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Abstract. Aspect-based sentiment analysis aims to recognize the sentiment
polarity of an aspect in reviews. In general, to analyze the sentiment of an aspect
in a sentence, it is essential to capture the dependencies between aspects and
the corresponding contexts. Recently, graph neural networks over global depen-
dency structures like dependency trees or self-attention score matrices have been
explored for this task. However, these models rely heavily on the quality of infor-
mation extracted from the global dependency structures. In the meantime, the
pairwise correlations between aspects and contexts provide an equally important
perspective for sentiment analysis, which is usually ignored in previous works.
Motivated by this, we propose a novel approach for aspect-based sentiment anal-
ysis by integrating the information extracted from global dependency structures
as well as pairwise correlations. To capture the aspect-to-text correlations, we
design a CAGCN module based on the cross-attention mechanism. Meanwhile,
to effectively exploit the syntactic graph, we design an SAGCN module with
the self-attention mechanism to build the overall text-to-text connections. Exper-
imental results on five benchmarks show the effectiveness of our proposed model,
producing significantly better results than the baselines.

Keywords: Aspect-based sentiment analysis · Attention mechanism ·
Dependency graph

1 Introduction

Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task,
which aims to determine the sentiment polarities of given aspects in a sentence. For
example, in the comment “the food is so delicious, but the service is horrible”, the sen-
timents of the two aspects “food” and “service” are positive and negative, respectively.

To tackle the ABSA task which is essentially a classification problem, early
works [17,19] have leveraged recurrent neural networks (RNNs) or convolutional neu-
ral networks (CNNs) to build the sentiment classifier. Nevertheless, these methods treat
the sentence as a word sequence, and it is hard for them to model the dependency rela-
tionship between an aspect and its corresponding opinion expressions which can be far
away from the aspect term.
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To address that, many attention-based models [4,19] have been proposed with
appealing results. They use the attention mechanism to model the dependency rela-
tionship between an aspect and its corresponding opinion expressions. However, they
can be susceptible to noises in the dependency information. For example, there may
exist several aspects with different opinion expressions, which may lead the attention
mechanism to mistakenly connect an aspect with syntactically unrelated context words.

Fig. 1. An example of a dependency tree where opinion expressions (yellow) and the aspect
expressions (blue) are connected based on their syntactic dependencies. (Color figure online)

To better exploit the dependency information, more recent efforts [15,22] have been
devoted to incorporate the dependency tree into the graph based models. For exam-
ple, the dependency tree depicted in Fig. 1 connects the aspect term “service” with the
opinion word “horrible” with a single path, which allows the graph based models to
better capture the syntactic dependencies. Although these models have shown better
performance than those without considering syntactic relations, they still suffer from
two potential limitations. First, they are vulnerable to parsing errors. Second, informal
expressions in tweets, blogs and review comments also keep these models from work-
ing as well as expected. To address these issues, several recent works [1,6,23] explore
the idea of combining different types of graph. However, these models mainly focus on
extracting information from the global dependency structures, without considering the
aspect-to-text correlations, which also provide valuable information.

To tackle the challenges mentioned before, we integrate the information extracted
from global dependency structures as well as pairwise aspect-to-text correlations by
constructing two separate graphs, based on which we propose a cross and self attention
based graph convolutional network (CASAGCN) in this paper. On the one hand, we
capture the aspect-to-text correlations using a sparse cross-attention mechanism. Moti-
vated by [1], we replace the softmax function with α-entmax function [10] to project the
resulting matrix into a sparse probability simplex to connect aspect words with highly
relevant items. On the other hand, we build the global text-to-text connections based on
the self-attention mechanism. Moreover, motivated by [14], which employs the saliency
map as a priori knowledge to holistically refine the attention distribution, we propose
to impose a syntactical guidance on the attention weights using dependency probability
matrix of the sentence.

Our contributions are as follows:

– We integrate the information extracted from global dependency structures as well
as pairwise aspect-to-text correlations by constructing two separate graphs, based
on which we propose a cross and self attention based graph convolutional network
(CASAGCN).
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– We introduce the sparse cross-attention that enables the CAGCN module to cap-
ture the highly relevant context words for the given aspect. And we guide the self-
attention score matrix with the dependency probability matrix by shortening their
distance in the SAGCN module.

– Extensive experiment results on five public standard datasets verify the importance
of integrating the overall dependency structures with the pairwise aspect-to-text cor-
relations, and demonstrate the effectiveness of our model.

