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Abstract

While large scale pre-trained language models such as BERT [5] have achieved
great success on various natural language understanding tasks, how to efficiently
and effectively incorporate them into sequence-to-sequence models and the cor-
responding text generation tasks remains a non-trivial problem. In this paper,
we propose to address this problem by taking two different BERT models as the
encoder and decoder respectively, and fine-tuning them by introducing simple and
lightweight adapter modules, which are inserted between BERT layers and tuned on
the task-specific dataset. In this way, we obtain a flexible and efficient model which
is able to jointly leverage the information contained in the source-side and target-
side BERT models, while bypassing the catastrophic forgetting problem. Each com-
ponent in the framework can be considered as a plug-in unit, making the framework
flexible and task agnostic. Our framework is based on a parallel sequence decoding
algorithm named Mask-Predict [8] considering the bi-directional and conditional
independent nature of BERT, and can be adapted to traditional autoregressive
decoding easily. We conduct extensive experiments on neural machine translation
tasks where the proposed method consistently outperforms autoregressive baselines
while reducing the inference latency by half, and achieves 36.49/33.57 BLEU
scores on IWSLT14 German-English/WMT14 German-English translation. When
adapted to autoregressive decoding, the proposed method achieves 30.60/43.56
BLEU scores on WMT14 English-German/English-French translation, on par with
the state-of-the-art baseline models.

1 Introduction

Pre-trained language models [26, 27, 5, 39] have received extensive attention in natural language
processing communities in recent years. Generally, training of these models consists of two stages.
Firstly, the model is trained on a large scale monolingual corpus in a self-supervised manner, and
then fine-tuned end-to-end on downstream tasks with task-specific loss functions and datasets. In
this way, pre-trained language models have achieved great success on various natural language
understanding tasks such as reading comprehension and text classification, and BERT [5] is one of
the most successful models among them.

While fine-tuning BERT for common language understanding tasks is straightforward, for natural
language generation which is one of the core problems in NLP [2, 34, 24], how to incorporate BERT
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remains substantially challenging. We conclude the main challenges as three-fold considering that
the sequence-to-sequence framework [33] is the backbone model of generation tasks. On the encoder
side, as studied in [41], simply initializing the encoder with a pre-trained BERT will actually hurt the
performance. One possible explanation could be that training on a complex task with rich resources
(e.g., machine translation) leads to the catastrophic forgetting problem [23] of the pre-trained model.
On the decoder side, which can be treated as a conditional language model, it is naturally non-trivial
to marry unconditional pre-training with conditional fine-tuning. And the bidirectional nature of
BERT also prevents it from being directly applied to common autoregressive text generation. In
addition, fine-tuning the full model is parameter inefficient considering the enormous scale of recent
pre-trained language models [28] while being unstable and fragile on small datasets [20].

To tackle these challenges, in this paper, we propose a new paradigm of incorporating BERT into
text generation tasks under the sequence-to-sequence framework. Specifically, we construct our
framework based on the following steps. We first choose two pre-trained BERT models from the
source/target side respectively, and consider them as the encoder/decoder. For example, on the
WMT14 English-German machine translation task, we take bert-base-cased as the encoder
and bert-base-german-cased as the decoder. Then, we introduce lightweight neural network
components named adapter layers and insert them into each BERT layer to achieve the adaptation to
new tasks. While fine-tuning on task specific datasets, we freeze the parameters of BERT layers and
only tune the adapter layers. We design different architectures for adapters. Specifically, we stack
two feed-forward networks as the encoder adapter, mainly inspired from [3]; and an encoder-decoder
attention module is considered as the decoder adapter. Considering that BERT utilizes bi-directional
context information and ignores conditional dependency between tokens, we build our framework on
a parallel sequence decoding algorithm named Mask-Predict [8] to make the most of BERT and keep
the consistency between training and inference.

