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Abstract

Recent advances in the field of network embedding
have shown that low-dimensional network repre-
sentation is playing a critical role in network anal-
ysis. Most existing network embedding methods
encode the local proximity of a node, such as the
first- and second-order proximities. While being
efficient, these methods are short of leveraging the
global structural information between nodes distant
from each other. In addition, most existing meth-
ods learn embeddings on one single fixed network,
and thus cannot be generalized to unseen nodes
or networks without retraining. In this paper we
present SPINE, a method that can jointly capture
the local proximity and proximities at any distance,
while being inductive to efficiently deal with un-
seen nodes or networks. Extensive experimental
results on benchmark datasets demonstrate the su-
periority of the proposed framework over the state
of the art.

1 Introduction
Network embedding has been successfully applied in a wide
variety of network-based machine learning tasks, such as
node classification, link prediction, and community detec-
tion, etc [Cai et al., 2017; Kipf and Welling, 2016]. Different
to the primitive network representation, which suffers from
overwhelming high dimensionality and sparsity, network em-
bedding aims to learn low-dimensional continuous latent rep-
resentations of nodes on a network while preserving the struc-
ture and the inherent properties of the network, which can
then be exploited effectively in downstream tasks.

Most existing network embedding methods approximate
local proximities via random walks or specific objective func-
tions, followed by various machine learning algorithms with
specific objective functions to learn embeddings [Perozzi et
al., 2014; Grover and Leskovec, 2016]. Specifically, the local
proximity of a node is approximated with the routine of learn-
ing the embedding vector of a node by predicting its neigh-
borhood, inspired by the word embedding principle [Mikolov
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Figure 1: An example of structural identities in the information dif-
fusion process. Red arrows indicate information diffusions between
nodes (e.g., retweeting in Twitter), and nodes in the same circle are
in the same community.

et al., 2013a; Mikolov et al., 2013b] which learns the embed-
ding vector of a word by predicting its context.

However, there still exist some potential issues that need
further concerns. On the one hand, local proximity preserved
methods generally do not model nodes far from each other
in practice. Meanwhile, in real-world network mining tasks,
nodes that are far apart but close in structural identity, or
in other words, take similar roles, should perform similarly
on specific tasks. Figure 1 shows an example of how nodes
with different roles perform in the information diffusion pro-
cesses on social networks. Nodes with different colors in-
dicate different roles in social networks, i.e., structural hole
spanners (red nodes), opinion leaders (yellow nodes) and or-
dinary users (blue nodes) respectively [Lou and Tang, 2013;
Yang et al., 2015b]. Intuitively, nodes with same roles be-
have similarly even with a large distance (yellow nodes in
Figure 1), which is the property that should be preserved in
the embedding space. In the meantime, the local proximity of
a node is also crucial in network embedding. For example in
Figure 1, nodes in the same community should be clustered
tightly in the embedding space. Therefore, a desirable net-
work embedding method should preserve the local proximity
and the global structural identity of a node simultaneously
to represent the node precisely. Unfortunately, most existing
methods fail to consider the local and global structural infor-
mation at the same time. In principle, it is challenging to
interactively integrate the two kinds of information to obtain
comprehensive embeddings rather than a trivial linear combi-
nation.

On the other hand, most existing network embedding ap-
proaches are transductive. To be specific, embeddings are
learned on a fixed network, and cannot be directly applied
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to new joined nodes or other networks. In contrast, induc-
tive methods which are able to generalize to unseen nodes or
totally new networks are extensively required in real-world
applications, e.g., social recommendation for new users, clas-
sification of protein functions in various protein-protein inter-
action graphs, etc. Unfortunately, traditional network embed-
ding principles such as random walk and matrix factorization
are impracticable for unseen nodes or networks, which makes
inductive network embedding much more challenging than
transductive problems.

