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Abstract

We present a new unsupervised algorithm
for training structured predictors that is dis-
criminative, convex, and avoids the use of
EM. The idea is to formulate an unsuper-
vised version of structured learning meth-
ods, such as maximum margin Markov net-
works, that can be trained via semidefinite
programming. The result is a discrimina-
tive training criterion for structured predic-
tors (like hidden Markov models) that re-
mains unsupervised and does not create lo-
cal minima. To reduce training cost, we
reformulate the training procedure to mit-
igate the dependence on semidefinite pro-
gramming, and finally propose a heuristic
procedure that avoids semidefinite program-
ming entirely. Experimental results show
that the convex discriminative procedure can
produce better conditional models than con-
ventional Baum-Welch (EM) training.

1. Introduction

There have recently been a number of advances in
learning structured predictors from labeled data [17,
2, 15, 16]. Structured prediction extends the standard
supervised learning framework to the multivariate set-
ting, where complex, non-scalar predictions ŷ must be
produced for inputs x. The challenge is that each com-
ponent ŷi of ŷ should not depend only on the input x,
but instead should take into account correlations be-
tween ŷi and its neighboring components ŷj ∈ ŷ. It has
been shown in many applications that structured pre-
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dictors outperform models that do not directly enforce
these relationships [17, 2, 15, 16]. However, recent
progress on learning structured predictors has focused
primarily on the supervised case, where the output la-
bels are provided with the training data. Our goal is
to extend these techniques to the unsupervised case.

Although our technique is general, we focus our ex-
position on the special case of hidden Markov models
(HMMs) in this paper. HMMs have been a dominant
method for sequence analysis since their inception and
development over 40 years ago [14], and have contin-
ued to play a central role in speech recognition research
[8, 9], natural language processing [12, 9], and biolog-
ical sequence analysis [6].

HMMs are a special form of graphical model for se-
quence data of the form x = (x1, ..., xL) and y =
(y1, ..., yL), where x is a vector of observations and
y is a corresponding sequence of states. The model
assumes that the observation xk at time k is condition-
ally independent of all other variables given the state
yk at the same time, and moreover yk is conditionally
independent of all other variables given yk−1, xk, yk+1

(Figure 1). The parameters that define this model are
the initial state potentials p(y1), the observation po-
tentials p(xk|yk), and the state transition potentials
p(yk+1|yk). Often one assumes a stationary model
where the transition and emission potentials do not
change as a function of time. For simplicity we assume
finite alphabets for the state and observation variables.

An HMM expresses a joint distribution over an
observation-sequence state-sequence pair (x,y). A sig-
nificant appeal of these models is that nearly every
operation one might wish to perform with them is
tractable. For example, an HMM can be used to effi-
ciently decode an observation sequence to recover an
optimal hidden state sequence, y∗ = arg maxy p(y|x),
by the Viterbi algorithm [14]. Another example is
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Figure 1. Equivalent directed and undirected representa-
tions of a hidden Markov model.

maximum likelihood training: if one is given com-
plete training data expressed in paired sequences
(x1,y1), ..., (xt,yt) then training a hidden Markov
model to maximize joint likelihood is a trivial mat-
ter of setting the observation and transition potentials
to the observed frequency counts of each state→state,
state→observation, and initial state patterns.

More often, however, one is more interested in learning
a conditional model p(y|x) rather than a joint model
p(x,y), because the conditional model serves as the
structured predictor of a joint labeling y for an input
sequence x. For conditional models it has long been
observed that discriminative (conditional likelihood)
training is advantageous compared to joint (maximum
likelihood) training. In fact, the significant recent
progress on learning structured predictors has been
based on developing training procedures that exploit
discriminative criteria, such as conditional likelihood
or margin loss; for example, as in conditional random
fields [10], discriminative sequence training [2, 17], and
maximum margin Markov networks [15]. The decod-
ing accuracy achieved by these techniques generally
exceeds that of simple maximum likelihood.

