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Abstract
Clustered Federated Learning (CFL) leverages the differences among data distributions on 
clients to partition all clients into several clusters for personalized federated training. Com-
pared with the conventional federated algorithms such as FedAvg, existing methods for 
CFL require either more communication costs or multi-stage computation overheads. In 
this paper, we propose an iterative CFL framework with almost the same communication 
cost as FedAvg in each round based on a novel model distance. Specifically, the model dis-
tance measures the discrepancy between the client model and the cluster model so that we 
can estimate the cluster identities for clients on the server side. The proposed model dis-
tance considers class-wise model dissimilarity, which enables us to apply it to multi-class 
classification even when the labels are non-iid across clients. To calculate the proposed 
model distance, we introduce two sampling methods which generate samples from feature 
distributions approximately without accessing the raw dataset. Experimental results show 
that our method can achieve superior and comparable performance on non-iid and iid data 
respectively with less communication cost compared with the baselines.

Keywords  Federated learning · Client clustering · Data heterogeneity · Model distance

1  Introduction

Federated Learning (FL) is a novel distributed machine learning paradigm where multiple 
users or mobile devices collaboratively learn a model under privacy constraints (McMahan 
et al., 2017; Li et al., 2019; Li and Sahu, 2020; Kairouz et al., 2019; Karimireddy et al., 
2020). In this scenario, the training data is distributed on a large number of clients, and 
there is a central parameter server which is responsible for coordinating the training pro-
cess of the entire system. Clients are not allowed to send their own private raw data and 
the relevant statistical information to the parameter server or other clients due to the risk 
of privacy leaking. In general, FL assumes that we can train a single global model that is 
able to fit data distributions for all clients. However, this assumption is hard to guarantee 
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in practical distributed training tasks as the variations caused by different regions, ages and 
genders often lead to non-iid (independent and identically distributed) data distributions 
across clients  (Sattler and Müller, 2020). Moreover, the limited computation and storage 
capacity of current mobile devices make it infeasible to deploy a sufficiently large model to 
obtain desirable performance. Hence, various personalized federated learning algorithms 
have recently been proposed in order to train a personalized model for each client while 
communicating with the server or other clients.

As one class of personalized federated learning methods, Clustered Federated Learn-
ing (CFL) (Sattler and Müller, 2020; Ghosh et  al., 2019, 2020) explicitly considers the 
underlying cluster structure of client populations, which commonly assumes that there are 
K different global data (feature) distributions and the local dataset on each client is gener-
ated from one of them. The underlying distribution discrepancies could be leveraged to 
partition the clients to K clusters, where the clients within each cluster have the same or 
similar feature distributions referring to the personal interests and preferences. As a con-
sequence, each cluster can be viewed as an independent machine learning task and trained 
with conventional single-model federated leaning algorithms. In general, CFL scenarios 
can be divided into two categories. (1) Multi-source data: the local datasets on clients are 
drawn from different devices or regional styles. (2) Incongruent data: clients have different 
opinions (labels) regarding the same data (Sattler and Müller, 2020).

Recently, some attempts have been made to achieve model clustering for clients in the 
federated learning setting (Sattler and Müller, 2020; Ghosh et al., 2020; Fu et al., 2021). 
The first challenge arising here is that the only information accessible to the server during 
each communication round is the parameters of local models and cluster models, which 
may incur high communication and related computation costs for clients. Secondly, while 
in some works (Ghosh et al., 2019) the Euclidean distance between model parameters has 
been used to cluster the clients via a multi-stage training method, a shorter Euclidean dis-
tance does not always mean a pair of more similar function mappings due to overparam-
eterization and permutation invariance of modern neural networks (Wang and Yurochkin, 
2020). The issue becomes more serious when the label distributions of local datasets are 
different across clients (i.e., label non-iid) even though the sources of feature distributions 
are same. Therefore, the measure of model dissimilarity is still an essential problem to be 
further studied. To tackle the challenges described above, in this paper we consider meas-
uring the dissimilarity between cluster models and client models on the server side from 
the perspective of model distance for multi-class classification problems.

Model distance is originally proposed for the fault diagnosis problem and defined in the 
integral form. The model distance is supposed to be shorter if the outputs of two models 
are similar for a given input x. In this paper, we propose a novel model distance for cluster-
client model pairs in CFL which is defined by the integral over the corresponding cross 
distributions, which are constructed based on the feature distributions of clusters and the 
label distributions of clients. The new model distance can be estimated on the server side 
without extra communication, thus leading to 1/K communication cost for downloading 
models compared to the existing iterative method IFCA (Ghosh et  al., 2020). Moreover, 
the structure of the new model distance captures the class-wise dissimilarities, making it 
effective even if the local dataset on a client contains only partial classes. To compute the 
new model distance, two sampling methods depending only on model parameters are pro-
posed to generate samples from the corresponding cross distributions approximately, which 
will be used to estimate the model distance in the form of finite sum. Finally, we pro-
pose a novel communication-efficient framework for CFL named MD-ICFL (Model Dis-
tance based Iterative Clustered Federated Learning). To validate the effectiveness of the 
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proposed method, MD-ICFL is tested and compared with baselines in multiple different 
CFL scenarios. The experimental results show that the proposed framework can achieve 
better clustering performance with less communication cost, demonstrating the superiority 
of the new model distance and sampling methods.