In this paper, we propose SPINE, an inductive network
embedding framework which jointly preserves local proximi-
ties and structural identities of nodes. We show that structural
similarities between node pairs can be represented by a high-
order proximity of the network known as Rooted PageRank
(RPR) [Liben-Nowell and Kleinberg, 2007], and by assign-
ing each node a structural feature vector based on RPR, we
can encode structural proximities between nodes by measur-
ing the similarities of their structural features. To construct
an inductive framework, we learn an embedding generator
rather than directly optimizing a unique embedding for each
node, through which local proximities are integrated. To fur-
ther encode structural identities, we propose a biased Skip-
Gram Negative Sampling (SGNS) approach with a novel pos-
itive sampling strategy guided by structural similarities be-
tween nodes. Furthermore, the objective function of SPINE is
carefully designed to enhance the structural information con-
tained in the embedding generator.

2 SPINE
In this section, we propose Structural Identity Preserved In-
ductive Network Embedding (SPINE), a novel inductive ap-
proach for unsupervised network embedding, which consists
of three components: structural feature generation, embed-
ding generation and biased SGNS optimization.

Problem Definition: Given an undirected network G =
{V,E,F }, in which a set of nodes V are connected by a
set of edges E, and F ∈ R|V |×f is the content matrix of
nodes. The adjacency matrix is A where Ai,j = wi,j is the
edge weight between node vi and vj , and we denote the cor-
responding transition matrix as P , where Pi,j =

wi,j∑|V |
k=1 wi,k

represents the transition probability between node vi and vj .
Our goal is to learn E ∈ R|V |×d, where d is a small number
of latent dimensions. These low-dimensional representations
should well preserve the structural properties of G, includ-
ing local proximities and structural identities, which can be
evaluated with downstream tasks such as node classification.

2.1 Rooted PageRank and Structural Identity
We start with theoretical preliminaries of our structural fea-
ture generation algorithm. Here we introduce a well-known
high-order proximity of a network named Rooted PageR-
ank (RPR) [Liben-Nowell and Kleinberg, 2007], defined as
SRPR = (1 − βRPR)(I − βRPRP )−1, where βRPR ∈ (0, 1)
is the probability of the current node randomly walking to
a neighbor rather than jumping back to the start node. The
(i, j)-th entry of SRPR is the probability that a random walk
from node vi will stop at vj in the steady state, which can be

used as an indicator of the node-to-node proximity. There-
fore, we can use the i-th row of SRPR, denoted as SRPR

i , to
represent the global structural information of node vi. We
can further rewrite SRPR

i in a recursive manner as:

SRPR
i = βRPRPS

RPR
i + (1− βRPR)gi (1)

where gi is the index vector of node vi whose i-th element is
1 while others are 0.

Next, we are going to verify that SRPR
i is able to represent

the structural identity of node vi. We first define the complete
structural property [Batagelj et al., 1992] of a node as:
Definition 1. A node property t : V → R is complete struc-
tural if for any automorphism ϕ of every node vi ∈ V , it
always satisfies:

t(vi) = t(ϕ(vi))

Examples of complete structural properties include t(vi) =
degree of node vi, t(vi) = number of nodes at distance
k from vi (k-hop neighbors), t(vi) = the centrality of vi,
etc. [Batagelj et al., 1992].

Then the following theorem can be directly derived
from [Batagelj et al., 1992]:
Theorem 1. Given a structural description of node vi defined
by a set of complete structural node properties as:

Ti = [t1(vi), t2(vi), · · · , tn(vi)]
where Ti is an n dimensional vector, and n > 0 is the number
of chosen properties. Let d(·, ·) denote standard dissimilar-
ities between vectors, and vi ≡ vj indicate node vi and vj
have equal structural identity, then for ∀vi, vj ∈ V :

vi ≡ vj ⇐⇒ d(Ti,Tj) = 0

From Theorem 1, we can conclude that the structural iden-
tities between nodes can be measured through properly de-
signed structural vectors. Next we are going to show that
SRPR
i actually represents a complete structural property.
Following the examples in Definition 1, the centrality of vi

can be regarded as a complete node property of vi. There are
multiple ways to measure the centrality of a node, while the
original PageRank [Brin and Page, 2012] is exactly a vari-
ant of eigenvector centrality. At each iteration, the PageRank
value πi of node vi is updated as in [Langville and Meyer,
2011]:

πT
i = πT

i M ,

andM is the Google matrix defined as:

M = βP + (1− β)gi1
T (2)

where gi = ( 1
|V | , · · · ,

1
|V | )|V | and 1 = (1, · · · , 1)|V |. Ac-

cording to Equation (1), as a variant of PageRank, the only
difference between SRPR

i and the original PageRank is the
choice of gi. Therefore, the target matrix of Rooted PageR-
ank can be written as:

MRPR
i = βRPRP + (1− βRPR)I (3)

where I is the identity matrix. Thus SRPR
i is the leading left

hand eigenvector of MRPR
i , i.e., SRPR

i satisfies: (SRPR
i )T =

(SRPR
i )TMRPR

i . As a consequence, SRPR
i is also a variant of

eigenvector centrality, thus can be further regarded as a com-
plete structural property to represent the structural identity of
vi, i.e., Ti = S

RPR
i .
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Algorithm 1 Rooted random walk sampling

Input: the graph G, the present node vi, the continuation
probability βRPR ∈ (0, 1), hyper-parameters k, m, l

Output: the structural feature vector Ti of vi
1: Initialize a counter Ci ∈ R|V |
2: repeat
3: Ps = RootedRandomWalk(G, vi, l, βRPR)
4: for vj in Ps do
5: Ci[j]← Ci[j] + 1
6: end for
7: until m times
8: Ci ← Sort Ci in a descending order
9: Ti ← The first k elements of Ci

10: return Ti ← Ti/sum(Ti)

2.2 Structural Feature Generation
In this section we first state our motivation of choosing SRPR

i
as the structural identity instead of others, based on which the
structural feature generation method is introduced.

To construct an inductive method, we expect the length of
the structural description of a node is independent of the total
number of nodes |V | and fixed at k. In this paper, we use
the top k values of SRPR

i as the structural description of vi.
Compared with other high-order proximities or node proper-
ties (e.g., the original PageRank), RPR captures the global
structural information of the network, while being tailored
to encode the local structural information of root nodes ac-
cording to the definition, and thus can better represent the
importance of neighbors at various distances to the present
node [Haveliwala, 2002]. Moreover, it has been theoretically
and empirically proven [Litvak et al., 2007] that in a network
with power-law degrees, the RPR values also follow a power-
law distribution. Therefore, the largest k RPR values are able
to represent the structural information of a node with a suit-
ably chosen k.

When calculating SRPR
i , considering the inductive prereq-

uisite, the transition matrix P which encodes the structure of
the network may be unavailable. Alternatively, we approxi-
mateSRPR

i from the local structure around vi through a Monte
Carlo approximation. The complete procedure is summarized
in Algorithm 1, where m and l indicate the number of repeats
and the length per random walk respectively, and k controls
the length of the structural feature vector. The largest k values
of SRPR

i are taken as the structural description of vi, denoted
as Ti in the rest of this paper.

2.3 Embedding Generation
To construct an inductive network embedding framework, we
generate embeddings instead of directly optimizing the em-
bedding matrix, through which the structural information and
the content information of networks can be jointly incorpo-
rated.

As stated above, the k values in Ti indicate k largest struc-
tural proximities between vi and nodes co-occurring with vi
in rooted random walks. We denote the content matrix of the
corresponding k nodes as F k

i ∈ Rk×f , which is constructed
row by row according to the same order of RPR values in

Ti. Given the structural features Ti and node content F k
i , we

propose an embedding generation method for vi.
Specifically, we first employ a multilayer percep-

tron (MLP) to map nodes from the content space to the em-
bedding space, then compute a linear combination of the k
vectors with respect to the corresponding weights in Ti. For-
mally, denote the dimensionality of embeddings as d, the
weight matrix of the MLP is WM ∈ Rf×d, then the embed-
ding generation process can be written as:

ei = σ(

k∑
j=1

Ti,jF
k
i,jWM), (4)

where F k
i,j ∈ Rf is the j-th row of F k

i , σ is the non-linear
activation function, and ei ∈ Rd is the embedding vector of
node vi.