One major limitation of current discriminative train-
ing algorithms, however, is that they are all super-
vised. That is, these techniques require complete state
sequences y to be provided with the observation se-
quences x, which precludes the use of unsupervised
or semi-supervised approaches. This is a serious lim-
itation because in most application areas of sequence
processing—be it speech, language, or biological se-
quence analysis—labeled state sequence information
is very hard or expensive to obtain, whereas unla-
beled observation sequences are very cheap and avail-
able in almost unlimited supply. Intuitively, much of
the state-class structure of the domain can already be
inferred from a massive collection of unlabeled obser-
vation sequences. Nevertheless, a generally effective
technique for unsupervised learning of discriminative
models has yet to be developed.1

For the unsupervised training of hidden Markov mod-
els, most researchers back off to a joint model view,

1An exception is [1], which considers a semi-supervised
training approach. Unfortunately, the technique is not ap-
plicable to the unsupervised case we address in this paper.

and use EM to recover a conditional model as a side-
effect of acquiring p(x,y). Even given the advantage
of discriminative training for supervised learning, most
research on unsupervised training of HMMs has had to
drop the discriminative approach. However, there are
several well-known problems with EM. First, EM is
not an efficient optimization technique. That is, the
marginal likelihood criterion it attempts to optimize is
not concave, and EM only converges to local maxima.
Thus, from the global optimization perspective, EM
fails to guarantee a solution to the problem. Second,
if we are interested in learning a discriminative model
p(y|x), there is little reason to expect that the train-
ing criterion used by EM, which focuses on improving
the input model p(x), will recover a good decoder. In
fact, given the experience with discriminative versus
joint supervised training, there is every reason to ex-
pect that it will not.

The contribution of this paper is simple: we show
that it is possible to optimize a discriminative train-
ing criterion even when learning an HMM model in
the unsupervised case. We also show that it is possi-
ble to achieve this in a convex optimization framework,
where at least in principle it is possible to compute op-
timal solutions in polynomial time [13]. Specifically,
we base our approach on the discriminative margin
criterion proposed in [15], and show that even without
training labels we can still learn a discriminative model
p(y|x) that postulates “widely separated” hidden state
sequences for different input observation sequences.

2. Discriminative unsupervised training

To develop a discriminative unsupervised training ap-
proach for structured predictors, we first consider re-
cent progress that has been made in the univariate
case. Specifically, we build upon current ideas on how
discriminative training criteria can still be optimized
in the unsupervised setting. Our proposal is much eas-
ier to explain once a detailed understanding of these
recent ideas has been established.

These recent approaches are based on the large margin
criterion of support vector machines (SVMs), where
new unsupervised training algorithms have been de-
veloped [5, 19, 20]. The idea is to treat the missing
classification labels as variables to be optimized in a
joint minimization with the underlying SVM parame-
ters. That is, one formulates the SVM training objec-
tive (the margin loss) as a joint function of the train-
ing labels and the SVM parameters. The unsupervised
learning principle then becomes finding a labeling that
results in an SVM with minimal margin loss. Obvi-
ously, constraints need to be added to the labeling to
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avoid trivial results, such as having all labels set to
the same value. The previous approaches have simply
constrained the labeling so that the classes are approx-
imately balanced. Despite its simplicity, this approach
appears to yield good results.

To derive a structured form of these algorithms, we fol-
lowed the same methodology outlined in previous work
[5, 19]. Essentially this involves following a sequence
of steps: First, one takes the dual of the supervised
problem, yielding an expression that involves pairwise
comparisons between the supervised y-labels. Second,
one re-expresses the problem in terms of the compar-
isons, rather than the y-labels themselves, which yields
a convex function in the comparison variables, even
when the objective was not convex in the original y-
labels. Third, one relaxes the comparison variables to
real values, and possibly relaxes additional constraints,
to obtain a convex optimization problem. Finally, the
comparison variables in the solution can be used to
recover a classification of the original data.

To derive an unsupervised training algorithm for the
structured case, we briefly review some essential de-
tails from the 2-class and multi-class univariate case.