The contributions of our work are summarized as follows:

•	 We design a novel and effective model distance which is robust to label non-iid sce-
narios to measure the dissimilarity of cluster-client model pairs in CFL.

•	 We introduce two sampling methods to generate samples from the corresponding cross 
distributions to estimate the performance of the proposed model distance.

•	 We propose a novel communication-efficient framework MD-ICFL for CFL, which per-
forms client clustering on the server side based only on model parameters.

2 � Related works

2.1 � Personalized federated learning

Due to data heterogeneity in realistic scenarios, various personalized federated learning meth-
ods have been proposed to achieve personalization for clients instead of training a single global 
model. Google first introduces a framework (Wang et al., 2019) that fine-tunes the global model 
locally after receiving it from the server to achieve personalized language models in smart 
phones. Other lines of research improve model aggregation by designing varying weights for 
different clients according to the similarity between clients. For example, FedAMP (Huang et al., 
2021) leverages an attention-inducing function to measure the difference between the data dis-
tributions. FedFoMo (Zhang et al., 2020) considers the first-order optimal aggregation weights 
based on the personalized loss functions on clients and achieves the SOTA performance for most 
of the scenarios with data heterogeneity in FL. In addition, MOCHA (Smith et al., 2017) formu-
lates federated learning as a multi-task learning setting where clients can naturally be viewed as 
multiple tasks which have different objectives while collaborating with each other.

2.2 � Clustered federated learning

Many works have been proposed to explore client clustering in the context of CFL. Among 
them, Ghosh et  al. (2019) performs a multi-phase training procedure where all clients 
firstly train their models locally until convergence, which are then clustered based on the 
Euclidean distance between model parameters, after that, the cluster partition will be used 
to employ conventional FL in each cluster. Similarly, PFA (Liu et al., 2021) also proposes a 
multi-phase method for client clustering based on the sparsity of the outputs of Relu activa-
tions in neural networks. Considering the incongruent data issue, Sattler and Müller (2020) 
introduces a hierarchical clustering method based on the cosine similarity between gradi-
ents. All the above methods of model clustering need to pre-train the global or local mod-
els in advance until loss functions converge approximately, which is therefore computation-
ally expensive and not suitable for real-time, large-scale FL training scenarios. Another 
line of research estimates the cluster identities of clients during collaborative training in an 
iterative way. For instance, IFCA (Ghosh et al., 2020) measures the dissimilarity between 
cluster models and client models by comparing the values of the loss function computed on 
the client side after the clients receive the cluster models. As a consequence, while being 
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effective and theoretically guaranteed, IFCA requires K times communication cost of the 
FedAvg framework in each round. In contrast, our proposed method is able to avoid this 
by using a new model distance which can be estimated on the server side. Recently, CIC-
FL (Fu et al., 2021), the most relevant work to ours, focuses on the label non-iid setting and 
constructs features that are sensitive to concept shift but robust to class imbalance for each 
client, based on which the clients are then bipartitioned recursively. Nevertheless, issues 
may arise when a client lacks the data of some classes, as it is unable to obtain the label-
wise gradients corresponding to those unseen classes, which are required when construct-
ing the client features.

3 � Clustered federated learning with model distance

3.1 � Problem formulation

We follow the standard CFL paradigm with one center server machine and N client 
machines. There are K different global conditional distributions, i.e., global feature distri-
butions �j(x|y), j ∈ [K] , where x and y denote the feature representation and the corre-
sponding label respectively. The i-th client, i ∈ [N] , trains its C-class classification model 
using the local private dataset Di generated from the joint distribution pi(x, y) , where the 
label distribution is pi(y) and the conditional distribution pi(x|y) is one of K global feature 
distributions correspondingly. In addition to the conditional distribution, the label distribu-
tion pi(y) could also be non-identical across all clients. Denoting the cluster identity of cli-
ent i as si ∈ [K] , our goal is to group N clients into K disjoint clusters S∗

1
, ..., S∗

K
 based on 

{si} correctly so that the clients within each cluster share the same conditional distribution 
and we can learn one personalized model for each cluster. In other words, we view every 
ground-truth cluster as an independent task that minimizes a global loss function 
Fj(�) = �(x,y)∼D∗

j

[
f (�;x, y)

]
 for all j ∈ [K] , where f (�;x, y) is the loss function associated 

with the instance (x, y) and the model parameter � . D∗
j
∶= �j(x, y) is the global joint distri-

bution of feature x and label y in the j-th cluster determined by the populations of clients in 
this cluster. We call the settings with non-identical conditional (feature) distributions and 
label distributions as feature non-iid and label non-iid respectively.