In this way, the proposed framework achieves the following benefits. 1) By introducing the adapter
modules, we decouple the parameters of the pre-trained language model and task-specific adapters,
therefore bypassing the catastrophic forgetting problem. And the conditional information can be
learned through the cross-attention based adapter on the decoder side; 2) Our model is parameter
efficient and robust while tuning as a benefit from the lightweight nature of adapter modules. In
addition, thanks to parallel decoding, the proposed framework achieves better performance than
autoregressive baselines while doubling the decoding speed; 3) Each component in the framework can
be considered as a plug-in unit, making the framework very flexible and task agnostic. For example,
our framework can be adapted to autoregressive decoding straightforwardly by only incorporating the
source-side BERT encoder and adapters while keeping the original Transformer decoder.

We evaluate our framework on various neural machine translation tasks, and the proposed framework
achieves 36.49/33.57 BLEU scores on the IWSLT14 German-English/WMT14 German-English
translation tasks, achieving 3.5/0.88 improvements over traditional autoregressive baselines with
half of the inference latency. When adapting to autoregressive decoding, we achieve 30.60/43.56
BLEU scores on the WMT14 English-German/English-French translation tasks, on par with the
state-of-the-art baseline models.

2 Background

Pre-Trained Language Models Pre-trained language models aim at learning powerful and con-
textual language representations from a large text corpus by self-supervised learning [26, 5, 27, 28,
39, 6, 22], and they have remarkably boosted the performance of standard natural language under-
standing tasks such as the GLUE benchmark [35]. BERT [5] is one of the most popular pre-training
approaches, whose pre-training objective consists of masked language modeling (MLM) and next
sentence prediction. The idea of MLM has been applied widely to other tasks such as neural machine
translation [8]. Given an input sentence x = (x1, x2, ..., xn), MLM first randomly chooses a fraction
(usually 15%) of tokens in x and substitutes them by a special symbol [MASK], then predicts the
masked tokens by the residual ones. Denote xm as the masked tokens and xr as the residual tokens,
the objective function of MLM can be written as:

LMLM(xm|xr; θenc) = −
|xm|∑
t=1

logP (xmt |xr; θenc), (1)

where |xm| indicates the number of masked tokens.
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Among the alternative pre-training methods, UniLM [6] extends BERT with unidirectional and
sequence-to-sequence predicting objectives, making it possible to fine-tune the pre-trained model for
text generation tasks. XLM [19] achieves cross-lingual pre-training on supervised parallel datasets
with a similar objective function as MLM. MASS [30] proposes a sequence-to-sequence monolingual
pre-training framework where the encoder takes the residual tokens xr as input and the decoder
predicts the masked tokens xm autoregressively. BART [21] adopts a similar framework and trains the
model as a denoising autoencoder. Although achieving impressive results on various text generation
tasks, these models are equipped with large-scale training corpora, therefore are time and resource
consuming to train from scratch. In this paper, we focus on leveraging public pre-trained BERT
models to deal with text generation tasks.

Incorporating Pre-Trained Models There exist several recent works trying to incorporate BERT
into text generation, which are mainly focused on leveraging the feature representation of BERT.
Knowledge distillation [15, 18] is applied in [37, 38, 4] to transfer the knowledge from BERT to
either the encoder [38] or decoder side [37, 4]. Zhu et al. [41] introduces extra attention based
modules to fuse the BERT representation with the encoder representation. Most of these methods
only incorporate BERT on either the source side or the target side. Our framework, on the other hand,
is able to utilize the information of BERT from both sides.

Fine-Tuning with Adapters Adapters are usually light-weight neural networks added into internal
layers of pre-trained models to achieve the adaptation to downstream tasks, and have been successfully
applied to fine-tune vision models [29], language models [16, 36] and multilingual machine translation
models [3, 17]. Different from these works, we explore combining two pre-trained models from
different domains into a sequence-to-sequence framework with the help of adapters.