2.1. 2-class case

Suppose one is given unlabeled data x1, ..,xn, and
wishes to solve for a binary labeling y ∈ {−1,+1}n.
The recent proposals [5, 19] suggest finding a labeling
that minimizes the standard SVM margin loss, subject
to constraint that the classes stay approximately bal-
anced −ε ≤ y>e ≤ ε. That is, one writes the margin
loss after the SVM parameters have been optimized as
a function of y. In the primal and dual forms this can
be expressed

ω(y) = min
w

β

2
‖w‖2 +

∑

i

[1 − yiφ(xi)
>w]+ (1)

= max
0≤λ≤1

λ>e −
1

2β
〈K ◦ λλ>,yy>〉 (2)

where [u]+ = max(0, u), “e” denotes the vector of all
1s, “◦” denotes componentwise matrix multiplication,
〈, 〉 denotes 〈A,B〉 =

∑

ij AijBij , and K denotes the

kernel matrix, Kij = φ(xi)
>φ(xj).

The difficulty with the primal form of ω, however, is
that it is not convex in y. The dual is also not convex,
but the labels appear only as the equivalence relation
matrix M = yy>; where Mij = 1 if yi = yj and
Mij = −1 otherwise. The key observation of [5, 19]
is that if one expresses the margin loss in terms of
the equivalence relation M , it becomes a maximum of

linear functions in M and is therefore convex [3]

ω(M) = max
0≤λ≤1

λ>e −
1

2β
〈K ◦ λλ>,M〉

The class balance and the equivalence relation con-
straints can then be re-expressed in terms of M . For
example, the class balance constraint can be encoded
−εe ≤ Me ≤ εe. The equivalence relation constraint
can be encoded using a well-known result [7, 11] that
asserts M ∈ {−1,+1}n×n is a binary equivalence re-
lation if and only if M � 0 and diag(M) = e. Thus,
by relaxing the remaining integer constraint on M to
[−1,+1], one can obtain a convex training problem

min
M�0, diag(M)=e

ω(M) subject to −εe ≤ Me ≤ εe

This problem can be shown to be equivalent to the
semidefinite program [5, 19]

min
M,δ,µ≥0,ν≥0

δ subject to (3)

[

M ◦ K e + µ − ν

(e + µ − ν)> 2
β
(δ − ν>e)

]

� 0

diag(M)=e, M �0, −εe ≤ Me ≤ εe

The result is a convex training criterion for SVMs that
is completely unsupervised, yet discriminative.

2.2. Multi-class case

To tackle the structured prediction case, we will need
to use a multi-class version of this training strategy
[20]. Assume one is given unlabeled data x1, ...,xn,
but now wishes to learn a labeling y such that yi ∈
{1...κ}. A multi-class labeling y can be represented by
an n × κ indicator matrix D, such that Diyi

= 1 and
Diu = 0 for u 6= yi. In a multi-class SVM, the feature
functions φ(x, y) are also extended to include the y-
labels, which provides a separate weight vector wu for
each class u. Once a weight vector has been learned,
subsequent test examples x are classified according to
y∗ = arg maxy w>φ(x, y).

For unsupervised SVM training, the problem becomes
finding a multi-class labeling y (or an indicator matrix
D) to minimize the multi-class margin loss. Although
the margin loss is not uniquely determined in this case,
the most common choice is given by [4]

ω(D) = min
w

β

2
‖w‖2 +

∑

i

max
u

[

1 − Diu −

w> (φ(xi, yi) − φ(xi, u))
]

+

= max
Λ≥0,Λe=e

n − 〈D,Λ〉 − 1
2β

〈K,DD>〉

+ 1
β
〈KD,Λ〉 − 1

2β
〈ΛΛ>,K〉
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As in the 2-class case, the primal form of the margin
loss is not convex in D. The dual form is also not
convex in D, but once again D appears conveniently
in this case only as D itself and the equivalence rela-
tion matrix M = DD>; where Mij = 1 if yi = yj and
Mij = 0 otherwise. If one re-expresses the margin loss
in terms of D and M , it once again becomes a maxi-
mum of linear functions of D and M and is therefore
jointly convex in D and M [3]

ω(D,M) = max
Λ≥0,Λe=e

n − 〈D,Λ〉 − 1
2β

〈K,M〉

+ 1
β
〈KD,Λ〉 − 1

2β
〈ΛΛ>,K〉

The class balance and equivalence relation constraints
are once again required. Class balance can be enforced
by