2.4 Biased SGNS
The Skip-Gram Negative Sampling (SGNS) model is widely
used in representation learning, which is based on the princi-
ple of learning the embedding vector of a word/node by pre-
dicting its neighbors. More formally, given an embedding
vector ei, SGNS is minimizing the objective function as:

J(ei | ep) = −log(σ(eT
i ep))−K · Evn∼Pn(vp)log(σ(−eT

i en)),
(5)

where σ(·) is the sigmoid function and K controls the neg-
ative sampling number. vp and vn are positive and negative
nodes of vi respectively, while ep and en are the correspond-
ing embedding vectors. Technically, negative nodes are sam-
pled from a distribution Pn, and for most network embedding
methods, positive nodes are defined as nodes that co-occur
with vi in a fixed-size window in random walk sequences.

In SPINE, to encourage the similarity of embeddings to
jointly encode the similarity in terms of structural identities
and local proximities simultaneously, we design a novel bi-
ased positive sampling strategy based on the structural fea-
tures generated from Algorithm 1. The complete procedure
is illustrated in Algorithm 2. Specifically, we define a struc-
tural rate α ∈ (0, 1) to control the ratio of structural sampling
and local proximity sampling. With probability α, a positive
sample of vi is sampled according to the similarities between
their structural features (starting from line 2). Otherwise, the
positive node is sampled from nodes that co-occur near vi on
trivial random walks (starting from line 9), which is prepro-
cessed and stored in Li. The similarity metric in line 4 can be
chosen from Euclidean distance, cosine similarity, Dynamic
Time Warping (DTW) [Salvador and Chan, 2007], etc. In
our experiments, we use DTW which is designed to compare
ordered sequences as the similarity metric.

The structural sampling paradigm alleviates the limitation
of distance. In practice, it is redundant to compute the struc-
tural similarity between vi and all the other nodes, since
nodes with completely different local structures are nearly
impossible to be sampled as positive pairs through structural
sampling. Intuitively, nodes with similar degrees are likely
to have similar local structures. Based on this intuition, we
reduce the redundancy by only considering nodes which have
similar degrees with the present node vi. Specifically, given
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Algorithm 2 Biased positive sampling

Input: the structural feature matrix T , the present node vi,
a node list Li, the structural rate α

Output: vp, which is a positive sample of vi
1: Initialize an empty list Ps = []
2: if random(0, 1) < α then
3: for j = 1 to |V |, j 6= i do
4: t← Compute the similarity between Ti and Tj

5: Ps ← Append t to Ps

6: end for
7: Ps ← Normalize Ps to [0, 1]
8: vp ← Sample a node according to Ps

9: else
10: vp ← Randomly choose a node from Li

11: end if
12: return vp

an ordered list of node degrees, we choose the candidates for
structural sampling by taking O(log |V |) nodes in each side
from the location of vi. As a consequence, the time com-
plexity of structural sampling for each node is reduced from
O(|V |) to O(log |V |).

2.5 Learning and Optimization
We introduce the biased SGNS based objective function of
our framework in this section. We propose two types of em-
beddings for each node vi ∈ V , i.e., a content generated em-
bedding ei as defined in Equation (4), and a structure based
embedding si which is the i-th row of an auxiliary embed-
ding matrix WS ∈ R|V |×d. In real-world network-based
datasets, the content of nodes is likely to be extremely sparse
and weaken the structural information incorporated during
the generation process of ei. Therefore we employ a direct
interaction between ei and si to strengthen the structural in-
formation contained in the learned embeddings.

Formally, given the present node vi and its positive sample
vj , which is sampled according to Algorithm 2, the pairwise
objective function of SPINE can be written as:

F (vi, vj) = λ1 · J(ei | ej) + λ2 · J(si | sj)

+ (1− λ1 − λ2) · [J(ei | sj) + J(si | ej)]
(6)

where λ1 and λ2 control weights of different parts, and J(·|·)
denotes the pairwise SGNS between two embeddings defined
in Equation (5). Intuitively, the generator and the auxiliary
embedding matrix should be well trained through their single
loss as well as obtaining each other’s information through the
interaction loss, where λ1 and λ2 determine which one is the
primary part.