Parallel Decoding Parallel sequence decoding hugely reduces the inference latency by neglecting
the conditional dependency between output tokens, based on novel decoding algorithms including non-
autoregressive decoding [9, 11, 32, 12], insertion-based decoding [31, 10] and Mask-Predict [8, 13].
In Mask-Predict, the framework is trained as a conditional masked language model as:

LCMLM(ym|yr, x; θenc, θdec) = −
|ym|∑
t=1

logP (ymt |yr, x; θenc, θdec), (2)

where (x, y) is a sample of parallel training pairs from the dataset, ym and yr are the masked/residual
target tokens, θenc and θdec are the parameters of the encoder and decoder respectively. During
inference, the model iteratively generates the target sequence in a mask-and-predict manner, which
fits well with the bi-directional and conditional independent nature of BERT. Inspired by that, we
conduct training and inference of our model in a similar way, which is introduced in Section 3.3.

3 Framework

In this section we introduce the proposed framework of fine-tuning BERT with adapters, termed as
Adapter-Bert Networks (AB-Net) and illustrated in Figure 1. We start with the problem definition.

Problem Definition Given two pre-trained BERT models XBERT and YBERT on the source side
and the target side respectively, we aim at fine-tuning them in a sequence-to-sequence framework by
introducing adapter modules, on a parallel training dataset (X ,Y) which consists of pairs of source
and target sequences (x, y) ∈ (X ,Y). The loss function of our framework is defined in a similar way
as the conditional MLM loss introduced in Equation (2):

L(ym|yr, x; θAENC, θADEC) = −
|ym|∑
t=1

logP (ymt |yr, x; θAENC, θADEC), (3)

where θAENC and θADEC indicate the parameters of encoder adapters and decoder adapters respectively.

3.1 Adapter-Bert Networks

The architecture of BERT [5] is akin to a Transformer encoder [34], which is constructed by self-
attention, feed-forward layers, layer normalization [1] and residual connections [14]. We denote a
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Figure 1: An illustration of the proposed framework. Blue blocks constitute the pre-trained BERT
models which are frozen during fine-tuning, and orange blocks represent the adapter components
which are inserted into each BERT layer and trained during fine-tuning. x and yr represent the source
sequence and the residual target sequence in Equation (3) respectively. M and N indicate the number
of layers of the encoder and decoder. For simplicity, we omit some architecture details such as layer
normalization and residual connections.

BERT layer block as XBERT(·) or YBERT(·). Please refer to Appendix A for more details about the
model architectures.

To fine-tune BERT for natural language generation, we introduce adapter layers and insert them into
each BERT layer. On the encoder side, we follow [3] and simply construct the adapter layer with
layer normalization as well as two feed-forward networks with non-linearity between them:

Z =W1 · (LN(H)), HAENC = H +W2 · (ReLU(Z)), (4)

where H and HAENC are the input and output hidden states of the adapter respectively, LN indicates
layer normalization, W1 and W2 are the parameters of the feed-forward networks. The only hyper-
parameter brought by this module is the dimension dAenc of the internal hidden state Z, through
which we can flexibly control the capacity and efficiency of adapter layers. Denoting the encoder
adapter layer as AENC(·), for each encoder layer in the framework, the hidden state is computed as:

HE
l+1 = AENC(XBERT(HE

l )), (5)

where HE
l is the output hidden state of the l-th encoder layer. And we take the hidden state HE of

the last encoder layer as the representation of the source sequence.

As for the decoder, the introduced adapter modules should be able to model the conditional in-
formation from the source side. Therefore, we adopt the multi-head cross-attention computed
over the encoder output and decoder input as the adapter. Denote the attention based adapter as
ADEC(Q,K, V ), then given the hidden output HD

l of the l-th decoder layer, the hidden state of the
(l + 1)-th layer is calculated as:

HD
l+1 = ADEC(YBERT(HD

l ), HE , HE). (6)

By introducing and carefully designing the adapter modules on the encoder and decoder, our frame-
work is able to utilize the pre-trained information from both sides as well as build the conditional
dependency, making it possible to apply the model on conditional text generation tasks.

