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Abstract
Cross-lingual representation is a technique that can
both represent different languages in the same la-
tent vector space and enable the knowledge trans-
fer across languages. To learn such representa-
tions, most of existing works require parallel sen-
tences with word-level alignments and assume that
aligned words have similar Bag-of-Words (BoW)
contexts. However, due to differences in grammar
structures among different languages, the contexts
of aligned words in different languages may ap-
pear at different positions of the sentences. To ad-
dress this issue of different syntactics across dif-
ferent languages, we propose a model of bilingual
word embedding integrating syntactic dependen-
cies (DepBiWE) by producing dependency parse-
trees which encode the accurate relative positions
for the contexts of aligned words. In addition, a
new method is proposed to learn bilingual word
embeddings from dependency-based contexts and
BoW contexts jointly. Extensive experimental re-
sults on a real world dataset clearly validate the su-
periority of the proposed model DepBiWE on vari-
ous natural language processing (NLP) tasks.

1 Introduction
Distributed word representations, also known as word em-
beddings, have been extensively applied in various natural
language processing (NLP) tasks. Different to the traditional
representation of words as discrete and distinct symbols, dis-
tributed word representation embeds words into a low dimen-
sional continuous vector space according to the distributional
hypothesis stating that words with similar contexts have
similar semantic meanings [Collobert and Weston, 2008;
Mikolov et al., 2013c; Levy et al., 2015]. Specifically, with
the successful applications of BoW (Bag-of-Words)-based
methods [Mikolov et al., 2013c] in the monolingual scenar-
ios, including language modeling [Bengio et al., 2003], text
classification [Kim, 2014] and parsing [Socher et al., 2013],
studies have been conducted to extend the monolingual meth-
ods to cross-lingual scenarios, especially the tasks that re-

quire knowledge transfer from high-resource languages to
low-resource languages, e.g., cross-lingual semantic analy-
sis [Zhou et al., 2015] and cross-lingual document classifica-
tion [Klementiev et al., 2012]. In principle, it is possible to
map vocabularies of two or more languages into a shared vec-
tor space of cross-lingual representations because there ex-
ists a strong similarity between the vector spaces of different
languages [Mikolov et al., 2013b], with resembling semantic
properties of word pairs across languages.

Various approaches have been proposed for cross-lingual
word embeddings in the literature, which can be divided
into three rough categories. The first uses a cross-lingual
dictionary with translation between pairs of words in dif-
ferent languages [Gouws and Søgaard, 2015; Duong et al.,
2016]. The second group of methods are proposed based on
sentence-aligned parallel corpus and can be applied to ma-
chine translation tasks [AP et al., 2014; Gouws et al., 2015;
Shi et al., 2015]. The third category leverages both sentence-
level alignment and word-level alignment when learning
word embeddings. Among them, a cross-lingual regulariza-
tion is introduced in [Klementiev et al., 2012] to pull the em-
bedding vectors of aligned words closer. Word alignment is
also leveraged in the model of CLC+WA [Shi et al., 2015] by
counting the co-occurrence using BoW contexts. In [Luong
et al., 2015], the skip-gram model [Mikolov et al., 2013c] is
extended to the cross-lingual setting by integrating the mono-
lingual and cross-lingual objectives, and predicting the BoW
contexts of both the target words and their aligned words.

The above methods are restricted in the sense that they as-
sume that aligned words have similar contexts, while ignoring
the difference of word orders across different languages. As
a counter-example, Figure 1-Top shows a pair of sentences of
different parse structures across different languages (English-
German). As shown in Figure 1, given a window size of 1,
the BoW context of the word we, which is will, is irrelevant
to wiederholen or morgen, which are the BoW contexts of
the word wir in German. With the increase of the window
size, only an uncorrelated word Wörter is included. Figure 1
shows a contradiction to the bilingual distributional hypothe-
sis, which is inherited from the monolingual counterpart, that
words with similar contexts across different languages should
have similar meanings.
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Figure 1: An example of BoW (Bag-of-Words) contexts (window
size=2) and DEP (dependency) contexts extracted for bilingual mod-
els. Top: the word alignments of an example parallel sentence pair
(English-German) with the corresponding dependency parse-trees.
Bottom: the BoW contexts and DEP contexts extracted for words
we (wir) and word (Wörter) in two sentences.