3.2 � Federated model distance for client clustering

In clustered federated learning, the primary goal of client clustering is to group the clients based 
on the sources of their local datasets, i.e., the global feature distributions �j(x|y), j ∈ [K] . In 
order to identify which global feature distribution each client belongs to without being inter-
fered by the unbalanced label distributions, for a given client i whose local joint distribution is 
p(x, y) = p(x|y)p(y) (the subscript i is omitted for simplicity), we construct K cross distribu-
tions Qj ∶= qj(x, y) = �j(x|y)p(y), j ∈ [K] based on the label distribution p(y) and the K global 
feature distributions. Obviously, the dissimilarity among these K cross distributions results only 
from different global feature distributions. Therefore, we can estimate the cluster identity of a 
client by comparing the distribution distance between the joint distribution p(x, y) and qj(x, y) 
directly. Ideally, the distribution distance between qj(x, y) and p(x, y) would be zero if the client 
belongs to cluster j according to the definition in Sect. 3.1.
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Motivated by the above discussion, we first measure the distance between the local joint 
distribution p(x, y) and K cross distributions qj(x, y) with the Total Variation (TV) distance, 
which is a metric commonly used to measure the dissimilarity between two distributions. 
The reason we choose the TV distance instead of other metrics like the KL convergence is 
that the TV distance is defined with the absolute value ( L1 norm when the sample space 
is discrete) and thus robust to incorrect probability estimation. Formally, the distance 
between p(x, y) and qj(x, y) can be written as

If the computation of this distance could be performed on the server side, we can use an 
EM-type iterative process to achieve communication-efficient clustered federated learning 
where clients require a communication cost of O(|�|) in each communication round as Fed-
Avg. |�| denotes the amount of client model parameters. In other words, clients can use 
only 1/K communication cost for downloading models compared to the iterative algorithm 
IFCA (Ghosh et al., 2020).

Nevertheless, the computation of the above distance is not tractable as the real distribu-
tions p(x, y) and qj(x, y) are both unknown to us and we are not permitted to estimate them 
with the raw data on the clients due to privacy constraints either. To tackle this problem, 
we show that the TV distance of p(x, y) and qj(x, y) can be bounded by the sum of TV dis-
tances of the posterior distributions and the prior distributions, based on which we derive 
our novel distance. Specifically, we have

where the first part in the upper bound B1 is the expectation of the TV distance between the pos-
terior distributions p(y|x) and qj(y|x) for x over the cross distribution Qj . The second term B2 is 
the TV distance between two prior distributions. Both of them are upper bounded by 1 for any 
j. It is worth noting that B2 would be 0 if the “incongruent data” issue occurs with uniform label 
distribution p(y). The reason is that the difference between two global feature distributions comes 
from only the different opinions regarding the same data and thus the prior distribution p(x) and 
qj(x) are the same. While in the “multi-source data” scenario, B1 and B2 in (2) have similar trends 
in value for every j. In both cases, we can use B1 as a surrogate to compare the TV distances 
between p(x, y) and different qj(x|y) approximately.

We also note that for a given x, the term ∫
y
∣ p(y|x) − qj(y|x) ∣ dy in B1 is the TV dis-

tance between two posterior distributions which can be viewed as the probability output 

(1)
1

2 ∫x,y

∣ p(x, y) − qj(x, y) ∣ dx dy.

(2)

1

2 �x,y

∣ p(x, y) − qj(x, y) ∣ dxdy

=
1

2 �x,y

∣ p(y|x)p(x) − qj(y|x)qj(x) ∣ dxdy

≤ 1

2
�

x∼Qj

[
�y

∣ p(y|x) − qj(y|x) ∣ dy
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
B1

+
1

2 �x

∣ p(x) − qj(x) ∣ dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
B2
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of a discriminative model, i.e., the softmax vector. This indicates the TV distance between the 
posterior distributions in B1 can naturally be estimated by the distance between the outputs of two 
models. Therefore, we transform the measurement of distribution distances between p(x, y) and 
qj(x, y) to that of the TV distance between the posterior distributions. Formally, we define a novel 
metric based on the conventional model distance (Chen et al., 2013) for CFL.

Definition 1  Given a client model �i which could be trained on the label non-iid dataset Di 
and a cluster model �∗

j
 corresponding to a global feature distribution �j(x|y) , the federated 

model distance dij between �∗
j
 and �i is defined as

�(x) is the probability density function over the cross distribution Qij , where the label dis-
tribution is that of the dataset Di on client i notated by pi(y) and the feature distribution is 
the global feature distribution �j(x|y) . h(�, x) represents the probability (softmax) output of 
the model � on the input x and ‖ ⋅ ‖1 is the L1 norm.

To be more specific, we regard the federated model distance dij as an estimation of 
the B1 term in the inequality (2). Due to the structure of the cross distribution Qij , we can 
rewrite dij as the sum of C terms of different classes with the expectation form

We define the above expectation term dk
ij
 as the class-wise model distance representing the 

dissimilarity between the cluster-client model pair (j, i) in the k-th class. Since dk
ij
 is defined 

in the form of expectation, we estimate them by the finite sum of the TV distances w.r.t 
samples {x1,⋯ , xM} drawn from the global feature distribution �j(x|y = k)

Once the current value dk
ij
 for all the classes are estimated on the server side, we can get the 

federated model distance dij and then partition the set of clients into K clusters based on the 
closest cluster model, i.e., si = argmin

j

dij.