3.2 Discussion

To the best of our knowledge, our framework is the first work that is able to jointly integrate pre-
trained models from both the encoder and decoder sides. Different from most previous works that
plainly utilize BERT as a feature extractor [41, 38, 37], we directly exploit BERT as the encoder and
decoder to make the most of pre-trained models. Comparing with the related works that also utilize
adapter modules while fine-tuning [16, 36, 3], we do not constrain the architectures of adapters to be
fixed, but adopt different architectures on the encoder and decoder sides. In addition, we can easily
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extend the architectures of adapters to adjust to different downstream tasks. For example, while
our framework is designed for parallel decoding, it is straightforward to transform it to traditional
autoregressive decoding by extending the cross-attention based adapter to a traditional Transformer
decoder. We show in Table 3a that our autoregressive variant is able to achieve strong performance.

Meanwhile, by integrating two large scale pre-trained models into a sequence-to-sequence framework,
we have illustrated their benefits as well as drawbacks. The main limitation is the extra computation
cost brought by the enormous pre-trained parameters. Fortunately, thanks to the lightweight and
flexible adapter modules, the scale of parameters that require training in our framework is less than
that of an autoregressive Transformer model. Besides, we have multiple ways to adjust the scale of
adapters. For example, while training, instead of inserting adapter layers to all BERT layers, we can
only insert them into the top layers to speed up training. We can also reduce the hidden dimensions
of adapters to control the parameter scale with negligible degradation of performance. A thorough
study is conducted regarding the flexibility of adapters in Section 4.4. It can be shown that, at the
inference stage, even with two large pre-trained models introduced, our framework based on parallel
decoding can still achieve faster decoding speed than traditional autoregressive baselines.

3.3 Training and Inference

We mainly follow the training and inference paradigm used in [8]. To decode the target sequence
in parallel, the model needs to predict the target length conditioned on the source sequence, i.e.,
modeling P (|y| |x). We add a special [LENGTH] token to the encoder input, and take its encoder
output as the representation, based on which the target length is predicted. The length prediction loss
is added to the word prediction loss in Equation (3) as the final loss of our framework. In Equation (3),
given a training pair (x, y), we randomly mask a set of tokens in y with [MASK], and the number of
the masked tokens |ym| is uniformly sampled from 1 to |y| instead of being computed by a fixed ratio
as BERT [5]. The masked tokens are denoted as ym while the residual tokens are denoted as yr,

While inference, the target sequence is generated iteratively in a mask-and-predict manner. Specifi-
cally, after the length of the target sequence is predicted by the encoder, the decoder input is initialized
with the [MASK] symbol at all positions. After the prediction process of the decoder, a number of
tokens with the lowest probabilities in the decoder output are replaced by [MASK]. The obtained
sequence is taken as the decoder input of the next iteration until the stop condition is hit. The number
of masked tokens at each iteration follows a linear decay function utilized in [8]. As for the stop
condition, the final result is obtained either when the upper bound of iterations is reached, or the
obtained target sequence do not change between two consecutive iterations. Details of the decoding
algorithm are provided in Appendix B.

4 Experiments

We mainly conduct experiments on neural machine translation to evaluate our framework. We also
explore its autoregressive variant in Section 4.3, followed with ablation studies in Section 4.4.

4.1 Experimental Setup

Datasets We evaluate our framework on benchmark datasets including IWSLT14
German→English (IWSLT14 De-En)2, WMT14 English↔German translation (WMT14 En-De/De-
En)3, and WMT16 Romanian→English (WMT16 Ro-En)4. We show the generality of our method
on several low-resource datasets including IWSLT14 English↔Italian/Spanish/Dutch (IWSLT14
En↔It/Es/Nl). We additionally consider WMT14 English→French translation (WMT14 En-Fr)
for autoregressive decoding. We follow the dataset configurations of previous works strictly. For
IWSLT14 tasks, we adopt the official split of train/valid/test sets. For WMT14 tasks, we utilize
newstest2013 and newstest2014 as the validation and test set respectively. For WMT16 tasks,
we use newsdev2016 and newstest2016 as the validation and test set. For autoregressive decoding,
we consider WMT16 Ro-En augmented with back translation data5 to keep consistency with base-