To address the above issue, we consider different syntac-
tic structures in parallel sentences across languages as impor-
tant clues when obtaining the contexts of aligned words in
the bilingual model. Specifically, we propose a dependency-
based bilingual word embedding model (DepBiWE) where
a pair of dependency parse-trees [De Marneffe and Man-
ning, 2008] are produced to capture the syntactic contexts
of aligned words across languages. This is illustrated in
Figure 1, the context of word we according to the depen-
dency parse-tree is review, which is similar to wiederholen
in the parallel sentence. In addition, we further introduce
a regularization term (DepBiWE+R) to enhance the quality
of cross-lingual embeddings by pulling the representations
of similar words close to each other in the phrase-level se-
mantic space. Furthermore, considering that building de-
pendency parse-trees can be expensive on large-scale corpus,
we propose a cross learning method which integrates BoW
contexts as an unsupervised supplementary context informa-
tion and learns the word representations based on the depen-
dency and BoW contexts jointly. By integrating the BoW-
based topical contexts and the dependency-based syntactic
contexts, the cross-lingual performance can been effectively
improved while both semantics and syntactics are preserved
in the learned bilingual word embeddings.

To evaluate the quality of the embeddings learned by the
proposed bilingual word embedding model, experimental in-
vestigation is conducted on monolingual word similarity,
cross-lingual word similarity and cross-lingual dictionary in-
duction tasks, which demonstrates significant improvements
over the state-of-the-art. We further apply the proposed
method to the task of cross-lingual document classification
on real-world datasets to justify the practical effectiveness of
the DepBiWE model by exploiting syntactic dependencies.

The main contributions of this paper are:
• We consider different syntactic structures in parallel sen-

tences across different languages. By obtaining the con-
texts of aligned words across different languages with de-
pendency parse-trees, a novel bilingual word embedding

model is designed.
• We propose a new cross learning method which learns the

word representations based on the dependency contexts
and BoW contexts jointly.

• The proposed bilingual embedding model achieves a sig-
nificant improvement over the state-of-the-art methods.

2 Related Work
2.1 Dependency-based Word Embeddings
Traditional neural word embedding models transform the
word representation problem into a word prediction task [Col-
lobert and Weston, 2008; Mikolov et al., 2013a; 2013c].
However, most of word representation techniques rely on lin-
ear BoW contexts. Recently, [Levy and Goldberg, 2014] first
propose a dependency-based word embedding model, which
captures the dependency-based word syntactic contexts in-
stead. Sequentially, linear BoW contexts and dependency
paths are integrated in [Yin et al., 2016] for aspect term ex-
traction. On the other hand, for the bilingual word represen-
tation problem, syntactic dependencies can provide more im-
portant clues due to different word orders across languages.
In this paper, we incorporate syntactic structures in the paral-
lel corpus to better encode the semantic and syntactic infor-
mation in bilingual word embeddings.

2.2 Bilingual Word Embeddings
Existing methods of bilingual word representations can be
grouped into three categories: monolingual mapping, mono-
lingual adaption and cross-lingual training.

In monolingual mapping, word embeddings are first
trained on each monolingual corpora independently [Mikolov
et al., 2013c], and then a transformation matrix is learned
which maps word representations from one language to an-
other language. Among them, [Mikolov et al., 2013b] uti-
lize a set of meaning-equivalent pairs to learn the linear map-
ping; while canonical correlation analysis (CCA) is employed
in [Faruqui and Dyer, 2014] to project words from two lan-
guages to a shared bilingual embedding space. On the other
hand, monolingual adaption jointly optimizes the monolin-
gual objectives of each language, with a cross-lingual objec-
tive to enforce the bilingual constraint [Zou et al., 2013].

Unlike the schemes above which fix representations on ei-
ther one or both languages, cross-lingual training learns bilin-
gual word embeddings from a parallel corpus by optimizing
a cross-lingual objective that encourages embeddings of sim-
ilar words from different languages to be close to each other
in a common vector space. Representatives include the meth-
ods that train cross-lingual word embeddings using a bilin-
gual dictionary with pairs of translations between words in
different languages. Alternatively, supervised information
of sentence-level alignments can be introduced instead of
word-level alignments [AP et al., 2014; Gouws et al., 2015;
Shi et al., 2015]. Word-level and sentence-level alignments
can be further combined. As an example, a multi-task learn-
ing framework is proposed in [Klementiev et al., 2012]; while
in BiSkip [Luong et al., 2015], the skip-gram model [Mikolov
et al., 2013c] is extended to bilingual scenarios where sepa-
rate contexts of aligned word pairs are jointly predicted.
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3 Bilingual Word Embeddings with Syntactic
Dependencies