3.3 � Sampling on the server side

Despite the tractability of the probability outputs of the models, estimating the feder-
ated model distance still involves samples from the corresponding cross distribution Qij , 
determined by pi(y) and �j(x|y) , which are unknown to us in advance. To tackle that, 
we first approximate the label distribution pi(y) on client i using the class ratios in the 
local dataset Di . Meanwhile, the cluster models can be leveraged as an aggregation of the 

(3)dij = ∫x

‖h(�i;x) − h(�∗
j
;x)‖1d�(x)

(4)

dij =

C�

k=1

pi(y = k) ⋅ �
x∼�j(x�y=k)

�
‖h(�i;x) − h(�∗

j
;x)‖1

�

=

C�

k=1

pi(y = k) ⋅ dk
ij
.

(5)dk
ij
=

M�

n=1

‖h(�i;xn) − h(�∗
j
;xn)‖1
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cluster information to simulate the global feature distribution �j(x|y) on the server side. 
Next, we propose two methods to generate samples from �j(x|y) approximately, including 
Back-searching sampling and Generator-based sampling, which are illustrated in Figs.  1 
and  2  (more details in Sect. 4).

3.3.1 � Back‑searching sampling

In order to sample from �j(x|y) ∝ �j(y|x)�j(x) , we initialize a pseudo dataset using Gaussian 
noise for every class, and optimize these samples based on the given labels and the cluster model 
parameters �∗

j
 for a few iterations, so that each updated sample x has high probabilities for both 

the prior �j(x) and the posterior �j(y|x) w.r.t its label y. Specifically, for a classification model 
whose output is a probability (softmax) vector, we search for an input x which is close to the 
mean of the prior �j(x) , with the output h(�∗

j
, x) of the cluster model �∗

j
 approaching [1, 0,⋯ , 0] 

if the given label y is “1”. Hence, we minimize the following objective

�(x) is the mean of samples over the prior �j(x) which can be estimated with some prior 
information determined by normalization during data preprocessing. � is a hyperparameter 

(6)argmin
x

f (h(�∗
j
;x), y) +

�

2
‖x − �(x)‖2.

Fig. 1   Back-searching sampling

Fig. 2   Generator-based sampling
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controlling the influence of the second term. The sample x which minimizes the above 
objective is associated with large values for both probabilities �j(y|x) and �j(x).

3.3.2 � Generator‑based sampling

Different from directly searching for samples with high probabilities in Back-search-
ing sampling, we consider learning a conditional generator G�(x|y) that approxi-
mates the global feature distribution �j(x|y) on the server side, where � represents the 
parameters of the conditional generator. Due to privacy constraints, the server is not 
allowed to access real data to train the generator. To address this issue, we introduce 
a supervised training method motivated from Zhu et  al. (2021) that uses the given 
one-hot label as the supervised information of the generated samples and optimize the 
objective below

where z is the generated sample for label y and � is the only parameter to be learned in this 
objective function. Note that the cluster model �∗

j
 is fixed when training the conditional generator. 

Similar to Back-searching sampling, our goal is that the generated samples have large values of 
both probabilities �j(y|x) and �j(x) . After obtaining well-trained G�(x|y) for every cluster j, we 
use them to simulate the global feature distribution �j(x|y) and create a pseudo dataset for each 
label y to estimate the federated model distance according to Eqs. (4) and (5).

3.4 � Communication‑efficient framework MD‑ICFL for clustered federated learning

Based on the federated model distance defined in Sect.  3.2 and the sampling methods 
in Sect.  3.3, for each cluster-client pair (j,  i), we can estimate the class-wise model dis-
tance dk

ij
 for k ∈ [C] on the server side and then aggragate them using the weights pi(y = k) 

to obtain the final federated model distance dij as Eq. (4). For the local label distribu-
tion pi(y = k) , which is unseen to the server, there are two options. Clients send the vector 
pi(y) =

[
pi(y = 1),⋯ , pi(y = C)

]
∈ ℝ

C to the server after the first participant communication 
round under weak privacy constraints where pi(y) is not privacy-sensitive. Alternatively, under 
strong privacy constraints where the server has no access to the label distribution pi(y) , we can 
conduct a “secondary communication” that the server sends these class-wise model distance 
vectors dij =

[
dk=1
ij

,⋯ , dk=C
ij

]
∈ ℝ

C to the corresponding client i after they are estimated on 
the server side in each round. Client i proceeds to calculate dij ’s locally and send the current 
cluster identity si back to the server. The extra communication cost introduced by this process 
is negligible, which is incurred by the server sending K vectors dij, j ∈ [K] additionally to each 
client in each round.

