iG

iR·,i + αRT
·,iA

TAR·,i

s.t. RT
·,i1K = 1,R·,i � 0.

(5)

In the meantime, considering that funding-amount sequences

can be very sparse, which may lead to an unstable ranking

score matrix R. On the other hand, time series of similar

campaign tasks exhibit similar tendencies which inspire us to

boost the performance from related tasks. We further incor-

porate the campain correlations into consideration and refine

R by leveraging the shared structures among campaign tasks.

Intuitively, campaign tasks with similar tendencies should also

have aligned ranking scores. To encourage ranking scores from

campaigns with similar patterns to be clustered together, we

integrate a trace norm [15, 16] to constrain the structure of R.

We assume that R can be decomposed into groups of low-rank

bases, which implies a block structure

min
R

N∑
i=1

RT
·,iG

iR·,i + α
N∑
i=1

RT
·,iA

TAR·,i + η||R||∗

s.t. RT
·,i1K = 1,R·,i � 0.

(6)

The intuition above should also work for matrix A, as

campaign tasks with similar tendency variations should also

have aligned features. Therefore, we utilize the supervision in

A to guide R as R =
∑

z βzAz , where Az = uzv
T
z and uz ,

vz are the z-th left and right singular vector of A respectively,

with A =
∑

z λzuzv
T
z . To ensure that R � 0 and constrain

the complexity of R, we require βk
z ≥ 0 and introduce the l2

norm constraint on β. The final optimization problem for the

basis selection procedure can be expressed as

min
R,β

N∑

i=1

RT
·,iG

iR·,i+ α

N∑

i=1

RT
·,iA

TAR·,i + η||R−
∑

z

βzAz||2F

s.t. RT
·,i1K = 1,R·,i � 0,β � 0, ||β||2F ≤ C.

(7)

where α and η are the two parameters to control the strength

of the two regularization terms.

C. Funding Prediction

After obtaining the ranking matrix R, we choose bases

according to it. When dealing with a new campaign, we first

get its representation on selected bases, then we proceed to

make the prediction in the bases space before performing

an inverse-transformation predictor Φ−1 to get the actual

prediction of the following k-th day:

x
′
i(t+ k) = (Φ−1(Φ(xi)))(t+ k). (8)

Despite the effectiveness of this method, there are still

extreme cases when trading amounts are too sparse or contain

too much noise that the projection fail to fully discover its

intrinsic patterns. Therefore, we further exploit the neigh-

boring information to refine the predictions. As Φ can also

be treated as a step of feature extraction, it can be used to

measure the correlations among campaigns. If we denote the

similarity matrices WX and WA as the cosine similarity

among campaigns in the original space and the feature space

respectively, we can integrate them by taking the average of

the two matrices WC = 1
2W

X + 1
2W

A for simplicity. We
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localize WC and normalize it for each campaign. Then, we

fuse the neighboring information into forecasting with a trade-

off parameter μ

xi(t+1) = (1−μ)(Φ−1(Φ(xi)))(t+1)+μ(WC
i,:X−i(t+1)).

(9)

IV. OPTIMIZATION

Apparently, the objective function in Eq.(7) is not convex

regarding the variables R and β simultaneously. Here we de-

rive an iterative optimization algorithm. In each iteration, only

one variable is updated while the others remain unchanged.

A. Computing R

First, we fix β and update R. when β is fixed, Eq.(7) is

only related to R. Abbreviating R·,i as ri, we need to solve

the following problem

min
R

N∑
i=1

rTi G
iri +

N∑
i=1

α · rTi ATAri + η||R−
∑
z

βzAz||2F

s.t.rTi 1K = 1, ri � 0.
(10)

Leaving the third term η||R −∑
z βzAz||2F for later consid-

eration, Eq.(10) can be decomposed into N subproblems. We

employ the augment Lagrange method (ALM) [2] to rewrite

the i-th subproblem as

min
ri

rTi (G
i + αATA)ri + νT

i1(ri − si) +
τ

2
||ri − si||2F

νi2(r
T
i 1K − 1) +

τ

2
vi2(ri1

T
K − 1)2

s.t. si � 0.
(11)

where si is an auxiliary vector, τ is a scalar, νi1 and νi2 are

the Lagrange multipliers in terms of the i-th subproblem.

Update ri. Notice that when fixing si, Eq.(11) can be for-

mulated as an unconstrained QP problem, i.e., minri
rTi Hri+

rTi b, where H = Gi + αATA + τ
2 IK + τ

21K1T
K and

b = −τsi − τ1K + νi1 + νi21K . The solution of this QP

problem can be represented as a linear equation: 2rTi H = b.