We consider the task of learning bilingual word representa-
tions from two languages l1 and l2. Specifically, the goal
is to learn word embedding matrices of the vocabularies in
two languages, and the training data consists of two mono-
lingual corpus and a parallel corpus with word alignments.
Let W li (i = 1, 2) be the vocabulary of language li and
Wli ∈ R|W li |×d be the corresponding word embedding ma-
trix, where d is dimensionality of the word embedding vec-
tor. We further denote the vocabulary of contexts in language
li as Cli , with the corresponding context embedding matrix
Cli ∈ R|Cli |×d. The embedding vectors of a word w and a
context c are represented by w and c respectively.

To enhance the quality of bilingual word embeddings
across different languages, we leverage a general objective
which consists of the monolingual components from each
language, as well as the cross-lingual component. The joint
objective can be formulated as:

L = α(Ll1
mono + Ll2

mono) + βLcross, (1)

where Ll1
mono and Ll2

mono denote the monolingual objectives
derived from the languages l1 and l2 respectively, while
Lcross corresponds to the cross-lingual objective which is
used to map the two monolingual word embeddings across
languages into a common vector space. α and β are hyper-
parameters that balance the importance of the monolingual
terms and the cross-lingual term.

3.1 Dependency-based Monolingual Objectives
Due to different syntactic structures across different lan-
guages, syntactic dependencies can provide more important
clues when designing the monolingual objectives in the task
of mapping two vocabularies into a shared semantic space. To
formulate the monolingual objective for each language, we
follow the paradigm of [Levy and Goldberg, 2014], which
generalizes the skip-gram principle [Mikolov et al., 2013c]
by extending from BoW contexts to dependency contexts.

Formally, for each language, after parsing a given sentence
s = {w1, w2, . . . , w|s|}, we derive the corresponding DEP
contexts. Specifically, for a target word wi with modifiers
m1,m2, ...,mk and a head h, we construct the DEP contexts
in the form of (m1, dr1), ..., (mk, drk), (h, dr−1h ), where dr
denotes the type of dependency relation (e.g. amod, nsubj or
root) between the head and the modifier, while dr−1 is the
inverse relation. For example, in Figure 1, the dependency
relation between we and review is nsubj. After deriving the
DEP contexts, we consider a word-context pair (w, c) where
c is the DEP context of w and utilize the target word w to
predict its DEP context. The dependency-based monolingual
objective function for language li can be defined as:

Lli
mono =

∑
(w,c)∈Dli

m

Lli
w,c (2)

Lli
w,c = − log σ(w>c)−

∑
(w,c′)∈NEG(w,c)

log σ(−w>c′)(3)

where w ∈ Rd and c ∈ Rd denote the vector representations
of the target word w and DEP context c respectively. Dli

m is

the set of dependency-based word-context pairs in language
li, NEG(w, c) is a set of negative sampled word-context pairs
for (w, c), and σ is the sigmoid function: σ(x) = 1

1+e−x .

3.2 Dependency-based Cross-lingual Objectives
We proceed to the cross-lingual objective in this subsec-
tion. The fundamental principle here is that similar words
from different languages should have similar embeddings. To
achieve that, the dependency-based cross-lingual objective is
designed to pull the two monolingual word embeddings into
a common vector space by enforcing the words with simi-
lar dependency-based cross-lingual contexts across languages
to be projected into similar embeddings. In addition, we
propose a regularization term as another cross-lingual objec-
tive to minimize the distance between similar dependency-
phrases in the phrase-level semantic space.

Dependency-based cross-lingual contexts
For the first cross-lingual objective, we generalize the mono-
lingual distributional hypothesis of word embeddings to the
bilingual setting, i.e., the words with similar contexts across
languages have similar semantic meanings.

Based on the DEP contexts, it is natural to further define
the dependency-based cross-lingual contexts which capture
more similar contexts of aligned words in the parallel sen-
tence pairs. Concretely, we formulate the dependency-based
objective in the bilingual setting with cross-lingual prediction
tasks from l1 to l2 and from l2 to l1 which is similar to the
dependency-based monolingual objectives.