(

1
κ
− ε

)

ne ≤ Me ≤
(

1
κ

+ ε
)

ne. However, since D
and M both now appear in the objective, they need to
be constrained relative to each other. Unfortunately,
the constraint M = DD> is not convex. [20] proposes
to relax this constraint to the one-sided version M �
DD>, diag(M) = e, which combined with relaxing
the Boolean constraints on M and D yields a convex
training problem

min
M�0, diag(M)=e, D≥0

ω(M) subject to M � DD>,

(

1
κ
− ε

)

ne ≤ Me ≤
(

1
κ

+ ε
)

ne

This optimization can also be converted to a semidef-
inite program [20], resulting in a training criteria for
multi-class SVMs that is convex, unsupervised and yet
still discriminative.

3. Unsupervised M3Ns

We can now attempt to extend this univariate ap-
proach to the structured prediction case. We focus
our presentation on learning HMM predictors under
the multivariate margin loss formulation of Taskar et
al. [15], however the ideas easily extend to other struc-
tured prediction models and other training criteria.

To establish the representation, initially consider the
supervised problem. Suppose we are given labeled
training sequences (x1,y1), ..., (xn,yn), where each
individual training sequence is of the form (xi =
(xi1, ..., xiL),yi = (yi1, ..., yiL)). As before, we con-
sider feature functions φ(xi,yi) of both the observa-
tion and the label sequence. If one assumes a station-
ary hidden Markov model, as we do, then the vector
of features φ(xi,yi) can be re-expressed as a sum of
feature vectors over the local pieces of the example

φ(xi,yi) =

L
∑

k=1

φ(xikyikyik−1)

That is, each feature vector φ(xikyikyik−1) for a lo-
cal sequence piece (xikyikyik−1) is just a sparse vector
that indicates which particular configuration is true in
each local table of the graphical HMM model. The fact
that the feature vector depends only on a local sub-
set of variables (xikyikyik−1) encodes the conditional
independence assumption of the HMM. The fact that
the total feature vector for a complete labeled sequence
is just a sum of the feature vectors for each local se-
quence piece, independent of k, encodes the stationar-
ity assumption of the HMM.

This would be the representation one would use in
training a supervised M3N given labeled training se-
quences [15]. In the supervised case, a discrimina-
tive structured predictor can be trained by solving a
quadratic program with respect to weights on the fea-
ture vector φ(x,y). The goal of this quadratic pro-
gram is to minimize the multivariate margin loss

ω(y1, ...,yn) = min
w

β

2
‖w‖2 +

∑

i

max
ui

[

∆(ui,yi) −

w>
(

φ(xi,yi) − φ(xi,ui)
)

]

+
(4)

where ∆(ui,yi) counts the disagreements between ui

and yi, thus encouraging a margin between the cor-
rect labeling yi and an alternative labeling ui that
increases with Hamming distance [17].

We will need to work with the dual. Taskar et al. [15]
observe that the dual of a structured problem (4), al-
though of exponential size in a naive derivation, can
be factored into marginal dual variables using the con-
ditional independence structure of the y-labeling.2 In
the HMM representation we are assuming, a compact
quadratic program that computes the same multivari-
ate margin loss can be expressed as

ω(y1, ...,yn) = max
µ,ν

∑

i,k,u

µik(u)1(u6=yik) (5)

−
1

2β

∑

ij,k`,uu′,vv′

νik(uu′)νj`(vv′) ∆φik(uu′)>∆φj`(vv′)

subject to µik(u) ≥ 0, νik(uu′) ≥ 0,
∑

u′

νik(uu′) = µik(u),
∑

u

µik(u) = 1

where ∆φik(uu′) = (φik(yikk−1)−φik(uu′)). Here i, j
index training cases, k, ` index locations in each train-
ing sequence, and u, u′ index possible relabelings at
these locations. There is a dual variable µik(u) cor-
responding to each singleton relabeling, and a dual

2In fact, these marginal dual variables correspond to the
canonical parameters for the conditional Markov random
field defined on y [18].
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variable νik(uu′) corresponding to each adjacent pair
relabeling.