(7)min
�

J(�) = �
z∼G�(x�y)

�
f (h(�∗

j
;z), y)

�
+

�

2
‖z − �(z)‖2
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Algorithm 1   MD-ICFL (under weak privacy constraints)

Formally, we propose the Model Distance based Iterative Clustered Federated 
Learning (MD-ICFL). The complete algorithms under weak and strong privacy con-
straints are described in Algorithm  1 and Algorithm  2 respectively, which both per-
form client clustering in an iterative way. For the weak privacy setting, we first initial-
ize K cluster model parameters �∗

j
 and cluster identities si for the clients randomly. In 

the t-th round, we simulate the process of sampling from K global feature distribu-
tions �j(x|y) with only the current cluster models on the server side, thus generating K 
pseudo datasets Dj , each of which contains C subsets representing C conditional dis-
tributions �j(x|y = k) , i.e., Dj = {Dk

j
}C
k=1

 (line 3). After sampling a subset of clients �t , 
each client in �t performs local updates for a few epochs and sends the updated local 
model �(t)

i
 back to the server along with the class distribution pi(y) (line 4–6). We then 

calculate the federated model distance dij and estimate new cluster identities for each 
client by si = argminj dij (line 9–10). The server aggregates the local models in �t to 
obtain the newest cluster models �∗

j
 depending on the current cluster identities si ’s (line 

12). MD-ICFL for the strong privacy setting has a similar procedure except for the sec-
ondary communication (line 9–12 in Algorithm 2).

It is worth noting that generating pseudo datasets on the server side and the local 
updates on clients can be performed simultaneously. In addition, when the secondary com-
munication described above is conducted under strong privacy constraints, the server can-
not infer the real class distribution vector pi(y) since it only receives the cluster identity si 
from client i within finite communication rounds. Specifically, we can formulate the recon-
struction problem of the class distribution vector pi(y) as follows

(8)

s
(t)

i
= argmin

j∈[K]

pi(y)
Td

(t)

ij

s.t. ‖pi(y)‖1 = 1, 0 ≤ pi(y = k) ≤ 1

t = 1, 2,⋯ , tmax
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where we use the superscript (t) in s(t)
i

 and d(t)
ij

 to denote the t-th round. The first equation 
holds for all communication rounds. There is no unique solution for the target vector pi(y) 
for all the above equations if the number of equations tmax is finite. Hence, the server is 
not able to reconstruct the real value of pi(y) and this process would not lead to privacy 
leakage.

Algorithm 2   MD-ICFL (under strong privacy constraints)

Algorithm 3   Local-update
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4 � Implementation of sampling methods

In this section, we present the details of our implementation for both of the sampling meth-
ods in Sect. 3. First, for Back-searching sampling, we create a pseudo dataset Dj = {Dk

j
} 

containing C subset Dk
j
, k = 1,⋯ ,C for each cluster j, one of which has M = 30 samples 

initialized with the Gaussian noise, i.e., |Dk
j
| = 30 . We fix the parameters of cluster models 

�∗
j
 and set the labels of all samples in subset Dk

j
 to k. These samples are then optimized 

using the Adam optimizer based on (6). We use Cross Entropy as the loss function f and 
set the hyper-parameter � to 0.1. For each sample in Dk

j
 , we optimize it with a learning rate 

of 0.1 for 100 iterations. The resulted pseudo datasets will be considered as the generated 
samples from �j(x|y = k).

For the Generator-based sampling, we adopt a conditional generator G�(x|y) similar to 
Zhu et al. (2021); Kingma and Welling (2013), which is two-layer fully-connected network 
with Batch Normalization and ReLU activation function to learn the global feature dis-
tribution �j(x|y = k) based on (7) for each cluster j. The input of G�(x|y) are the random 
noises � drawn from a high-dimensional Gaussian distribution and the label y ∈ [C] . We 
set the size of the input noise to 16 for all the experiments in this paper and randomly 
assign the label of each input noise from 1 to C. We use the Adam optimizer with a learn-
ing rate of 0.01 and a batch-size of 100 to train the conditional generator for 1000 itera-
tions. Finally, we get K = 4 conditional generators, each of which represents one global 
feature distribution. These conditional generators will later be used to generate the pseudo 
datasets Dj = {Dk

j
} . Similar to Back-searching sampling, we draw M = 30 samples for each 

class y from each global feature distribution.

5 � Experiments

In this section, we validate the effectiveness of our framework MD-ICFL in various CFL 
scenarios. We create label non-iid datasets following the setting in Lin et al. (2020) where 
the local label distribution vectors pi(y) of clients are sampled from a Dirichlet distribution 
Dir(�) . � is the hyper-parameter controlling the degree of label non-iid, i.e., class imbal-
ance. The process of generating local data distribution pi(x) for client i is depicted in Fig. 3. 
Z(s) is the distribution of the cluster identity which we set as a uniform distribution. For the 
image classification task where data is structured, we normalize each pixel of images to 
[−1, 1] and choose � = 0.5 as the prior for all experiments.

Fig. 3   Dataset generation
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5.1 � Experimental details

5.1.1 � Dataset generation

In order to create a local dataset which is generated from a global feature distribution 
�j(x|y) and with any possible label distribution pi(y) for client i, we perform three steps as 
depicted in Fig. 3: (1) Determine the cluster identity si ∼ Z(s) . (2) Sample a label distribu-
tion vector pi(y) from Dir(�, p) . Dir(�, p) is a Dirichlet distribution with the parameters � 
and p , where p is the global label distribution �si

(y) which we set to be uniform distribution 
over classes. (3) Construct a joint distribution pi(x, y) whose conditional (feature) distribu-
tion is �si

(x|y) and label distribution is pi(y) followed by drawing samples independently 
from the joint local distribution pi(x, y) to obtain a local dataset. We utilize a given single 
dataset as the global feature distribution.