For a parallel sentence pair (sl1 , sl2) with word alignments
and the dependency parse-tree pair as illustrated in Figure 1-
Top, given an alignment link between a word wl1

i in language
l1 and a word wl2

j in language l2, we define the dependency-
based cross-lingual contexts of wl1

i as the DEP contexts of
wl2

j in sl2 and vice versa. As a comparison to the BoW-
based paradigm where the contexts of aligned words may ap-
pear at different positions in the parallel sentence pair, the
dependency parse-tree pairs enable the contexts of aligned
words to be also aligned across languages despite of different
positions. For example, as shown in Figure 1-Bottom, the
BoW cross-lingual contexts of aligned words we (wir) con-
tain a similar context wiederholen (review), but the word will
does not correspond to Wörter or morgen; meanwhile, the
dependency-based cross-lingual contexts of aligned words
we (wir) are the same, which are wiederholen (review). Fur-
thermore, syntactic dependencies are both more inclusive
and more focused than BoW [Levy and Goldberg, 2014],
as a dependency-based model can filter out some contexts
which are within windows but not directly related to the target
words.

Based on the dependency-based cross-lingual contexts and
monolingual objectives formulated in Equation (2), we de-
fine a joint learning objective with the cross-lingual training
principle as follows,

L = α
∑

(w,c)∈Dm

Lw,c + β
∑

(w,c)∈Dbi

Lw,c (4)

where Dm is a union set of co-occurring dependency-based
word-context pairs in two languages: Dm = Dl1

m ∪ Dl2
m,
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and Dbi is the set of pairs of words and the corresponding
dependency-based cross-lingual contexts. Lw,c is defined in
Equation (3). Bilingual word embeddings can be learned
by optimizing the dependency-based joint learning objective
above, and the algorithm is called DepBiWE.

Cross-lingual phrase-level regularization
We can further augment the DepBiWE model and enhance
the quality of cross-lingual embeddings by making full use
of word alignment information in the parallel corpus with a
cross-lingual regularization in terms of phrase-level semantic
similarities.

In the dependency parse-tree of the parallel sentence pairs,
we define the dependency-phrase p as a word pair (w,wdr−1),
where wdr−1 is the head of w and dr−1 denotes their inverse
dependency relation. The representation of a dependency-
phrase p can be represented as the sum of two word vec-
tors, i.e., p = w + wdr−1 . By incorporating the phrase-
level semantic information, we encourage the representations
of similar dependency-phrases to be close, as we can derive
the aligned dependency-phrases from the aligned words in
the parallel sentence pairs. For example, (review, word) and
(wiederholen, Wörter) in Figure 1 are aligned as dependency-
phrases. The more dependency-phrase pairs are identified in
the parallel corpus, the closer the embeddings for the two
dependency-phrases will be pushed together. By minimizing
the distance between aligned dependency-phrases, the auxil-
iary cross-lingual regularization term can be written as:

LR = γR
∑

(p
l1
i ,p

l2
j )∈Dp

||pl1
i − pl2

j ||
2, (5)

where Dp is a set of aligned dependency-phrase pairs ex-
tracted from the parallel corpus. The regularization term is
combined with the joint objective in Equation (4) to learn
bilingual word embeddings (DepBiWE+R), where γR is a
tradeoff parameter to control the contribution of the phrase-
level regularization term.

3.3 Integration of Semantic Spaces
Dependency parse-trees can be regarded as the supervised
information from corpus which is valuable yet expensive to
obtain, and only applies to small-scale data. This prohibits
the dependency-based bilingual word embedding model from
being applied to large-scale corpus. On the other hand, the
quality of the parsers affects the performance of dependency-
based embedding methods. Fortunately, the BoW-based em-
beddings learned from large-scale monolingual corpus can
be incorporated as unsupervised information without parsers,
which can be combined with the supervised dependency-
based embeddings via joint learning and make the bilingual
word embedding model more robust to parsing error.