2 Related Work

ABSA is a fine-grained branch of sentiment classification, the goal of which is to iden-
tify the sentiment polarity of the given aspect in one sentence. Recent studies focus
on developing various deep learning models. Among them, pioneering LSTM-based
models [17] have been proposed to capture the contextual information which is highly
related to the given aspect. These models use relatively simple methods to retrieve
important information which is semantically related to the given aspect in the sen-
tence context. Despite the effectiveness of these methods, it is still challenging for
them to discriminate different sentiment polarities when facing complicated sentences
with long-distance dependency. In addition to LSTM-based neural networks, attention
mechanisms have been widely employed to model the relation between an aspect and
its corresponding context [7,16,19,21]. For instance, an attention-over-attention neural
network is proposed in [19] to explicitly capture the interactions between aspects and
contexts. [16] focuses on learning extra aspect embeddings and identifying the conflict
opinions using positive and negative attention.

More recently, a line of works leverage the syntactic knowledge to help build the
connections between aspects and opinions. Specifically, [15] uses a GCN to model the
sentence’s structure through its dependency tree. [1] proposes three methods to induce a
latent graph, and combine it with the dependency graph to learn aspect-specific features.
Instead of using a static tree obtained from off-the-shelf dependency parsers,

Further, several studies integrate different sources of information for the ABSA
task. For example, [23] utilizes the word co-occurrence matrix and dependency tree to
incorporate the statistic and syntactic information, followed by constructing a Bi-level
GCN to distinguish different edges in a graph. [6] combines a semantic graph and a
syntactic graph to alleviate the issues of parsing errors, informal expressions, and the
complexity of online reviews.

3 Preliminaries

We start with a brief introduction of the GCN, which is a crucial part in our model.

3.1 Graph Convolutional Network (GCN)

GCN [5] can be considered as a CNN variant that encodes information for structured
data. Specifically, GCN aggregates information from directly connected nodes. Further,
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with multi-layer GCNs, each node in a graph can get more information from distant
nodes. Formally, given a graph with n nodes and its corresponding adjacency matrix
A ∈ R

n×n, the hidden representation of the i-th node at the l-th layer, denoted as hl
i, is

updated as follow:

hl
i = σ(

n∑

j=1

AijW
lhl−1

j + bl) (1)

where W l is the parameter matrix, bl is a bias term and σ is an activation function.

4 Cross and Self Attention Based Graph Convolutional Network
(CASAGCN)

Fig. 2.Model architecture

This section introduces the proposed framework of Cross and Self Attention based
Graph Convolutional Network (CASAGCN) in details. The full architecture is shown
in Fig. 2. In the ABSA task, the input is a sentence-aspect pair (s, a), where s =
{w1, w2, ..., wn}, and a = {a1, a2, ..., am} is a sub-sequence of s. Given (s, a), we
utilize BiLSTM or BERT(base) [2] to get the hidden representations. For the BiL-
STM encoder, we first map each word in s into a real value vector and get the
sequence of word embeddings x = {x1, x2, ..., xn} using the embedding lookup table
E ∈ R

|V |×de , where |V | is the size of the vocabulary and de is the dimensionality of
word embeddings. Then, we feed the word embeddings of a sentence into a BiLSTM
encoder to obtain hidden state vectors H = {h1, h2, ..., hn}, where ht ∈ R

2dl is the
output at time t and dl denotes the output dimensionality of a unidirectional LSTM.
For the BERT encoder, we construct the input as “[CLS] sentence [SEP] aspect [SEP]”
to get the aspect-aware hidden representations. Next, the hidden state vectors are sent
into the CAGCN and SAGCN modules, which will be described below. Finally, we
aggregate representations of all aspect words from CAGCN and SAGCN to obtain the
sentiment representation.



592 M. Zhang et al.

4.1 Cross-Attention Based GCN (CAGCN)

To fully exploit the pairwise aspect-to-text correlations, we construct a cross atten-
tion based graph convolutional network by building the aspect-to-text connections with
sparse cross-attention mechanism.

Sparse Cross-Attention. Cross-attention is adopted here to measure the similarity
scores between aspect words and context words. Formally, given a sentence represen-
tation H , we can mask the non-aspect words to get Ha, the adjacency matrix Acag is
then defined as

Acag = softmax(
QWQ × (KWK)�√

d
) (2)

where Q and K are copies of Ha and H , respectively. WQ ∈ R
d×d and WK ∈ R

d×d

are model parameters. Besides,
√

d is a scale constant used to prevent dot products from
growing large in magnitude.