Note that H is a positive definite matrix, so we employ the

algorithm proposed in [13] to give a nearly linear convergence

solution. Concretely, the gradient of R related to Eq.(10) is

the combination of N subproblems plus the gradient of the

third term.

Update si. Denote si = {s1i , ..., sKi }, fixing the other

variables, the objective function w.r.t. each si is

min
si�0

τ

2
(ri − si)

2 + νT
i1(ri − si), (12)

and the solution to this problem is

ski = max(0, rki +
νki1
τ

). (13)

B. Computing β

Next, we fix R and update β. When we fix R and ignore

the constant terms in Eq.(7), we have

min
β

η||R−
∑
z

βzAz||2F s.t. β � 0, ||β||2F = C. (14)

The above QP function can also be solved by the ALM

algorithm or other existing convex optimization packages.

V. EXPERIMENTS

A. Dataset Description and Evaluation criteria

Indegogo.com dataset We retrieve the funding-amount data

from indiegogo.com, which enables creators to solicit funds in

a pledged time duration. This dataset collects 14,143 launched

campaigns from July 2011 to May 2016, soliciting over 18

billion funds from 217,156 investors. Here, we remove unfin-

ished campaigns. The dataset is partitioned into two subsets

based on the declared funding days. For 30-day campaigns,

we record funding amounts of campaigns in their duration

(30 days) and the following 15 days. Similarly, for 60-day

campaigns, we keep observations in their time duration (60

days) and the following 30 days. Dataset features are also

retrieved for baselines methods. Due to the space limitation,

we only present the results with training ratio at 60% and

80%, which are named as D#1 and D#2 respectively. The

reported results are averaged over five-round tests.

Considering the sparsity of most campaign tasks, we adopt

the same criteria described in [14] to measure the root Mean

Squared Error (rMSE) between the predicted funding amounts

and the ground truth. The smaller the value of rMSE, the

better the performance.

B. Implementation Details

For basis decomposition, we fix the time interval K as 500.

For basis selection, the weighting parameters α and η are set

to 0.1 and 1 respectively, and remain fixed through out all

the experiments. We select bases with top-m ranking scores,

where m indicates the number of selected bases. Parameters of

the baselines are set as suggested in the corresponding papers.

We implement ARMA models using Python statsmodels
library1 and tune the optimal AR degree p and MA degree q
for each campaign task. For the GPR algorithm, the bandwidth

of the Gaussian kernel is set to 0.2. For the RDMTR, ORION,

SR and SWR models, the regularization parameters are set to

the default values.

C. Results and Analysis

Comparison with Baseline Methods To validate the effec-

tiveness of BASA, we compare it with the classical time-series

methods, including ARMA and GPR models [7]. We also

compare to baselines including RDMTR [6], ORION [14] and

the state-of-the-art SR and SWR [17] models.

1http://www.statsmodels.org/stable/index.html
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Model
rMSE 30 days rMSE 60 days

1-day 2-day 3-day 4-day 5-day 1-day 2-day 3-day 4-day 5-day

D#1

ARMA 921.5 901.0 953.7 1046.2 976.2 827.4 856.8 901.6 878.4 838.1
GPR 805.2 756.4 798.8 851.6 978.1 821.5 736.7 792.0 763.5 790.1

RDMTR 392.6 425.1 413.7 373.1 392.7 459.1 468.7 374.3 471.6 534.2
ORION 887.1 910.2 735.6 798.1 812.7 845.8 687.3 752.1 676.4 702.5

SR 296.9 336.2 358.2 399.4 452.6 389.1 455.9 485.5 518.4 514.5
SWR 272.0 295.8 304.0 298.3 294.3 281.6 359.9 318.5 402.2 457.6
BASA 80.8 115.3 121.7 193.8 108.3 95.9 164.6 185.5 190.6 348.8

D#2

ARMA 807.9 912.3 954.2 1046.7 1109.2 745.2 832.4 956.9 1331.6 1559.1
GPR 631.2 703.5 749.1 801.6 883.3 597.4 658.5 792.9 1010.7 1119.6

RDMTR 345.8 371.4 382.7 431.1 450.3 422.2 357.4 321.0 349.9 427.5
ORION 723.3 776.1 731.7 791.4 758.2 502.6 524.2 551.8 593.5 612.2

SR 292.3 307.5 272.7 295.7 299.6 281.9 388.6 435.2 390.3 440.3
SWR 231.7 213.6 251.2 235.6 264.7 224.3 263.3 245.1 281.6 287.1
BASA 121.2 97.3 123.9 189.1 153.3 82.4 220.1 163.2 136.6 260.1

TABLE I: Performance of various algorithms in terms of rMSE on the indiedgogo dataset. Methods with the best performances

(measured by paired t-tests at 95% significance level) are bolded.