Specifically, the dependency-based bilingual embedding
matrix Ws learned with supervised dependency parse-tree in-
formation and the BoW-based monolingual embedding ma-
trix Wu learned from large-scale unsupervised data represent
two different semantic vector spaces respectively. To inte-
grate the two different semantic spaces for the better word
representations, we propose a joint learning scheme to en-
courage the model to learn similar representations in both Ws

l1-l2 #S #l1-W #l2-W #l1-V #l2-V
en-de 1.9M 55M 52M 40k 50k
en-fr 2.0M 50M 51M 40k 50k
en-es 1.9M 49M 51M 40k 50k

Table 1: The size of the parallel corpus of three language pairs after
preprocessing the data. #S denotes the number of sentence pairs,
and #li-W represents the number of tokens of the parallel corpus in
language li, while #li-V is the vocabulary size.

and Wu. Two corresponding context matrices Cs and Cu are
learned simultaneously by optimizing the joint objective,

LC = (Lwu,cu + Lws,cs) + γC(Lwu,cs + Lws,cu) (6)

where wu and ws denote two different representations of
the same target word w, while cu and cs correspond to the
BoW context and the DEP context of the target word respec-
tively. Lwu,cu and Lws,cs are the loss functions correspond-
ing to BoW-based and dependency-based bilingual embed-
ding learning respectively, while Lwu,cs and Lws,cu are the
loss functions integrating the supervised dependency-based
embeddings and the BoW-based embeddings learned from
large-scale monolingual corpus, which encourage the model
to learn similar representations in both Ws and Wu. γC is a
tradeoff parameter of the integrated model DepBoW.

4 Experiments
4.1 Data and Setup
We train our dependency-based bilingual models for
the English-German (en-de), English-French (en-fr) and
English-Spanish (en-es) language pairs on the Europarl v7
parallel corpus1 [Koehn, 2005]. To preprocess the dataset, we
lowercase and tokenize all words and select the top words ac-
cording to their term frequencies in the training corpus. The
words with low frequencies for all languages are mapped to
<unk>. The statistics of the parallel corpus for all language
pairs are summarized in Table 1.

In our experiments, the Europarl corpus is used for both
monolingual training and bilingual training. Parameters
for bilingual embedding learning are set as suggested in
BiSkip [Luong et al., 2015] and fixed for all experiments. The
subsampling rate, negative sampling size are set to 1e-4 and
30 respectively; the default learning rate of Stochastic Gra-
dient Decent (SGD) is set to 0.025 and gradually decreases
to 2.5e-6 when training is finished. The dimensionality of all
embedding vectors d is set to 200, and experiments are run
for 10 epochs. We set the monolingual weight α and bilin-
gual weight β in Equation (4) to 1.0 and 4.0 respectively, with
the regularization weight γR =0.1. Word alignments are ob-
tained with FastAlign [Dyer et al., 2013], and a python library
spaCy2 is employed to produce the dependency parse-trees
for all languages in the parallel corpus for the dependency-
based models.

We compare our proposed bilingual word embedding
models based on syntactic dependencies with baselines in-
cluding SGNS [Mikolov et al., 2013c] and DepWE [Levy

1http://www.statmt.org/europarl/
2https://spacy.io/docs/usage/dependency-parse

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4520



Models Monolingual Word Similarity CLWS CLDI
SemLex RW SCWS semeval2017 Accuracy MRR

SGNS 31.7 42.2 49.2 - - -
DepWE 33.8 41.9 49.5 - - -

CLC-WA 22.5 27.2 36.0 35.3 64.9 52.6
CLC+WA 23.5 25.6 35.2 33.8 62.7 51.8

BiSkip (MA) 33.6 48.1 47.6 55.3 79.9 64.0
BiSkip (UA) 32.8 47.5 46.9 53.1 78.8 63.7

DepBiWE (MA) 36.9 46.0 52.8 52.7 79.7 64.8
DepBiWE 37.4 47.1 53.4 56.4 81.9 65.8

DepBiWE+R 38.0 48.9 52.3 60.4 82.7 65.7

Table 2: The results of various models on both the monolingual (monolingual word similarity) and cross-lingual (cross-lingual word similarity
and cross-lingual dictionary induction) evaluation tasks on language pair en-de. DepBiWE (MA), DepBiWE and DepBiWE+R are our
proposed methods. The best performance for each dataset and evaluation task is in bold.

and Goldberg, 2014] for monolingual word embeddings, as
well as four cross-lingual word embedding models: cross-
lingual matrix co-factorization without (CLC-WA) and with
word alignments (CLC+WA) [Shi et al., 2015]; the bilin-
gual skip-gram model exploiting unsupervised word align-
ments (BiSkip (UA)) or assuming monotonic word align-
ments (BiSkip (MA)) [Luong et al., 2015]. Notice that both
CLC+WA and BiSkip (UA) employ word alignments gener-
ated by the FastAlign [Dyer et al., 2013] software which is
the same to our models, while DepBiWE (MA) resembles
BiSkip (MA) by assuming monotonic word alignments. All
algorithms are trained on the Europarl corpus, and we fix the
window size to 5 for all the BoW-based methods.