We observe that the label distribution will be extremely unbalanced if � is less than 
or equal to 1 (where almost every client has only one or at most two classes of data 
when the number of class C = 10 ). Too small � makes the CFL problem pathologi-
cal and leads to a contradiction with the common assumption that there is a distinct 
cluster structure because the underlying cluster structure may be uncertain in this case, 
which means there exist many other definitions regarding the K global feature distribu-
tion. In this paper we choose � = 3, 10, 100 respectively to guarantee the unique cluster 
structure. Every client has three to five classes of data when � = 3 , and when � = 100 
it has access to data from all classes ( C = 10 ) with an approximately uniform label 
distribution.

5.1.2 � Label iid setting

For the Rotated MNIST and Multi-Source Digit dataset, K = 4 global feature distribu-
tions are used to create local datasets for N = 48 clients uniformly. We choose � = 100 
to generate the label distribution vector of each client in the label iid scenario. The size 
of each local dataset |Di| is set to 1000 and the raw data in each of them is normal-
ized with mean � = 0.5 and variance � = 0.5 . Besides, Multi-source Digit is a realistic 
multi-source dataset created for simulating the scenario where the variations in feature 
distributions are caused by style, device or personal habit. It is composed of four digit-
related dataset MNIST, USPS, SVHN and SIGN (Mavi, 2020). MNIST and USPS are 
two handwritten digit datasets in two different styles, SVHN is a digit dataset colleted 
from realistic scenes, and SIGN is a sign language digit dataset. Each client draw sam-
ples from one of the four dataset as its local dataset.

We use the typical network LeNet that consists of 2 convolutional layers followed by 
3 fully connected layers for both the Rotated MNIST dataset and the Multi-Source Digit 
dataset. For the Rotated MNIST dataset, we implement every method with T = 30 com-
munication rounds for model training. Additionaly, we set the number of local epoch 
as E = 2 , the learning rate as � = 0.1 , and the local minibatch size as B = 50 . Multi-
Source Digit dataset follows the same settings except for E = 3 . Full (R = 1.0 ) and par-
tial (R = 0.5 ) client participation are adopted in our experiments respectively.



Machine Learning	

1 3

5.1.3 � Label non‑iid setting

The Swapped Rotated CIFAR10 dataset is constructed based on the CIFAR10 dataset 
with the same rotation operation used in the Rotated MNIST dataset. Besides, we notice 
that the classes in CIFAR10 are indeed not highly related to specific angles, unlike the 
case in digits. To increase the dissimilarity between different feature distributions, we 
swap the labels of two given classes within each cluster. For example, we modify the 
labels of data points labeled as “1” to “2” and vice versa in the first cluster. As a result, 
each cluster has 4 ( 40% ) classes different from another cluster in concept. This opera-
tion was first adopted in Sattler and Müller (2020) to simulate an incongruent clustering 
structure for the “data incongruence” issue, which can be considered as a kind of con-
cept drift caused by personalities. We create N = 48 clients with K = 4 . The size of each 
local dataset is set as |Di| = 5000.

We use two commonly used deep learning models ResNet18 and MobileNetV2 for 
all experiments on this dataset. MobileNetV2 is a light neural network designed for 
mobile devices and thus suitable for FL scenarios. For every method, we execute it in 
T = 60 communication rounds, with the number of local epoch E = 1 , the learning rate 
� = 0.1 , and the local minibatch size B = 50.

5.2 � Baselines

In all experiments, we validate and compare our framework MD-ICFL with four baselines: 
(1) Global model: a single global model is learned that can fit K global feature distribu-
tions simultaneously. (2) Local model: each client trains a personalized model only on its 
local dataset. (3) IFCA (Ghosh et al., 2020): the Iterative Federated Clustering Algorithm 
which performs client clustering iteratively based on the values of loss functions. (4) Fed-
Fomo  (Zhang et  al., 2020): the personalized federated learning algorithm achieving the 
SOTA performance in most of the data heterogeneity problems. (5) ClusteredFL (Sattler 
and Müller, 2020): the client populations are grouped into clusters with jointly trainable 
data distributions. We denote our framework MD-ICFL with back-searching sampling and 
generator-based sampling as MD-ICFL-1 and MD-ICFL-2 respectively.