To derive an unsupervised version of this training cri-
terion, we now consider minimizing the multivariate
margin loss ω as a function of the sequence labelings
y1, ...,yn. Our task will be made considerably simpler
by reformulating the multivariate margin loss in terms
of the indicator and equivalence relation matrices that
we will ultimately have to use. We first note that the
quadratic terms in (5) can be reformulated as

∑

ij,k`,uv

µik(u)µj`(v) δ1(iku, j`v)K(ik, j`) (6)

+
∑

ij,k`,uu′,vv′

νik(uu′)νj`(vv′)δ2(ikuu′, j`vv′)

where

δ1(iku, j`v) = 1(yik=yj`) − 1(u=yj`) − 1(yik=v) + 1(u=v)

δ2(ikuu′, j`vv′) = 1(yikk−1=yj``−1) − 1(uu′=yj``−1)

− 1(yikk−1=vv′) + 1(uu′=vv′)

Here K(ik, j`) is the inner product between the sub-
feature vectors that omit the transition model features
and set the current state values equal.

Next, define the indicator matrices M,N,C,D

Mik,j` = 1(yik=yj`)

Nikk−1,j``−1 = 1(yikk−1=yj``−1)

Cik,u = 1(yik=u) (7)

Dikk−1,uu′ = 1(yikk−1=uu′)

Note that by these definitions, M and N are equiva-
lence relations on singleton and pairwise positions in
the y-label sequences, respectively. Also, by these def-
initions M = CC> and N = DD>. We can now
also place the optimization variables into correspond-
ing matrices µ and ν such that µik,u = µik(u) and
νik,uu′ = νik(uu′). Given these definitions, we can
then re-express an equivalent quadratic program to (5)
in a compact matrix form. Letting p1 be the number
of singleton positions in the training data, and letting
E denote the matrix of all 1’s, we obtain

Theorem 1 The multivariate margin loss (5) equals

ω(M,N,C,D) = p1 − 〈µ, C〉 + 1
β
(〈KC〉 + 〈ν, ED〉)

− 1
2β

(

〈M,K〉 + 〈N,E〉 + 〈µµ>,K〉 + 〈νν>, E〉
)

subject to
∑

u′ νik(uu′) = µik(u) ∀iku,

µ≥0, ν≥0, νe=e, M =CC>, N =DD>, and

Nikk−1,j``−1 = Mik,j`Mik−1,j`−1 ∀ijk` (8)

The proof is just algebraic manipulation of (5) using
(6) and the matrix definitions (7).

With this matrix form of the multivariate margin loss
we can now develop a convex optimization objective
for discriminative unsupervised training of a struc-
tured prediction model. In particular, given unlabeled
sequences x1, ...,xn, we would like to solve for the se-
quence labelings—represented implicitly as indicator
matrices M , N , C and D over the singleton and pair
labelings—by minimizing the multivariate margin loss
of the resulting M3N predictor. In formulating the op-
timization problem, there are a number of constraints
on the matrix variables that we need to impose.

First, one needs to impose class balance constraints
to avoid trivial results. We impose class balance con-
straints on each local singleton labeling yik and each
local pairwise labeling yikk−1 by

(

1
κ
− ε

)

p1e ≤ Me ≤
(

1
κ

+ ε
)

p1e (9)
(

1
κ2 − ε

)

p2e ≤ Ne ≤
(

1
κ2 + ε

)

p2e

where p1 and p2 are the number of singleton and pair
positions in the data.