However, cross-attention connects aspect words with every word in the sentence,
which can introduce noise from irrelevant contexts. To address that, we consider sparse
cross-attention to connect aspect words with highly relevant items. Specifically, we
replace the softmax function in Eq. (2) with the α-entmax1 function [10] which is more
likely to assign a low-scoring choice with a zero probability to make the constructed
adjacency matrix more sparse, that is:

Acag = α-entmax(
QWQ × (KWK)�√

d
) (3)

where α-entmax(z) = argmaxp∈Δd p�x+H�
α (p) and H�

α (p) is an entropy function.
After initializing the node representations with the hidden state vectors H , we apply

GCN on the cross-attention graph Acag constructed above. Using Eq. (1), we obtain the
final graph representations Hcag = {hcag

1 , hcag
2 , ..., hcag

n } from the CAGCN module,
where hcag

i ∈ R
d is the hidden representation of the i-th node. Specially, for the aspect

nodes, we denote their hidden representations as Hcag
a .

4.2 Self-Attention Based GCN (SAGCN)

In addition to the pairwise aspect-to-text correlations, we also capture the text-to-text
relations at both the semantic and syntactic levels. However, instead of directly incor-
porating the syntactic graph, we take it as a soft guide to mitigate the effects of parsing
errors and informal expressions. Specifically, in the SAGCN module, we first capture
the global semantic correlations via the self-attention mechanism. Meanwhile, consid-
ering that the self-attention mechanism may take the wrong words as descriptors, we
shorten the distance between the attention matrix and the dependency probability matrix
from the dependency parser to guide the self-attention score distribution.

1 We use the implementation from https://github.com/deep-spin/entmax.

https://github.com/deep-spin/entmax
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Dependency Graph Guided Self-Attention. Similar to Eq. (2), we first compute the
attention score matrixAsa using a self-attention layer, where matricesQ andK are both
equal to the hidden representations from the previous BiLSTM layer. Second, instead of
using the final discrete output of a dependency parser, we get the dependency probabil-
ity matrix G from the external dependency parser, which could capture rich structural
information by providing all latent syntactic structures [6]. We proceed to transform G
to an undirected graph by

Adep = G + G�. (4)

In addition, a self loop is included for each node in the dependency graph Adep to keep
the information of each node itself. The final graph can then be obtained by combining
the two graphs Asa and Adep as follows:

Asag
i =

Asa
i + λAdep

i∑N
j=1 Asa

ij + λ
∑N

j=1 Adep
ij

(5)

where Ai represents the i-th row of a graph, Aij is the j-th element in Ai, and λ is a
hyperparameter to control the distance Asa moving towards Gdep.

Similarly, we obtain the graph representations Hsag from the SAGCN module, and
the representations for the aspect nodes are denoted as Hsag

a .
To obtain the final feature representation for the ABSA task, we apply average

pooling on the aspect node representations from the CAGCN and SAGCN modules,
followed by concatenating them. Formally,

z = Concat(f(Hcag
a ), f(Hsag

a )) (6)

where f(·) represents the average pooling function, and z is the final aspect-specific
representation. Then, z is used to calculate the sentiment probability distribution with a
linear classifier. Formally,

p = softmax(Wlz + bl) (7)

where Wl and bl are model parameters.

Objective. The model is trained to minimize the following loss function:

�(θ) = −
N∑

i=1

∑

c∈C

log(p) + λ1||θ||22 + λ2RO (8)

where θ represents all trainable model parameters, λ1 and λ2 are regularization coef-
ficients, and C denotes all distinct sentiment polarities. The first two terms represent
the standard cross-entropy loss and L2-regularization, respectively. In addition, fol-
lowing [6], we add the third term to encourage orthogonality among the rows of the
self-attention score matrix because the related items of each word should be in different
regions in a sentence, which can be formulated as:

RO = ||AsagAsag� − I||F (9)
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5 Experiments

5.1 Datasets

We conduct experiments on five benchmark datasets for aspect-based sentiment analy-
sis, including Lap14, Rest14, Rest15, Rest16 and Twitter. The Lap14, Rest14, Rest15,
Rest16 datasets are from the SemEval 2014 ABSA challenge [11], SemEval 2015
ABSA challenge [12] and SemEval 2016 ABSA challenge [13], respectively. Twitter
consists of tweets from [3]. The statistics for five datasets are summarized in Table 1.