The structure based embeddings WS and the parameters
WM of the MLP constitute all the parameters to be learned in
our framework. The final objective of our framework is:

min
WS,WM

|V |∑
i 6=j

.F (vi, vj) (7)

By optimizing the above objective function, the embed-
ding generator is supposed to contain the content information

Method Citeseer Cora Pubmed
node2vec 47.2 69.8 70.3
struc2vec 41.1 64.2 60.7

n+s 42.7 68.3 67.1
n+s+f 57.0 73.7 67.3
SDNE 45.2 68.7 69.1
HOPE 46.1 67.2 69.4

Graphsage 52.6 79.8† 75.2
GAT 72.5† ± 0.7 83.0† ± 0.7 79.0† ± 0.3

SPINE 72.6± 0.4 83.7± 0.4 78.5± 0.3
SPINE-p 73.8± 0.2 82.2± 0.7 82.2± 0.3

Table 1: Accuracy of transductive node classification (in percent-
age). “†” indicates that the results are directly copied from their
papers and other results are provided by ourselves.

and the structural information as well as local proximities and
structural identities simultaneously. Therefore, during infer-
ence, we drop the auxiliary embedding matrix WS and only
keep the trained embedding generator. In the sequel, embed-
dings of unseen nodes can be generated by first construct-
ing structural features via Algorithm 1 and then following the
paradigm described in Section 2.3.

3 Experiments
3.1 Experimental Setup
We test the proposed model on four benchmark datasets to
measure its performance on real-world tasks, and one small
scale social network to validate the structural identity pre-
served in the learned embeddings. For the node classification
task, we test our method on Citation Networks [Yang et al.,
2016], where nodes and edges represent papers and citations
respectively. To test the performance of SPINE while gener-
alizing across networks, we further include PPI [Stark et al.,
2006], which consists of multiple networks corresponding to
different human tissues. To measure the structural identity
preserved in embeddings, we test SPINE on a subset of Face-
book dataset [Leskovec and Krevl, 2014], denoted as FB-686,
in which nodes and links represent users and their connec-
tions, and each user is described by a binary vector.

As for the baselines, we consider unsupervised net-
work embedding methods including node2vec [Grover and
Leskovec, 2016], struc2vec [Ribeiro et al., 2017] and their
variants. Considering that node2vec and struc2vec are de-
signed to preserve the local proximity and the structural iden-
tity respectively, we concatenate the corresponding learned
embeddings to form a new baseline, denoted as n+s, to il-
lustrate the superiority of SPINE over the linear combina-
tion of the two proximities. In addition, n+s+f denotes the
content-incorporated variant of n+s. We also compare with
SDNE [Wang et al., 2016] and HOPE with RPR matrix [Ou
et al., 2016] to test the performance of our inductive Rooted
PageRank approximation. On the other hand, in addition to
transductive methods, we also consider the unsupervised vari-
ant of Graphsage [Hamilton et al., 2017], an inductive net-
work embedding method which jointly leverages structural
and content information. We also report the performance of
the state-of-the-art supervised inductive node classification
method GAT [Veličković et al., 2017]. Random and raw fea-
ture results are also included as baselines in this setting.
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Figure 2: Comparison of running time on Cora, with training batches
of size 512 and inference on the full test set (1000 nodes).

For our method, we use SPINE and SPINE-p to indicate
the variants withWS randomly initialized and pretrained with
node2vec respectively. To make predictions based on the em-
beddings learned by unsupervised models, we use one-vs-rest
logistic regression as the downstream classifier. For all the
methods, the dimensionality of embeddings is set to 2001.