Second, we need to respect the quadratic constraints
between matrices, such as M = CC> and N = DD>.
Unfortunately, these are non-convex. However, using
the same approach as [20] we can relax these to the
convex one-sided constraints

M � CC>, N � DD>,diag(M)=e,diag(N)=e (10)

We also need to relax the quadratic constraints (8)
that relate M and N (the equivalence relations on sin-
gleton and pairwise assignments). These are also non-
convex, but can be approximated by linear constraints

Nikk−1,j``−1 ≤ Mik,j`

Nikk−1,j``−1 ≤ Mik−1,j`−1 (11)

Nikk−1,j``−1 ≥ Mik,j` + Mik−1,j`−1 − 1

Finally, to pose the training problem, we need to relax
the {0, 1} integer constraints to [0, 1]. Putting these
pieces together we get a relaxed training criterion for
structured predictors that is entirely convex

min
M,N,C,D≥0

ω(M,N,C,D) subject to (9), (10), (11)

To solve this training problem in the same manner as
above, one would then have to re-express this convex
problem as a semidefinite program. Unfortunately, we
find that the semidefinite program that results is too
large to be practical. Therefore, our initial attempt
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Table 1. Prediction error with different methods. Results
averaged over 10 repeats, for each, EM given 10 re-starts.

Data set CDHMM EM
syth. data1 (95%) 3.38 ±0.75 15.09 ±1.92
syth. data2 (90%) 8.12 ±1.57 17.49 ±1.81
syth. data3 (80%) 22.12 ±1.40 30.06 ±1.24
syth. data4 (70%) 31.50 ±1.46 39.90 ±0.86
protein data1 51.75 ±1.80 58.11 ±0.47
protein data2 50.38 ±2.04 57.23 ±0.39

at optimizing this training criterion has taken a differ-
ent approach: We can obtain a more compact training
technique by using a constraint generation method

min
M,N,C,D,δ

δ s.t. δ ≥ ω(M,N,C,D;µc,νc), ∀c ∈ C (12)

Here we keep a finite set of constraints C, where
each µc,νc corresponds to a set of dual parameters
for an M3N. Then given a current, M,N,C,D, an
M3N training algorithm (QP) is used to maximize
ω(M,N,C,D;µ,ν) as a function of µ and ν; hence
adding a new constraint to (12). Then (12) can be
solved for a new M,N,C,D by a smaller semidefinite
program. By convexity, a fixed point must yield a
global solution to the convex problem (12). Unfortu-
nately, this training algorithm is still quite expensive.
Therefore, in Section 5 below we propose some princi-
pled alternatives that are much faster, but no longer
guaranteed to find a global solution.

4. Experimental results

As a proof of concept, we implemented the train-
ing technique proposed above, using CPLEX for con-
straint generation and SDPT3 for the outer semidefi-
nite optimizations. Our goal in this section is not to as-
sert that we have a practical technology, yet, that one
can easily apply to real problems immediately. How-
ever, we believe the fundamental idea is important and
we first want to demonstrate that the principle works,
regardless of computational cost. We will then revisit
the question of computational efficiency and propose
some faster but approximate alternatives below.

Since we were initially limited in the sizes of the prob-
lems we could consider, we investigated six small data
sets: four synthetic data sets generated from a 2-state
HMM (see Figure 1), and two reduced versions of a real
protein secondary structure data set obtained from
the UCI repository (protein-secondary-structure). In
each case, we gathered a sample of labeled sequences,
removed the labels, trained the unsupervised HMM
models, and used these to relabel the sequences using
Viterbi decoding. We measured accuracy by first opti-

mizing the map between predicted and possible state
labels for each method, and then counting the num-
ber of misclassified positions in all training sequences.
We compared the performance of the proposed convex
discriminative HMM training (CDHMM) to standard
EM training (EMHMM). The regularization parame-
ter β for CDHMM was set to 0.01 for the synthetic
experiments and 1.0 for the protein experiments. EM
was run from a random set of initial parameters 10
times. Smoothing had little noticeable effect on EM.

The synthetic data sets were generated from a simple
2-state HMM, where each state emits either 0 or 1 ac-
cording to emission probability. Emission noise was set
equal to the probability of transitioning to the other
state. In synthetic data set 1, there is a 5% chance of
staying in the same state and a 95% chance of mov-
ing to another state; similarly, in synthetic data set 2,
3, and 4 there is a 10%, 20%, and 30% chance respec-
tively of staying in the same state. Thus, the synthetic
data sets are incrementally noisier from synthetic data
set 1 to 4. To generate training data, we sampled 10
sequences of length 8 from the 2-state HMM.