2https://wit3.fbk.eu/
3https://www.statmt.org/wmt14/translation-task
4https://www.statmt.org/wmt16/translation-task
5http://data.statmt.org/rsennrich/wmt16_backtranslations/ro-en
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Table 1: The BLEU scores of the proposed AB-Net and the baseline methods on the IWSLT14 De-En,
WMT16 Ro-En and WMT14 En-De/De-En tasks. The per-sentence decoding latency and the number
of trained parameters on the WMT14 En-De task are also reported. “∗” indicates the results obtained
by our implementation, “/” indicates the corresponding result is not provided.

IWSLT14 WMT16 WMT14 #Trained
Models De−En Ro−En En−De De−En Latency Parameters

Transformer-Base [34] 33.59∗ 34.46∗ 28.04∗ 32.69∗ 778∗ ms 74M

Mask-Predict [8] 31.71∗ 33.31 27.03 30.53 161∗ ms 75M
BERT-Fused NAT [41] 33.14∗ 34.12∗ 27.73∗ 32.10∗ 260∗ ms 90M

AB-Net 36.49 35.63 28.69 33.57 327 ms 67M
AB-Net-Enc 34.45 / 28.08 / 165 ms 78M

lines [41]. We tokenize and segment each word into wordpiece tokens with the internal preprocessing
code in BERT6 using the same vocabulary as pre-trained BERT models, resulting in vocabularies
with 30k tokens for each language. More details of the datasets are described in Appendix C.

Model Configurations We mainly build our framework on bert-base models (nlayers = 12,
nheads = 12, dhidden = 768, dFFN = 3072). Specifically, for English we use bert-base-uncased on
IWSLT14 and bert-base-cased on WMT tasks. We use bert-base-german-cased for German
and bert-base-multilingual-cased for all other languages. When extending to autoregressive
decoding, we utilize bert-large-cased (nlayers = 24, nheads = 16, dhidden = 1024, dFFN =
4096) for English to keep consistency with [41]. For adapters, on the encoder side, we set the
hidden dimension between two FFN layers as dAenc = 2048 for WMT tasks and 512 for IWSLT14
tasks. On the decoder side, the hidden dimension of the cross-attention module is set equal to the
hidden dimension of BERT models, i.e., dAdec = 768 for bert-base models and dAdec = 1024 for
bert-large models. We train our framework on 1/8 Nvidia 1080Ti GPUs for IWSLT14/WMT tasks,
and it takes 1/7 days to finish training. Our implementation is based on fairseq and is available at
https://github.com/lemmonation/abnet.

Baselines We denote the proposed framework as AB-Net, and to make a fair comparison with
baseline models, we also consider a variant of our model that only incorporates BERT on the
source-side with encoder adapter layers and denote it as AB-Net-Enc. With parallel decoding, we
consider Mask-Predict [8] as the backbone training and inference algorithm, based on which we
re-implement BERT-Fused [41] and take it as the main baseline, denoted as BERT-Fused NAT. With
autoregressive decoding where BERT is utilized only on the source-side, we compare our framework
with BERT-Fused [41], BERT-Distilled [4] and CT-NMT [38] with their reported scores.

Inference and Evaluation For parallel decoding, we utilize sequence-level knowledge distilla-
tion [18] on the training set of WMT14 En-De/De-En tasks, to keep consistency with [8]. This
technique has been proved by previous non-autoregressive models that it can produce less noisy and
more deterministic training data [9]. We use the raw training data for all other tasks. While inference,
we generate multiple translation candidates by taking the top B length predictions into consideration,
and select the translation with the highest probability as the final result. We set B = 4 for all tasks.
And the upper bound of iterative decoding is set to 10. For autoregressive decoding, we use beam
search with width 5 for all tasks. We utilize BLEU scores [25] as the evaluation metric. Specifically,
we use multi-bleu.perl and report the tokenized case-insensitive scores for IWSLT14 tasks and
tokenized case-sensitive scores for WMT tasks.

