Concentration of DNA by ethanol precipitation
Typically, 2.5 - 3 volumes of an ethanol/acetate solution is added to the DNA
sample in a microcentrifuge tube, which is placed in an ice-water bath for at
least 10 minutes. Frequently, this precipitation is performed by incubation at
-20C overnight (1). To recover the precipitated DNA, the tube is centrifuged,
the supernatant discarded, and the DNA pellet is rinsed with a more dilute
ethanol solution. After a second centrifugation, the supernatant again is discarded,
and the DNA pellet is dried in a Speedy-Vac.
Protocol
1. Add 2.5-3 volumes of 95% ethanol/0.12 M sodium acetate to the DNA sample
contained in a 1.5 ml microcentrifuge tube, invert to mix, and incubate in an
ice-water bath for at least 10 minutes. It is possible to place the sample at
-20degC overnight at this stage.
2. Centrifuge at 12,000 rpm in a microcentrifuge (Fisher) for 15 minutes at 4
degC, decant the supernatant, and drain inverted on a paper towel.
3. Add 80% ethanol (corresponding to about two volume of the original sample),
incubate at room temperature for 5-10 minutes and centrifuge again for 5
minutes, and decant and drain the tube, as above.
4. Place the tube in a Savant Speed-Vac and dry the DNA pellet for about 5-10
minutes, or until dry.
5. Always dissolve dried DNA in 10 mM Tris-HCl, pH 7.6-8.0, 0.1 mM EDTA (termed
10:0.1 TE buffer).
6. It is advisable to aliquot the DNA purified in large scale isolations (i.e.
100 ug or more) into several small (0.5 ml) microcentrifuge tubes for frozen
storage because repeated freezing and thawing is not advisable.
Notes on precipitation of nucleic acids
A. General rules
Most nucleic acids may be precipitated by addition of monovalent cations and
two to three volumes of cold 95% ethanol, followed by incubation at 0 to -70
degC. The DNA or RNA then may be pelleted by centrifugation at 10 to 13,000 x
g. for 15 minutes at 4degC. A subsequent wash with 70% ethanol, followed by
brief centrifugation, removes residual salt and moisture.
The general procedure for precipitating DNA and RNA is:
1. Add one-tenth volume of 3M NaOAc, pH 5.2* to the nucleic acid solution to be
precipitated,
2. Add two volumes of cold 95% ethanol,
3. Place at -70degC for at least 30 minutes, or at -20degC overnight.
or alternatively
1. Combine 95 ml of 100% ethanol with 4 ml of 3 M NaOAc (pH 4.8) and 1ml of
sterile water. Mix by inversion and store at -20degC.
2. Add 2.5 volumes of cold ethanol/acetate solution to the nucleic acid
solution to be precipitated.
3. Place at at -70degC for at least 30 minutes or -20degC for two hours to
overnight.
* 5M NH4OAc, pH 7.4, NaCl and LiCl may be used as alternatives to NaOAc. DNA
also may be precipitated by addition of 0.6 volumes of isopropanol.
B. Oligonucleotides
Add one-tenth volume of 3M NaOAc, pH 6.5, and three volumes of cold 95%
ethanol.
Place at -70degC for at least one hour.
C. RNA
Add one-tenth volume of 1M NaOAc, pH 4.5, and 2.5 volumes of cold 95% ethanol.
Precipitate large volumes at -20degC overnight.
Small volume samples may be precipitated by placing in powdered dry ice or dry
ice-ethanol bath for five to 10 minutes.
D. Isobutanol concentration of DNA
DNA samples may be concentrated by extraction with isobutanol. Add slightly
more than one volume of isobutanol, vortex vigorously and centrifuge to
separate the phases. Discard the isobutanol (upper) phase, and extract once
with water-saturated diethyl ether to remove residual isobutanol. The nucleic
acid then may be ethanol precipitated as described above.
E. Notes on phenol extraction of nucleic acids
The standard and preferred way to remove proteins from nucleic acid solutions
is by extraction with neutralized phenol or phenol/chloroform. Generally,
samples are extracted by addition of one-half volume of neutralized (with TE
buffer, pH 7.5) phenol to the sample, followed by vigorous mixing for a few
seconds to form an emulsion. Following centrifugation for a few minutes, the
aqueous (top) phase containing the nucleic acid is recovered and transferred to
a clean tube. Residual phenol then is removed by extraction with an equal
volume of water-saturated diethyl ether. Following centrifugation to separate
the phases, the ether (upper) phase is discarded and the nucleic acid is
ethanol precipitated as described above.
A 1:1 mixture of phenol and chloroform also is useful for the removal of
protein from nucleic acid samples. Following extraction with phenol/chloroform,
the sample should be extracted once with an equal volume of chloroform, and
ethanol precipitated as described above.