Table 1. Dataset statistics

Dataset Lap14 Rest14 Twitter Rest15 Rest16

Train 2282 3608 6051 1204 1748

Test 632 1119 677 542 616

5.2 Implementation and Parameter Settings

The 300-dimensional Glove vectors2 [9] are used to initialize word embeddings for all
our experiments. Moreover, the dimensionality for part-of-speech (POS) embeddings
and position embeddings is set to 30 as in [15] to identify the relative position between
each word and the aspect. Then, the word, POS and position embeddings are concate-
nated and sent to a BiLSTM model as input. The hidden size of the BiLSTM model
is set to 50. The 1.25-entmax function is applied to each row of the resulted matrix in
CAGCN. The dependency parser we use in SAGCN is LAL-Parser3 [8]. The hyper-
parameter λ is set to 1.0, 1.4, 1.0, 1.0 and 1.0 for the five datasets, respectively. The
number of GCN layers in CAGCN and SAGCN are set to 1 and 2, respectively. And the
dropout rate of the CAGCN and SAGCN modules is set to 0.1. All the model weights
are initialized from a uniform distribution. We use the Adam optimizer with learning
rate 0.002 for all datasets. The CASAGCN model is trained in 40 epochs with a batch
size of 16. λ1 is set to 10−4, and λ2 is set to 0.2, 0,2, 0.3, 0.2 and 0.2 for the five datasets
respectively. We train our framework on one Nvidia 1080Ti GPU, and it takes less than
one hour on each dataset to finish training.

5.3 Baseline Methods

We compare the proposed CASAGCN model to a list of baselines, which are briefly
summarized below.

(1) IAN [7] employs an interactive attention mechanism to learn the representation for
the given aspect.

2 https://nlp.stanford.edu/projects/glove/.
3 https://github.com/KhalilMrini/LAL-Parser.

https://nlp.stanford.edu/projects/glove/
https://github.com/KhalilMrini/LAL-Parser
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(2) ASGCN [22] implements a multi-layered GCN on top of the LSTM output and
uses a masking mechanism to obtain high-level aspect-specific features.

(3) CDT [15] encodes the dependency tree using GCN to propagate dependency infor-
mation from opinion words to aspect words.

(4) DualGCN [6] designs a dual graph convolutional networks which takes both syn-
tactic and semantic information into consideration.

(5) DGEDT-BERT [18] jointly considers the flat representations and graph-based rep-
resentations learnt from the corresponding dependency graph in an iterative inter-
action manner.

(6) BERT4GCN [20] incorporates the knowledge from the intermediate layers in
BERT which can enhance GCN and obtain better features of ABSA task.

(7) DualGCN-BERT [6] is DualGCN that uses a BERT as encoder.
(8) SSEGCN-BERT [24] proposes a novel syntactic and semantic enhanced graph

convolutional network to learn the aspect-related semantic correlations and obtain
comprehensive syntactic structure information.

5.4 Comparison Results

In this subsection, we compare the recent methods with CASAGCN using the accuracy
and macro-averaged F1-score as the main evaluation metrics. The results are shown in
Table 2. From these results, we observe that our CASAGCN model consistently outper-
forms all the compared models on the Lap14, Twitter and Rest16 datasets, and achieves
competitive performance on the Rest14 and Rest15 datasets. These results demon-
strate the effectiveness of our CASAGCN for integrating the information extracted
from global dependency structures as well as pairwise aspect-to-text correlations. Com-
pared to the attention-based models like IAN, our CASAGCNmodel utilizes both cross-
attention and self-attention guided by syntactic knowledge simultaneously to model the
dependencies between the aspect and opinion words. As a consequence, it can reduce
the noise caused by the attention mechanism. Besides, the graph based and syntax inte-
grated methods (ASGCN, CDT) achieve better performance than those without con-
sidering syntax. However, informal expressions or parsing errors still degrade the per-
formance of these models, while our CASAGCN can perform better when facing the
complicated and informal sentences and mitigate the noises from parsing errors. More-
over, utilizing BERT as the encoder, our CASAGCN-BERT also achieves better perfor-
mance than BERT-based models (DGEDT-BERT, BERT4GCN, DualGCN-BERT, and
SSEGCN-BERT).

5.5 Ablation Study

To investigate the influence of each component in our CASAGCN model, we conduct
extensive ablation studies on the Lap14 dataset and show the results in Table 3. As
expected, all simplified variants have lowered accuracy. Compared with the complete
CASAGCN model, the decreased performance of both CAGCN and SAGCN validates
that integrating the information extracted from global dependency structures as well
as pairwise aspect-to-text correlations is better than focusing only on one of them. In
addition, we find that CAGCN and SAGCN have competitive results, indicating that
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Table 2. Performance comparison on five benchmark datasets. The best scores are bolded.