4.2 Results

The results of our framework with parallel decoding are listed in Table 1. The autoregressive
Transformer model with base configuration [34] is also compared as a baseline. In addition to BLEU
scores, we also report the per-sentence decoding latency on the newstest2014 test set as well as
the number of trained parameters on the WMT14 En-De task. As can be observed from Table 1,

6https://github.com/huggingface/transformers/blob/master/src/transformers/
tokenization_bert.py
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Table 2: The performance of the proposed AB-Net on IWSLT14 low-resource language pairs.
Mask-Predict as well as the autoregressive Transformer-Base model are considered as baselines.

Models En-It It-En En-Es Es-En En-Nl Nl-En

Transformer-Base [34] 29.26 33.57 36.04 39.31 31.30 36.19

Mask-Predict [8] 26.05 29.50 32.15 35.37 25.78 32.91
AB-Net 31.81 34.20 37.45 42.66 32.52 38.94

Table 3: (a) The results of machine translation with autoregressive decoding of our framework and
baseline methods. We directly copy the best results reported in their papers. Transformer-Big indicates
Transformer with transformer-big configuration. (b) The ablation study on different components
of the proposed model conducted on the test set of IWSLT14 De-En. “Decoder” indicates a traditional
Transformer decoder. × indicates the setting with no convergence reached during training.

(a) Results on autoregressive decoding.

WMT14 WMT16
Models En−De En−Fr Ro−En

Transformer-Big [34] 28.91∗ 42.23∗ 36.46∗

BERT-Distilled [4] 27.53 / /
CT-NMT [38] 30.10 42.30 /
BERT-Fused [41] 30.75 43.78 39.10

AB-Net-Enc 30.60 43.56 39.21

(b) Ablation study.

Model Variants BLEU

Transformer-Base 33.59
(1): XBERT + Decoder ×
(2): (1) + AENC 34.45
(3): (2) + YBERT ×
(4): (3) + ADEC 36.49
(5): (4) + ADEC on top 6 layers 34.60
(6): (5) + AENC on top 6 layers 33.78

with parallel decoding, Mask-Predict achieves considerable inference speedup but also suffers from
performance degradation at the same time. Equipped with pre-trained BERT models from both sides,
our framework obtains a huge performance promotion compared with Mask-Predict. In addition, we
also outperforms the autoregressive baseline Transformer-Base by a firm margin with similar scales
of trainable parameters, while achieving 2.38 times speedup regarding the inference speed. Compared
with BERT-Fused NAT [41] which utilizes BERT only on the encoder side, our framework as well as
the BERT-encoder-only variant AB-Net-Enc both achieve better performance with less parameters to
train, illustrating that the introduced adapter modules are able to leverage more information in a more
efficient way.

Regarding the scale of trained parameters, we can notice that AB-Net-Enc actually introduces more
parameters than AB-Net which utilizes BERT from both sides. The reason lies in the embedding
layer. By incorporating BERT through adapters, the proposed framework gets rid of training the giant
embedding layer which usually introduces ~15M parameters to train on each side if embeddings
are not shared. Comparing with BERT-Fused NAT [41], our framework is able to save ~26%
parameters while incorporating information from both sides, providing a more cost-effective solution
for leveraging pre-trained models based on adapters.

Results on Low-Resource Language Pairs We also study the performance of our framework on
three low-resource language pairs in the IWSLT14 dataset. Results on both directions are shown
in Table 2. The proposed AB-Net consistently outperforms the compared baselines among various
language pairs, demonstrating the generality of our method.