3.2 Node Classification
We first evaluate the performance of SPINE on node classi-
fication, a common network mining task. Specifically, we
conduct the experiments in both transductive and inductive
settings. For the transductive setting, we use the same scheme
of training/test partition provided by Yang et al. [2016]. As
for the inductive setting, on citation networks, we randomly
remove 20%, 40%, 60% and 80% nodes and the correspond-
ing edges, these nodes are then treated as test nodes with the
remaining network as the training data. Meanwhile on the
PPI network, we follow the same dataset splitting strategy as
in [Hamilton et al., 2017], i.e., 20 networks for training, 2 for
validation and 2 for testing, where the validation and testing
networks remain unseen during training. For both settings we
repeat the process 10 times and report the mean score.

Results in the transductive setting are reported in Table 1.
We can observe that SPINE outperforms all unsupervised em-
bedding methods, and performs comparably with the state-of-
the-art supervised framework GAT. In addition, n+s performs
worse than node2vec, which implies that a simple linear com-
bination of local proximity preserved and structural identity
preserved embeddings is incapable of generating a meaning-
ful representation that effectively integrates the two compo-
nents. The superiority of SPINE over SDNE and HOPE in-
dicates the efficacy of the inductive RPR approximation al-
gorithm as well as the joint consideration of local proximity
and structural identity. SPINE also outperforms the content-
augmented variant n+s+f, which shows that the content ag-
gregation method we propose can better consolidate the con-
tent and structure information. Furthermore, the comparison
between the two variants of SPINE indicates that while the
basic model of SPINE already achieves a competitive per-
formance, we can further enhance the model with initializa-
tions of WS that are well pretrained by focusing only on
local proximity, which also justifies the effectiveness of the
paradigm of interactive integration proposed in Section 2.5.

As for the comparison on training and test runtime, results
are shown in Figure 2. Obviously, SPINE is more efficient
in time complexity, especially in the inference stage. In addi-

1Code is avaliable at https://github.com/lemmonation/spine

Methods 20% 40% 60% 80%

Citeseer

Random 19.5 20.4 16.7 17.7
RawFeats 63.9 62.2 60.3 57.7
Graphsage 58.5 53.9 47.8 41.4

SPINE 75.4 72.1 71.5 68.7

Cora

Random 18.8 22.0 19.1 20.1
RawFeats 66.6 64.7 64.6 59.6
Graphsage 73.1 66.4 58.8 48.6

SPINE 86.7 84.1 82.1 77.9

Pubmed

Random 38.5 39.8 39.3 38.9
RawFeats 75.7 75.4 74.6 72.9
Graphsage 79.9 79.4 78.2 76.4

SPINE 85.7 83.7 83.0 78.8

Table 2: Accuracy of inductive node classification w.r.t node re-
moval rate (in percentage).
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Figure 3: Node classification results on PPI. The left vertical axis
indicates the micro-F1 score while the right indicates the macro-F1
score. Both are in percentage.

tion, SPINE is also more compact in space complexity, as the
parameter scale of SPINE during inference is O(fd), com-
pared to O(fd+ d2) and O((f +KC)d) for Graphsage and
GAT with two layers respectively, where K is the number of
attention heads and C is the number of classes.

Results in the inductive setting are reported in Table 2 and
Figure 3. Note that in this setting we use all the remaining
nodes as training data during classification, thus the results
are generally larger than that under the transductive setting.
One can observe that SPINE outperforms all the baselines, in-
dicating the generalization capability of the embedding gen-
erator learned by optimizing our carefully designed objective
function. In addition, with the increasing node removal rate
which leads to greater loss of local proximities, Graphsage
can perform worse than raw features, indicating the limita-
tion of the methods that only preserve local proximities. In
contrast, SPINE alleviates the sparsity of local information
by incorporating structural identities.

3.3 Structural Identity
We proceed to investigate the structural identity on the FB-
686 dataset here. We consider the transductive setting here,
and the results under inductive setting can be found in the sup-
plementary material. Specifically, for the original network,
we construct a mirror network and relabel the nodes, and
consider the union of two networks as the input. As a con-
sequence, node pairs between original nodes and their mir-
ror nodes are obviously structurally equivalent, thus should
be projected close in the embeddings space. We then evalu-
ate the Euclidean distance distribution between embeddings
of the mirror node pairs and all the node pairs connected by
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Figure 4: Euclidean distance distribution between mirrored node
pairs and connected node pairs on the FB-686 dataset.
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Figure 5: Euclidean distance distribution between mirrored node
pairs and connected node pairs on the FB-686 datasets with vary-
ing degrees of edge removal and changing content.

edges, denoted as Pm and Pa respectively. Intuitively, if em-
beddings successfully preserve structural identities of nodes,
E[Pm] should be much smaller than E[Pa].