We evaluate the performance of all methods via the averaged accuracy on test data-
sets over all clients after the same epochs. For CFL-related algorithms, i.e., IFCA and our 
framework MD-ICFL, averaged Adjusted Rand Index (ARI) will be computed based on 

Table 1   Averaged test accuracy 
and ARI (for IFCA and 
MD-IFCL-1 &2) on swapped 
rotated CIFAR10 ( � = 3)

Our proposed methods and the best score for each evaluation metric 
are bolded

Model ResNet18 MobileNetV2

Global model 61.68 59.63
Local model 37.48 19.52
FedFomo 44.44 28.83
ClusteredFL 12.45 10.27
IFCA 65.69 (0.51) 50.84 (0.23)
MD-ICFL-1 74.85 (0.80) 75.2 (0.89)
MD-ICFL-2 74.41 (0.84) 76.32 (0.94)
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the ground-truth cluster identities to evaluate the results of client clustering. ARI takes val-
ues in [−1, 1] and a larger ARI value indicates better performance of clustering.

5.3 � Results on label non‑iid data

In order to demonstrate the superiority of our framework in the label non-iid scenarios, 
we first validate MD-ICFL and the baselines on datasets with different label non-iid levels 
controlled by the hyper-parameter � . To simulate the clustered federated learning scenario 
where the local datasets on clients are generated from K global feature distributions �j(x|y) , 
a new dataset named Swapped Rotated CIFAR10 ( K = 4 ) is introduced here. We construct 
the dataset based on the method used in Ghosh et al. (2020) where the CIFAR10 dataset is 
augmented by applying 0, 90, 180 and 270 degrees of rotation to each image. The augmented 
data of each angle can be viewed as an independent global feature distribution. Consider that 
some classes in CIAFR10 are not highly related to specific angles, we utilize an additional 
label swapping operation introduced in Sattler and Müller (2020) to increase the dissimilari-
ties between different clusters. We choose � = 3, 10, 100 respectively corresponding to three 
label non-iid levels. Two commonly-used deep learning models ResNet18 and MobileNetV2 
are trained on the Swapped Rotated CIFAR10 dataset with full participation ( R = 1.0 ). The 
experimental results with � = 3, 10, 100 are shown in Tables 1, 2 and 3 respectively.

Results above show that our framework consistently outperforms other baselines with 
large margins in different label non-iid scenarios. As the degree of label non-iid increases 

Table 2   Averaged test accuracy 
and ARI (for IFCA and 
MD-IFCL-1 &2) on swapped 
rotated CIFAR10 ( � = 10)

Our proposed methods and the best score for each evaluation metric 
are bolded

Model ResNet18 MobileNetV2

Global model 67.29 64.56
Local model 57.73 26.99
FedFomo 61.89 59.61
ClusteredFL 23.60 18.07
IFCA 75.62(0.57) 57.59 (0.16)
MD-ICFL-1 80.21 (0.93) 77.88 (0.83)
MD-ICFL-2 80.96 (0.99) 79.46 (0.95)

Table 3   Averaged test accuracy 
and ARI (for IFCA and 
MD-IFCL-1 &2) on swapped 
rotated CIFAR10 ( � = 100)

Our proposed methods and the best score for each evaluation metric 
are bolded

Model ResNet18 MobileNetV2

Global model 69.20 65.48
Local model 63.06 35.03
FedFomo 72.42 71.72
ClusteredFL 45.40 44.37
IFCA 72.7 (0.24) 58.46 (0)
MD-ICFL-1 81.67 (0.98) 80.93 (0.94)
MD-ICFL-2 82.17 (1.00) 81.52(0.97)
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( � varies from 100 to 3), our framework shows more significant advantages than other com-
pared methods. The ARI values of our framework in three tables are all larger than 0.8, which 
means a desirable clustering performance can be achieved even if the label distributions 
across clients are different. This can be attributed to the new model distance that can explic-
itly measure the class-wise dissimilarities. In contrast, the hierarchical clustering method 
ClusteredFL fails in the label non-iid settings as ClusteredFL conducts clustering based on 
the gradients of local loss functions which are defined by class-imbalanced datasets. Mean-
while, IFCA can hardly identify the correct cluster structure and FedFomo performs worse 
since the testing distribution is quite different from the training distributions on each client, 

Fig. 4   Multi-source digits

Table 4   Averaged test accuracy 
and ARI (for IFCA and 
MD-IFCL-1 &2) on rotated 
MNIST ( � = 100)

Our proposed methods and the best score for each evaluation metric 
are bolded

R=0.5 R=1.0

Global model 91.04 91.18
Local model − 93.69
FedFomo 94.56 94.60
ClusteredFL 92.34 92.45
IFCA 97.47 (0.88) 97.17 (0.76)
MD-ICFL-1 97.39 (0.94) 97.28 (0.95)
MD-ICFL-2 97.44 (0.93) 97.20 (0.90)

Table 5   Averaged test accuracy 
and ARI (for IFCA and 
MD-IFCL-1 &2) on multi-source 
digits ( � = 100)

Our proposed methods and the best score for each evaluation metric 
are bolded

R=0.5 R=1.0

Global model 86.24 86.81
Local model − 85.01
FedFomo 86.06 86.43
ClusteredFL 73.29 73.41
IFCA 91.62 (0.7) 92.14 (0.7)
MD-ICFL-1 90.08 (0.69) 90.80 (0.79)
MD-ICFL-2 90.46 (0.73) 90.19 (0.65)
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especially when � = 3 , i.e., the highest level of label non-iid. Hence, our framework is an 
effective iterative CFL method with less communication cost in the label non-iid scenario.