4.3 Exploration on Autoregressive Decoding

Here we explore the application of our framework on autoregressive decoding. As the bidirectional
and conditional independent nature of BERT prevents it from being applied to autoregressive decoding,
to show the flexibility of the proposed framework, we directly use AB-Net-Enc as the autoregressive
variant, whose encoder is initialized with the source-side BERT model and equipped with encoder
adapter layers, while the decoder is an autoregressive Transformer Decoder. We compare our model
with three fine-tuning baselines including BERT-Fused [41], BERT-Distilled [4] and CT-NMT [38].
Results are shown in Table 3a. Our framework outperforms the Transformer-Big baseline over
all three translation tasks, with improvements from 1.33 to 2.75 BLEU scores. BERT-Fused [41]
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also achieves considerable performance. Nevertheless it is worth noting that BERT-Fused requires
pre-training a standard Transformer model at first (without which there will be a drop of 2.5 BLEU
score as reported), which is time consuming. While we simply train our Transformer decoder from
scratch, we expect additional performance gains if similar tricks are applied.

We have also explored other alternatives. In practice, the bi-directional property is achieved by setting
the attention mask as a matrix with all 1s to enable each token to see all other tokens. Therefore, in
our framework, we try to fine-tune BERT on autoregressive decoding by setting the attention matrix
of the decoder as an upper triangle matrix to prevent the model from attending to the future words.
However, in this way, we can only achieve sub-optimal results compared with the BERT encoder
variant AB-Net-Enc (26.40 vs 29.96 on the test set of IWSLT14 En-De). One possible reason is
that the introduced adapter parameters are not powerful enough to change the bidirectional nature of
BERT without tuning it. Another solution is to mingle autoregressive pre-trained models with BERT
to construct a hybrid framework, e.g., a BERT encoder and a GPT decoder, which fits well in nature
with an autoregressive sequence-to-sequence model. We leave that for future work.

4.4 Ablation Study

In this subsection, we further conduct ablation studies regarding the scale of adapters, the proposed dif-
ferent components, different fine-tuning strategies and baselines with back-translation. Experiments
are conducted on the IWSLT14 De-En dataset with parallel decoding.
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Figure 2: The study on the scale of encoder
adapters. Blue lines with the left y-axis indicate
BLEU scores while red lines with the right y-axis
indicate the number of parameters to train on the
encoder side. Trm indicates the Transformer-Base
model. Best view in color.

Ablations on the Scale of Adapters We in-
vestigate the influence of the scale of adapters in
Figure 2. Specifically, we fix the scale of the de-
coder adapter and tune the hidden dimension of
the encoder adapter dAenc in a wide range (26 to
210). We also plot the number of trained parame-
ters on the encoder side in our framework and in
the Transformer-Base model to make a compari-
son. From Figure 2, we find that our framework
is robust to the scale of adapters, e.g., halving
the dimension from 29 to 28 only results in a 0.4
drop of the BLEU score. Compared with the
autoregressive Transformer baseline, our frame-
work is able to achieve better performance with
only 5% parameters to train (getting 34.81 score
when dAenc = 64), illustrating the efficiency of
adapters.

Ablations on the Different Proposed Compo-
nents In Table 3b, we study the influence of
different components in our framework includ-
ing the pre-trained BERT models (XBERT and
YBERT) and adapter layers (AENC and ADEC).
We can find that without utilizing adapters on either side, the model cannot converge during training,
indicating the necessity of the adapter modules. While BERT models are usually very deep (12 layers),
we also explore to insert adapters into top layers only (i.e., 7~12-th layers) to reduce the scale of the
introduced parameters in settings (5) and (6). As shown in Table 3b, when only introducing adapters
to the top layers of both XBERT and YBERT following setting (6), our framework still outperforms
the autoregressive Transformer baseline, showing that it is flexible to balance the performance and
scale of our framework. In addition, we can find that the decoder adapter contributes more than the
encoder adapter, illustrating the importance of modeling the conditional dependency over all scales
of hidden representations.