Results of SPINE and struc2vec with respect to the two
distributions are shown in Figure 4. Obviously, compared to
struc2vec, embeddings learned by SPINE yield smaller dis-
tances between both mirrored node pairs and connected node
pairs, indicating the structural identity and local proximity are
jointly preserved better. In addition, the ratio between E[Pa]
and E[Pm] is 13.40 and 5.72 for SPINE and struc2vec respec-
tively, which means SPINE distinguishes the two proximities
more clearly.

Further to test the robustness of SPINE to edge removal
and changing content, we randomly sample two new net-
works from the original FB-686 network. Specifically, we
preserve each edge in the original network with probability
s, and randomly exchange a 1’s location with another 0’s lo-
cation in each node’s content vector. Consequently, from the
view of structure, the probability for an original edge con-
tained both in the two generated networks is s2, and smaller
s indicates less structure correlation between the two gener-
ated networks. From the view of content, mirrored nodes are
nearly impossible to have identical content due to the spar-
sity of content vectors. As can be observed in Figure 5, the
ratio between E[Pa] and E[Pm] is not significantly affected
by the degree of structure perturbation s, which indicates that

SPINE can robustly distinguish and preserve structural iden-
tity as well as local proximity even with severe perturbations.

4 Related Work
Most network embedding methods consider to preserve lo-
cal proximity between nodes with frameworks based on ran-
dom walk [Perozzi et al., 2014; Grover and Leskovec, 2016],
skip-gram [Tang et al., 2015; Cao et al., 2015], matrix fac-
torization [Yang et al., 2015a; Guo et al., 2017] and deep
learning [Wang et al., 2016; Gao and Huang, 2018] respec-
tively. However, it is worth noting that few of the exist-
ing works consider the structural identity between nodes,
and fail to handle proximities between nodes at distances.
Struc2vec [Ribeiro et al., 2017] preserves the structural iden-
tity by constructing a multi-layer complete graph and exe-
cute random walk on it. HOPE [Ou et al., 2016] captures
structural identity through factorizing a global Rooted PageR-
ank matrix. However, while preserving the structural identity,
they ignore the basic local proximities of nodes, which limits
its applicability on real-world network mining tasks. Similar
problems also occur in two recent methods [Tu et al., 2018;
Zhang et al., 2018]. SDNE [Wang et al., 2016], a deep learn-
ing based method, is only able to take the first- and second-
order proximities into account. Furthermore, most of the
methods mentioned above are transductive. Inductive meth-
ods [Hamilton et al., 2017; Veličković et al., 2017] tackles
this challenge by recursively training a set of aggregators for
each node to integrate its neighbors’ content as the embed-
ding of the current node in every iteration. As nodes at the
k-th iteration contain the structural information from their
neighbors within k hops, they cannot deal with nodes at ar-
bitrary distances unless with sufficient iterations, which is
costly for real-world tasks.

5 Conclusion
In this paper, we propose SPINE, a network embedding ap-
proach which is able to jointly preserve structural identities
and local proximities of nodes while being generalized to un-
seen nodes or networks. We assign a structural feature vec-
tor to each node based on Rooted PageRank, and we learn
an embedding generator leveraging the structural features of
each node to incorporate the structural and content informa-
tion of nearby nodes. In addition, we propose a biased SGNS
algorithm with a novel positive sampling procedure, based on
which a carefully designed objective function is proposed to
enhance the structural information contained in the embed-
ding generator. Extensive experiments demonstrate the supe-
riority of SPINE over the state-of-art baselines on both trans-
ductive and inductive tasks. In future work, we are interested
in introducing structural identity to other network-based tasks
such as social recommendation.
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