For the protein sequence experiments, we created two
small data sets of 10 subsequences of length 10, with
endpoints randomly selected in the data. In the first
experiment (protein data 1) a simple HMM was used
(Figure 1), where yi is the secondary structure tag
(one of 3 values) and xi is the amino acid tag (one of
20 values). In the second experiment (protein data 2),
each observation xi was set to a window of 3 adjacent
amino acid tags (one of 203 values).

Table 1 shows the classification accuracies achieved by
CDHMM and EMHMM on these problems. Here we
see that CDHMM learns far more accurate prediction
models than EMHMM. In fact, these results are quite
strong, supporting our contention that the discrimi-
native training criterion, based on M3Ns, might pro-
vide a fundamental improvement over EM for learning
structured predictors. Of course, one source of the
advantage might simply be that the convex training
criterion avoids getting stuck in local minima. How-
ever, independent of local minima, we still argue that
even in the unsupervised setting, optimizing a discrim-
inative criterion that focuses on p(y|x) is superior to
optimizing a criterion that focuses solely on improving
the model of p(x) (which in fact is what EM is trying
to do in this case). Below we present further evidence
to attempt to support the second contention.

Unfortunately, the computational cost of the convex
training is quite high (hours versus seconds) and we
do not yet have a efficient optimization strategy that
is able to guarantee global minimization, even though
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there are no local minima. To try and address this
issue, we attempt to formulate more computationally
attractive versions of the proposed training criterion.

5. Efficient approximation techniques

Our main idea, currently, for a computationally ef-
ficient approximate training method is based on an
equivalent reformulation of the training objective. The
reformulation we propose sacrifices convexity, but per-
mits more efficient local optimization.

The easiest way to illustrate the idea is to consider the
simple 2-class univariate case from Section 2.1. Equa-
tions (1) and (2) give two equivalent expressions for
the margin loss as a function of the labeling y, ex-
pressed as primal and dual quadratic programs. It is
well-known that the primal and the dual solutions are
related by w = 1

β

∑

j λjyjφ(xj). This relationship is,
in fact, not accidental, and one can establish several
alternative quadratic programs that give the same so-
lution as the standard primal and dual forms.

Proposition 1 The margin loss, (1) and (2), equals

ω(M) = min
0≤λ≤1,ξ≥0

1

2β
〈K ◦ λλ>,M〉 + ξ>e

subject to ξi ≥ 1 −
1

β

∑

j

MijλjK(xi,xj) ∀i

where M = yy>

That is, the normal maximization over the dual vari-
ables can be replaced by an equivalent minimization
over the dual and slack variables. This allows one to
re-express the problem of maximizing margin loss as a
joint minimization between the dual variables λ and
the equivalence relation M as

min
M

min
0≤λ≤1,ξ≥0

ω(M ;λ, ξ) = λ>(K ◦ M)λ/2β + ξ>e

subject to convex constraints

Unfortunately, ω(M ;λ, ξ) is not jointly convex in
M and λ, meaning that global minimization cannot
be easily guaranteed. Nevertheless, the objective is
marginally convex in M and λ, ξ. This suggests
an alternating minimization approach—first solve a
semidefinite program in M given λ and ξ, then solve
a quadratic program in λ, ξ given M , and so on. A
key fact about alternating minimization is that it must
make monotonic progress in the objective ω. Given
that the loss ω is bounded below, such a procedure is
guaranteed to converge to a local minimum.

Although alternating minimization yields superior
intermediate solutions to the constraint generation

Table 2. Prediction error including alternating method.

Data set CDHMM ACDHMM EM
syth1 3.38 ±0.75 14.46 ±1.78 15.09 ±1.92
syth2 8.12 ±1.57 17.34 ±1.52 17.49 ±1.81
syth3 22.12 ±1.40 26.56 ±1.06 30.06 ±1.24
syth4 31.50 ±1.46 38.58 ±0.96 39.90 ±0.86
prot1 51.75 ±1.80 56.67 ±0.47 58.11 ±0.47
prot2 50.38 ±2.04 53.65 ±0.57 57.23 ±0.39

method used above, it still involves a semidefinite pro-
gram at each alternation, making it still too expensive
for large practical problems. However, our key obser-
vation is that one can now in fact sidestep semidefinite
programming entirely.