Comparison with Different Fine-Tuning Strategies In addition to the proposed model which
freeze the BERT components and only tune the adapters while training, we also consider the variant
that fine-tunes the full model in AB-Net (AB-Net FB), or trains AB-Net from scratch (AB-Net SC).
We train all variants for 50 epochs and evaluate on the validation set of IWSLT14 De-En. Results
are shown in Figure 3a, where AB-Net converges significantly faster than AB-Net FB, and AB-Net
SC does not converge. When fine-tuning the full model, more GPU memory is required because
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Figure 3: (a): Results of different fine-tuning strategies. (b): Results of baselines trained with extra
monolingual data via back-translation. All settings are evaluated on the validation set of the IWSLT14
De-En task.

more gradient states need to be stored, therefore we have to halve the batchsize to fit the model
into GPUs, which slows down the training process. With the same batchsize, AB-Net saves 29%
GPU memory and 26% wall-clock training time compared with AB-Net FB. Moreover, we find that
directly fine-tuning BERT is very unstable and sensitive to the learning rate, while only tuning the
adapters alleviates this problem and is relatively more robust.

Comparison with Back-Translation Back-translation is a simple yet effective data augmentation
method in NMT [7, 40]. While we leverage BERT models which are pre-trained with extra mono-
lingual data, we also consider baselines trained with extra monolingual data via back-translation to
construct fair comparisons. Specifically, we first train an AT model on the IWSLT14 En-De task (with
a 28.96 BLEU score), and then use it to generate additional training pairs on the English Wikipedia
data, which is a subset of the training corpus of BERT. Results are shown in Figure 3b. We can find
that the gains brought by back-translation are limited, and adding over 1M monolingual data actually
brings a performance drop. In addition, comparing with our method, back-translation requires to train
another model and decode a large amount of monolingual data, which is time consuming.

5 Conclusion

In this paper, we propose a new paradigm of incorporating BERT into text generation tasks with
a sequence-to-sequence framework. We initialize the encoder/decoder with a pre-trained BERT
model on the source/target side, and insert adapter layers into each BERT layer. While fine-tuning on
downstream tasks, we freeze the BERT models and only train the adapters, achieving a flexible and
efficient framework. We build our framework on a parallel decoding method named Mask-Predict
to match the bidirectional and conditional independent nature of BERT, and extend it to traditional
autoregressive decoding in a straightforward way. Our framework avoids the catastrophic forgetting
problem and is robust when fine-tuning pre-trained language models. The framework achieves strong
performance on neural machine translation while doubling the decoding speed of the Transformer
baseline. In the future, we will try to combine two different pre-trained models together in our
framework, such as a BERT encoder and a GPT/XLNet decoder, to explore more possibilities on
autoregressive decoding.
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Broader Impact

The proposed framework can be seen as a new and general paradigm of designing sequence-to-
sequence models by leveraging pre-trained models, which has a wide range of applications not
limited to the text generation tasks discussed in the paper, e.g., end-to-end speech/image translation.
If proper pre-trained models for the specific task are provided (such as BERT for text or ResNet for
images), our framework can then provide a cost-effective solution to leverage them without tuning
their massive parameters or re-training them from scratch, which will save lots of resources for
researchers who are individual or affiliated with academic institutions. In addition, different from
most pre-training approaches which particularly focus on English, our framework works well when
dealing with various low-resource languages as shown in the paper, therefore we may help improve
the performance of existing low-resource machine translation systems.

On the other hand, although we only need to tune the adapters while training, we have to load the
whole framework into GPUs, which limits the choices of hyper-parameters because large-scale BERT
models will occupy more memory than traditional Transformer models. As a consequence, our
framework may not perform as its best on GPUs with limited memory. From a broader perspective,
the proposed framework is not free from the risks of automation methods. For example, the model
may inherit the biases contained in data. And in our framework, both pre-training and fine-tuning
datasets may have biases. Therefore we encourage future works to study how to detect and mitigate
similar risks that may arise in our framework.
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