4.2 Evaluation
We evaluate the quality of the induced cross-lingual word
embeddings in this section. First, we measure the perfor-
mance of the learned embeddings monolingually in terms of
word similarities in a single language on standard similarity
datasets. Next, we evaluate the similarity of nearby pairs of
words from two languages in the embedding space on the
tasks of cross-lingual word similarity and cross-lingual dic-
tionary induction. We further demonstrate the effectiveness
of the proposed models by feeding the learned embeddings to
a practical NLP task of cross-lingual document classification.

Monolingual word similarity
We start with evaluating the semantic quality of the learned
embeddings in terms of monolingual word similarity [Ia-
cobacci et al., 2015] on the following three datasets: Sem-
Lex (999 pairs), RareWord (RW) (2034 pairs), SCWS (1762
pairs). Each dataset contains tuples in the form of (w1, w2, s),
where s denotes the semantic similarity score between w1

and w2 rated by humans. The evaluation is based on Spear-
man’s rank correlation coefficient between semantic similar-
ity scores and cosine similarity scores given by the word rep-
resentations.

Table 2 shows the performance of the proposed mod-
els compared to various cross-lingual embedding baselines
in terms of monolingual word similarity. We also com-
pare our methods with monolingual embedding models
SGNS [Mikolov et al., 2013c] and DepWE [Levy and Gold-
berg, 2014] trained on the English corpus from the lan-

guage pair en-de. From Table 2 one can observe that,
on the three monolingual word similarity datasets, the pro-
posed DepBiWE models achieve a better monolingual per-
formance by bilingual training with more corpus from an-
other language. In addition, the DepBiWE models outper-
form the bilingual baselines, which justifies the quality of
the embeddings learned by DepBiWE. By adding a cross-
lingual phrase-level regularization, DepBiWE+R effectively
improves the quality of monolingual word representations
for English. Also notice that the bilingual word embedding
baselines with word alignments CLC+WA and BiSkip (UA)
achieve little improvement compared with models without
word alignments in terms of the monolingual performance,
which implies the information of word alignment is not ef-
fectively exploited in these models.

Cross-lingual performance
We proceed to evaluate the cross-lingual performance of the
dependency-based DepBiWE models with tasks of cross-
lingual word similarity (CLWS) and cross-lingual dictionary
induction (CLDI).

For the cross-lingual word similarity task, each word pair
consists of two words from different languages, which is sim-
ilar to the monolingual word similarity task, and we employ
a cross-lingual word similarity dataset3 (semeval2017 with
914 pairs) of the en-de language pair proposed by [Camacho-
Collados et al., 2015]. The task of cross-lingual dictionary
induction [Upadhyay et al., 2016] evaluates the quality of
cross-lingual word embeddings by detecting word pairs from
two languages that are semantically similar. We use simi-
lar settings as in [Upadhyay et al., 2016], and generate the
gold dictionary using the Open Multilingual WordNet data
released by [Bond and Foster, 2013], which includes synset
alignments across 26 languages. We delete words from each
synset with frequency less than 1000 in the vocabulary for
each language. In this way, a gold dictionary of 1340 word
pairs is generated from the aligned synsets for the en-de lan-
guage pair. Given the entries (wl1 , wl2) in the gold dictio-
nary, where wl1 and wl2 are the lemmas and have the same
meaning, we calculate the accuracy that wl2 appears in the
top-10 words which are nearest to wl1 in the semantic space.

3http://alt.qcri.org/semeval2017/task2/index.php?id=task-details
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Models Data en→de de→en
MT baseline Europarl 68.1 67.4

Majority class - 46.8 46.8
Klementiev et al. Europarl+RCV 77.6 71.1

BiCVM Europarl 83.7 71.4
BilBOWA Europarl+RCV 86.5 75.0

BiSkip (256d) Europarl 88.4 80.3
CLC+WA Europarl+RCV 90.0 75.0
DepBiWE Europarl 85.8 74.7

DepBiWE+R Europarl 90.8 79.2

Table 3: Accuracy of cross-lingual document classification (in per-
cent) on language pair en-de. Data denotes the corpus used for train-
ing bilingual word embedding models. The proposed models Dep-
BiWE and DepBiWE+R are compared to baselines. The best scores
are in bold.