5.4 � Results on label iid data

We further validate our framework with baselines on label iid datasets. The vectors 
for the label distributions of clients in this scenario are generated by setting � = 100 . 
We construct two datasets: (1) Rotated MNIST: the dataset introduced in Ghosh et al. 
(2020) where the MNIST dataset is augmented with the same rotation operation as the 
Swapped Rotated CIFAR10 dataset. (2) Multi-source Digits: four digit-related datasets 
including MNIST, USPS, SVHN and SIGN  (Mavi, 2020) representing four different 
global feature distributions (Fig. 4). Both datasets are trained with the classical LeNet. 
Experimental results are reported in Tables 4 and 5 where the ARI values are listed in 
the parenthesises following the test accuracies for the CFL-related algorithms.

The results show that MD-ICFL achieves comparable test accuracy and better cluster-
ing performance on both datasets. The larger averaged ARI values in most cases indicate 
that our framework is more robust to the initial cluster models and thus not prone to 
model degradation where the number of clusters becomes less than K during training. 
We notice that in Multi-source Digits, MNIST is so similar to USPS that IFCA tends to 
quickly converge to only 3 clusters and leads to slightly better test accuracy, while our 
method could still find the correct cluster structure as implied by the larger ARI value 
in MD-ICFL-1 when R = 1.0 . Recall that our framework requires only about 1/K com-
munication cost for clients when downloading models in each round compared to IFCA. 
Besides, other baselines including FedFomo and ClusteredFL either do not consider the 
cluster structure of the clients or work in a multi-task learning manner, leading to lower 
averaged test accuracy.

Table 6   Averaged test accuracy 
on ratated MNIST(� = 100 ) with 
different K 

MD-ICFL-1 MD-ICFL-2

K = 1 92.30 91.56
K = 2 95.68 94.19
K = 3 97.01 96.94
K = 4 97.28 97.20
K = 5 97.25 97.27
K = 6 97.18 97.16

Fig. 5   The outputs of new models on pseudo dataset from Back-searching sampling



Machine Learning	

1 3

5.5 � Effects of K

To investigate the effects of K, we vary the value of K while fixing the real number of 
clusters to 4 and show the accuracy on Rotated MNIST in Table 6. Although the perfor-
mance of the model drops significantly when K is too small, it has little impact when the 
K is larger than the real number of clusters. Therefore, in real applications, we can set 
the value of K slightly larger to ensure the performance of the model.

5.6 � Visualization of Pseudo datasets

In order to demonstrate the effectiveness of the two sampling methods in Sect. 3, in this 
section we show that the generated pseudo samples are some meaningful and cluster-
biased points in the sample space rather than random noises. Specifically, we claim that 
generated pseudo datasets {Dk

j
} have high probabilities or confidence for its corresponding 

posterior distribution �j(y|x) indeed. We first perform our framework MD-ICFL-1 &2 for 
the task on the Rotated MNIST dataset (introduced in Sect. 5) and get the K optimized 
cluster models in the case where all clients are clustered correctly, based on which we 
generate pseudo datasets {Dk

j
} with more samples for each k and j. We test these pseudo 

datasets on K = 4 new models �new
j

 , each of which is directly trained with a single global 
feature distribution, i.e, the complete MNITS dataset with the degree of rotation 0, 90, 
180, or 270. Considering the the random nature of model initialization, we train these new 
models 5 times by initialing them using different random seeds. The averaged probability 
outputs of the pseudo samples in Dk

j
 of the corresponding model �new

j
 over 5 random seeds 

are visualized in Figs. 5 and 6. Each sub-figure presents the probability outputs over 10 
classes (row) w.r.t the pseudo samples drawn from �j(x|y), y = 0, 1,⋯ , 9 (column).

We observe that the high values of probabilities are almost located on the diagonal of 
the matrix. This means that these samples generated from �j(x|y) have high probabilities 
of the posterior �j(y|x) in general. Meanwhile, we also notice that the generated pseudo 
samples are visually indistinguishable (see Fig.  7). Therefore, our sampling methods 

Fig. 6   The outputs of new models on pseudo dataset from Generator-based sampling

Fig. 7   The examples of gener-
ated pseudo samples. a Back-
searching sampling. b Generator-
based sampling
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can be regarded as generating some points with high confidence w.r.t the global fea-
ture distribution �j(x|y) , which are enough to be used for representing the dissimilarity 
among distributions while not leaking the private raw data on participant clients.

6 � Conclusion and discussion

In this work, we introduce an iterative framework MD-ICFL for Clustered Federated 
Learning from the perspective of model distance. Our method can estimate the model 
distances between cluster models and client models on the server side and thus requires 
about 1/K downloading communication cost compared to the existing iterative CFL 
method IFCA. Experimental results show the effectiveness of our framework under sev-
eral CFL scenarios, especially the label non-iid settings. Moreover, in order to validate 
the sampling methods proposed in the paper, we show that these generated pseudo data 
instances indeed correspond to samples with high confidence.
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