Table 1 shows the forecasting performance in terms of the

following 5 days. Without loss of generality, we only report

the results on the 80%-20% data split (D#2). Throughout

the experiments, we make the following observations. First,

not surprisingly ARMA model achieves the worst perfor-

mance since it is linear and leads to exponential decay.

Second, considering the rise-and-fall patterns can enhance the

representation quality in dynamic forecasting. As a conse-

quence, RDMTR, SR, SWR achieve better performance than

ORION which only considers the smoothness property of

time sequences. Third, exploiting time tendency variations

can make the pattern description more discriminative. Time

series patterns are preserved in the basis space, and amplitute

values of these bases are also encoded for each specific

campaign task. This guarantees that our model can manage

time series variations flexibly. In addition, BASA does not

have a significant performance decay in the five-day case

compared to predicting only one day, indicating that our model

can cope with more complex tendency variations.

Evaluation of Basis Selection We proceed to investigate

the influence of selection methods and number of bases. To

demonstrate the effectiveness of our basis selection method,

we first compare it with three different variants of BASA:

• BASA-mean: We choose bases evenly at the same inter-

val. To be fair, the number of bases is fixed at 60.

• BASA-cluster: In this variant, we consider the cluster

property of bases, i.e., similar frequency of bases can

profile similar patterns. We employ K-means to obtain

10 clusters, and choose 6 bases from each cluster as

representatives.

• BASA-l1: In this variant, we incorporate the l1 norm to

control the diversity of chosen bases.

The performance of different model variants are presented

in Fig. 1. Obviously, the performance of the other basis-

selection methods are inferior and can drop significantly, while

BASA and BASA-cluster remain stable. The reason is that

BASA-mean and BASA-l1 only consider recovering previous

data, which makes them suboptimal. On the other hand, BASA

and BASA-cluster exploit the structure information, which

enhances the robustness, especially when the data is sparse.

(a) campaign 30days (b) campaign 60days

Fig. 1: Evaluation of basis selection methods

(a) campaign 30days (b) campaign 60days

Fig. 2: Evaluation on the number of chosen bases

In addition, BASA also explicitly takes diversity into consid-

eration, and achieves better performance than BASA-cluster.

Next, we study the influence of the number of selected

bases. Experimental results are presented in Fig. 2. We can

observe that when the number of bases is small (m < 60),

the chosen bases can not fully capture the variation patterns

so that the forecasting performance is suboptimal. The best

performance can be achieved around m = 60. When the

number of bases increases, the redundancy of bases weakens

the prediction performance as more noisy information is kept

which impairs discriminating power.

Evaluation of Model Components To validate the contribu-

tion of each component in our approach, we first investigate

how our method behaves when varying μ, which is a trade-off

parameter between our basis-based predictor and neighbor-
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(a) campaign 30days (b) campaign 60days

Fig. 3: Parameter sensitivity

(a) campaign 30days (b) campaign 60days

Fig. 4: Performance comparison over kernel methods

based predictor. The results w.r.t. different values of μ on the

following five days prediction are shown in Fig. 3. To summa-

rize, with μ increasing from 0 to 0.5, the corresponding loss

drops dramatically, indicating the tightness graph predictor can

introduce more supervised information, guiding the model to

produce enhanced results in sparse scenarios. However a larger

μ will make the model rely too much on neighbors, which

impairs its prediction capability. As a tradeoff, the performance

is reasonable when μ is around 0.5.

We further compare our kernels WC with the Gaussian

and Cosine kernels to evaluate the effectiveness of using our

time series decomposition to measure the similarity between

campaigns. Results are illustrated in Fig. 4. We can observe

that our kernel achieves better performance in most scenarios.

It also indicates that the learned basis space A can represent

features of different patterns, which in turn validates its ability

of capturing the trends in time-series tasks.

CONCLUSION

In this paper, we propose a novel method to predict the

funding amounts for crowdfunding campaigns. As dynamics

in crowdfunding campaigns are diverse, it is hard to directly

catch their patterns, so we try to tackle this problem from an

inverse view through bases synthesis. We select proper bases

that are both expressive and discriminative, then decompose

task sequence into those bases and make predictions on each

separate basis before composing them together to get the

forecasting results. Neighboring information is also exploited

to refine the prediction results. Experimental results validate

the ability of the chosen bases to catch the dynamic trends

and its effectiveness as feature representations.
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