We also evaluate the quality of cross-lingual embeddings by
mean reciprocal rank (MRR).

The results of various algorithms on the CLWS and CLDI
evaluation tasks on the language pair en-de are summarized
in Table 2, where one can observe that the dependency-based
DepBiWE models achieve superior scores compared with
prior works including CLC-WA, CLC+WA and BiSkip (with
alignments or without alignments). As a comparison, the
difference of word orders in parallel sentences degrades the
performance of CLC+WA and BiSkip with word alignments,
while the DepBiWE models capture more similar contexts
satisfying the distributional hypothesis in the bilingual set-
ting.

Compared to DepBiWE (MA), DepBiWE achieves better
results, which indicates the information of word alignment
is effectively exploited. The cross-lingual performance of
the proposed methodology is further improved in the regular-
ized model DepBiWE+R, which justifies the regularization
that two similar dependency-phrases in different languages
are close to each other in the embedding space.

Cross-lingual document classification
In this section, the quality of the learned cross-lingual em-
beddings are evaluated via the cross-lingual document classi-
fication (CLDC) task on the language pair en-de which tests
the semantic transfer of information across languages as in-
troduced in [Klementiev et al., 2012]. In the CLDC task, for
the language pair (l1, l2), a classifier is trained using labeled
documents in language l1 and then applied to classify docu-
ments in language l2, and vice-versa. A document is repre-
sented as an idf weighted sum of the embedding vectors of all
its tokens, while idf weights of words are computed using all
documents from that language in RCV1/RCV2. The training
and test data are sourced from the Reuters RCV1/RCV2 mul-
tilingual corpus [Lewis et al., 2004] and are assigned to only
one of four topics: CCAT (Corporate/Industrial), ECAT (Eco-
nomics), GCAT (Government/Social), and MCAT (Markets).
For the classification experiments, 15,000 documents for each
language are selected randomly from the RCV1/RCV2 cor-
pus, in which 5,000 documents are used as the test data and
a subset with varying sizes between 100 and 10,000 of the
remainder serves as the training data. Meanwhile, we keep

1,000 documents as the development set for hyper-parameter
tuning. A multi-class document classifier is trained for 10
epochs with an averaged perceptron algorithm [Klementiev
et al., 2012], and we use the accuracy to evaluate the perfor-
mance of the knowledge transfer.

Table 3 summarizes the results of various algorithms
on the CLDC task. Among the baselines, MT trans-
lates the target documents into the source language using
a statistical machine translation (SMT) system. Majority
Class is a system where test documents are simply clas-
sified into the class with the most training samples. We
also compare our dependency-based models to the state-of-
the-art bilingual word embedding methods including [Kle-
mentiev et al., 2012], BiCVM [Hermann and Blunsom,
2014], BilBOWA [Gouws et al., 2015], bilingual skip-gram
(BiSkip) [Luong et al., 2015] and a matrix co-factorization
framework with word alignments (CLC+WA) [Shi et al.,
2015]. As shown in Table 3, the DepBiWE models achieve
competitive performance compared with the state-of-the-art.
In the meantime, the regularization term further improves the
accuracy in DepBiWE+R, which achieves the best perfor-
mance (90.8%) in en→de while the model is only trained on
the Europarl corpus.

4.3 Influence of Word Order
To verify the effectiveness of the dependency-based model on
the language pairs with different grammatical structures, we
evaluate the BiSkip (UA) and DepBiWE+R models on two
additional language pairs (en-fr and en-es) with similar pa-
rameter setup as used in Section 4.1. To achieve that, we
quantify the difference in word order of three language pairs
(en-de, en-fr and en-es) and compare the performance of the
BoW-based method and the dependency-based method with
various evaluation tasks on them. The results of the mono-
lingual word similarity and CLDI tasks are shown in Table 4.
Notice that in the CLDI task, the gold dictionaries for en-fr
and en-es are generated similarly to that of en-de, the sizes of
which are 616 for en-fr and 1394 for en-es respectively. The
difference in word order is quantified by computing the prob-
ability of alignment of word’s BoW context in the parallel
corpus, and is summarized in the first column of Table 4.