Proposition 2 Given an SVM solution specified by
a fixed λ, the labeling y (and its equivalence relation
M = yy>) that minimizes margin loss is given by the
labeling that is consistent with the SVM’s predictions.

That is, the best labeling for a fixed SVM, in terms of
minimizing margin loss, is simply the SVM’s predic-
tions, which in fact is a fairly obvious statement. Nev-
ertheless, one can obtain a very fast approximate train-
ing procedure as a result: initialize the labeling, train
an SVM, relabel according to the SVM’s discriminant,
re-train the SVM, and so on. Although this sounds like
a naive heuristic, it is in fact a principled coordinate
descent method: each iteration, either re-training or
re-labeling, is guaranteed to be non-increasing in the
margin loss. Thus the alternation must make mono-
tonic progress in the objective and cannot oscillate,
except at a fixed point, which corresponds to a local
minimum. We have experimented with this approach
below and found that it requires a nontrivial number
of iterations (typically more than 1) to reach a fixed
point—so the procedure is not completely vacuous as
one might fear—but on the other hand the number
of iterations rarely exceeds 5-10, so the training time
is not significantly worse than training a supervised
M3N. Quite obviously, however, this heuristic only
finds local minima and will be dependent on good ini-
tialization. Surprisingly, however, we have found that
this heuristic alternation technique can achieve good
results when applied to large scale sequence data, and
is still able to surpass EM in the quality of the struc-
tured predictors it learns from unlabeled data.

5.1. Experimental evaluation

In order to gauge the impact of the approximation, the
alternating heuristic (ACDHMM) was run on the same
small data sets as the constraint generation method.
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Table 3. Prediction error for larger data sets.

Data set ACDHMM EM
20×2-seq 43.12 ±2.20 46.27 ±1.51
10×5-seq 44.33 ±2.30 48.67 ±1.51
5×10-seq 46.44 ±2.12 48.67 ±1.82

Note that ACDHMM needs some initial labeling so it
was seeded using the Viterbi labeling from a model
learned on a single run of EM. The results shown in
Table 2 show that ACDHMM is not as accurate as the
exact CDHMM procedure, but generally offers better
results than EM, especially with the complex model
of PROT2. However, ACDHMM scales better than
CDHMM so we are able to present results on much
larger data sets. To demonstrate this, we use the same
protein secondary structure data set but now use com-
plete sequences (from the available set of 110) instead
of sampling short segments. We show results in Table
3 for 20 samples of 2 sequences (20×2-SEQ), 10 sam-
ples of 5 sequences (10×5-SEQ), and 5 samples of 10
sequences (5×10-SEQ) taken randomly from the data
set. These data sets are much larger than our ear-
lier examples, having, on average, 337, 628, and 1214
structure observations respectively. In all cases, the
observations xi were set to a window of 7 adjacent
amino acids. The results show an improvement over
EM in a more realistic context that is quite infeasible
using CDHMM.

6. Conclusion

We have presented a new discriminative approach to
the unsupervised training of hidden Markov models.
Our technique combines current ideas in discrimina-
tive sequence prediction with those in discriminative
unsupervised training. To the best of our knowledge
this is the first technique to formulate a convex crite-
rion for discriminative unsupervised training.

Our experimental results, although preliminary, mir-
ror the experience in supervised learning that, from
the perspective of learning a decoder p(y|x), it is bet-
ter to use a discriminative training criterion than a
joint criterion. We can offer an exact but expensive
training method for this criterion, or fast but inexact
training methods, but cannot yet attain both.

There are many directions for future research. One
of the most significant issues is overcoming the com-
putational burden of semidefinite programming. Even
though this problem is polynomial time in principle
[13], current solvers limit the size of the problems we
can practically handle. Generalizing the approach to
arbitrary graphical models is not hard, although the

usual limits on graph topology are required to ensure
tractability. A more interesting issue that we have
not made much progress on is dealing with continu-
ous variables and continuous time. Finally, it would
be interesting to try our technique on semi-supervised
data to see if improvements over current discriminative
classification techniques can be achieved.
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