Models Lap14 Rest14 Twitter Rest15 Rest16

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

IAN [7] 72.05 67.38 79.26 70.09 72.50 70.81 78.54 52.65 84.74 55.21

ASGCN [22] 75.55 71.05 80.77 72.02 72.15 70.40 79.89 61.89 88.99 67.48

CDT [15] 77.19 72.99 82.30 74.02 74.66 73.66 79.42 61.68 85.58 69.93

DualGCN [6] 78.48 74.74 84.27 78.08 75.92 74.29 81.37 60.09 88.96 67.58

CASAGCN 79.43 75.80 84.18 77.55 76.22 74.60 81.73 64.33 89.45 72.98

DGEDT-BERT [18] 79.80 75.60 86.30 80.00 77.90 75.40 84.00 71.00 91.90 79.00

BERT4GCN [20] 77.49 73.01 84.75 77.11 74.73 73.76 - - - -

DualGCN-BERT [6] 81.80 78.10 87.13 81.16 77.40 76.02 84.32 65.26 92.53 78.66

SSEGCN-BERT [24] 81.01 77.96 87.31 81.09 77.40 76.02 - - - -

CASAGCN-BERT 81.65 78.39 87.13 81.27 78.73 77.44 85.61 71.91 91.90 79.44

they have their own contributions. CASAGCN w/o dep indicates that we do not use the
dependency probability matrix to guide the self-attention score matrix. Therefore, the
performance degrades substantially on the Lap14 dataset which justifies that the depen-
dency graph guided self-attention can better model the dependency between aspects and
the corresponding contexts.

Table 3. Ablation study on the Lap14 dataset.

Models Accuracy Macro-F1

CAGCN 77.37 73.75

SAGCN 78.32 74.87

CASAGCN w/o dep 78.16 74.55

CASAGCN 79.43 75.80

5.6 Case Study

To better understand the behaviour of our CASAGCN model, we present the case study
on a few sample cases in this subsection. Table 4 shows the results of different mod-
els. We denote positive, negative and neutral sentiment as Pos, Neg and Neu, respec-
tively. In the first example, the sentence has a long and complicated structure where
the attention-based model IAN fails. For the aspect words “windows 8” in the second
example, IAN and CAGCN are unable to make the correct prediction due to the lack
of syntax information, while SAGCN and CASAGCN can connect aspect words and
the opinion words with the help of dependency graph. Moreover, in the third exam-
ple, both CAGCN and SAGCN fail to give the right sentiment polarity for the aspect
words “touchscreen function”. However, by combining the information from these two
modules, our CASAGCN successfully capture the feature representations of the key
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words “did not”. Overall, these three examples demonstrates our CASAGCN, taking
both global dependency and pairwise correlations in to consideration, can handle com-
plex and informal sentences in the ABSA task.

Table 4. Case studies of our CASAGCN model compared with baselines. Aspect words are in
italic.

# Reviews Sentiment IAN CAGCN SAGCN CASAGCN

1 Tech support would not fix the problem Neg Neu Neg Neg Neg

unless I bought your plan for $150 plus

2 Did not enjoy the new Windows 8 and Neg Neu Neu Neg Neg

touchscreen functions

3 Did not enjoy the new Windows 8 and Neg Neu Neu Pos Neg

touchscreen functions

5.7 Attention Visualization

To investigate the effectiveness of the dependency graph guided self-attention in con-
necting aspect terms and corresponding opinion expressions, we visualize the original
self-attention score matrix and dependency graph guided self-attention score matrix.
Take the sentence “It’s fast, light, and simple to use.” with an aspect term “use” as
an example. As shown in Fig. 3, the original self-attention score is dense, every word
gives other words very close attention scores, which will bring noise in the informa-
tion propagation stage. In addition, by observing the attention probability distribution
of “use” in the 10-th row, we can find that it does not distinguish the corresponding
opinion expression “simple” and mistakenly pays too much attention to “to” and “.”
which are not helpful for judging the sentiment polarity. Further, we can observe that
the dependency graph incorrectly connects the word “light” with many other words,
which also demonstrates the problems of relying too much on the dependency graph. In
contrast, after adding a syntactical guidance, our CASAGCN module produces a more
sparse self-attention matrix. The dependency path between words “simple” and “use”
allows the attention probability distribution to be adjusted correctly, so that our model
can make a right prediction.
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Fig. 3. Self-attention score distributions.

6 Conclusion

In this paper, we highlight the importance of combining information from both global
dependency structures and pairwise aspect-to-text correlations in the ABSA task and
propose a novel framework CASAGCN to exploit these information through the
CAGCN and SAGCN modules. We utilize sparse cross-attention to model the aspect-
to-text correlations. Moreover, we impose a syntactical guidance for better constructing
the text-to-text connections. Extensive experiments on five real-world datasets demon-
strate the effectiveness of the proposed CASAGCN model with superior performance.
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