From Table 4, it can be shown that with increasing gram-
matical difference in a language pair, the performance of both
methods on various tasks degrades in general, which is not
surprising. Further, by comparing the average improvement
of our model over the BoW-based method for each evalu-
ation task on three language pairs in Table 4, one can ob-
serve that the more difference there exists in a language pair,
the greater improvement the proposed model achieves. This
justifies the advantage of exploiting different syntactic struc-
tures across different languages when learning bilingual word
embeddings, which is more evident for language pairs with
greater grammatical difference.

4.4 Efficacy of Integrating Semantic Spaces
Here we investigate the results of joint embedding learning by
integrating supervised dependency-based embeddings with
unsupervised BoW-based embeddings on the language pair
en-de. For supervised dependency-based embeddings, we
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l1-l2 (Difference) Models Monolingual Word Similarity CLDI AvgImprovementSemLex RW SCWS Accuracy MRR

en-de (59.8%) BiSkip (UA) 32.8 47.5 46.9 78.8 63.7 3.58 ↑DepBiWE+R 38.0 48.9 52.3 82.7 65.7

en-fr (63.2%) BiSkip (UA) 34.1 48.5 48.5 81.6 68.2 2.46 ↑DepBiWE+R 36.4 51.4 51.3 83.6 70.7

en-es (67.8%) BiSkip (UA) 33.1 45.4 48.7 75.9 62.3 2.06 ↑DepBiWE+R 35.9 47.2 50.6 78.5 63.5

Table 4: The performance of various evaluation tasks on three language pairs. AvgImprovement represents the average improvement of the
DepBiWE+R over the BiSkip (UA) across all evaluation tasks.

Models CLWS CLDI en→de de→en

DepBiWE 56.4 81.9 85.8 74.7
DepBiWE+WV 40.8 63.7 64.5 43.5
DepBoW (Wu) 50.4 79.4 86.2 75.2
DepBoW (Ws) 59.8 82.5 87.3 78.6

DepBoW (Wu + Ws) 60.3 82.2 91.4 77.8

Table 5: Performance on the tasks of CLWS, top-10 accuracy in
CLDI and CLDC with different word representations learned in the
integration model DepBoW and our fundamental model DepBiWE.
The best scores are in bold.

use the Europarl corpus with dependency parse-trees, while
BoW vectors are trained on the Europarl corpus for unsu-
pervised BoW-based embeddings, utilizing pre-trained word
vectors which are learned from the large-scale Wikipedia cor-
pus [Raganato et al., 2016] from two languages indepen-
dently. In our experiments, we fine-tune the BoW-based em-
bedding vectors with a learning rate of 2.5e-5, and γC in
Equation (6) is set to 0.3.

Table 5 shows the results of various algorithms on three
cross-lingual evaluation tasks. In the comparison, DepBiWE
is the fundamental model based only on dependencies; Dep-
BiWE+WV incorporates the dependency-based bilingual em-
beddings and the pre-trained BoW word vectors, which are
learned independently, simply by summing them up; Dep-
BoW (Wu) and DepBoW (Ws) represent the semantic spaces
encoded by the matrices Wu and Ws respectively, which are
learned from the integration model in Equation (6), and Dep-
Bow (Wu + Ws) integrates the two embedding matrices by
summing them up. As can be observed, compared with Dep-
BiWE, DepBoW (Ws) and DepBoW (Wu + Ws) achieve
superior results when the dependency-based and BoW-based
semantic spaces are integrated, which justifies that the inte-
gration of different semantic spaces can effectively exploit
monolingual word vectors to improve the quality of bilingual
word embeddings.

5 Conclusion
In this paper, we propose a bilingual word embedding frame-
work by exploiting syntactic dependencies (DepBiWE). We
consider different syntactic structures across different lan-
guages by building dependency parse-trees to capture the syn-
tactic contexts of aligned words in parallel sentences. We fur-
ther introduce a regularization term based on the phrase-level
semantic similarities. In addition, considering that build-

ing dependency parse-trees can be expensive on large-scale
corpus, we propose a cross learning method to integrate the
dependency-based embeddings with BoW-based embeddings
learned from large-scale monolingual corpus. Extensive ex-
periments are conducted to validate the superiority of the pro-
posed framework over the state-of-the-art on various natural
language processing tasks.
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